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Abstract

We propose a fully Bayesian approach for
generalized kernel models (GKMs), which are
extensions of generalized linear models in the
feature space induced by a reproducing ker-
nel. We place a mixture of a point-mass dis-
tribution and Silverman’s g-prior on the re-
gression vector of GKMs. This mixture prior
allows a fraction of the regression vector to
be zero. Thus, it serves for sparse model-
ing and Bayesian computation. For infer-
ence, we exploit data augmentation method-
ology to develop a Markov chain Monte Carlo
(MCMC) algorithm in which the reversible
jump method is used for model selection and
a Bayesian model averaging method is used
for posterior prediction.

1 Introduction

Supervised learning based on reproducing kernel
Hilbert spaces (RKHSs) has become increasingly pop-
ular since the support vector machine (SVM) and
its variants such as penalized kernel logistic regres-
sion models (Zhu and Hastie, 2005) have been pro-
posed. Given the high dimensionality generally associ-
ated with RKHS methods, sparseness has also emerged
as a significant theme. The SVM naturally embodies
sparseness due to its use of the hinge loss function. Pe-
nalized kernel logistic regression models, on the other
hand, are not naturally sparse. Thus, Zhu and Hastie
(2005) proposed a methodology that they refer to as
the import vector machine (IVM), where a fraction of
the training data—called import vectors by analogy
to the support vectors of the SVM, are used to index
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kernel basis functions. In this paper we employ the
terminology active vector for this idea.

Kernel supervised learning methods can be unified us-
ing the tools of regularization theory. On the one hand,
the regularization term is usually defined as the L1 or
L2 norm of the vector of regression coefficients (as a pe-
nalization technique). From the Bayesian standpoint,
this term arises by assigning a Gaussian or Laplacian
prior to the regression vector. Indeed, using logarith-
mic scoring rules (Bernardo and Smith, 1994), a loss
function can often be viewed as the negative condi-
tional log-likelihood. The duality between “regulariza-
tion” and “prior” leads to interpreting regularization
methods in terms of maximum a posteriori (MAP)
estimation, and has motivated many Bayesian inter-
pretations of kernel methods (Tipping, 2001; Sollich,
2001; Mallick et al., 2005; Zhang and Jordan, 2006).

Although the use of either the hinge loss function or L1

regularization is an effective tool for achieving sparsity
in the frequentist paradigm, in the Bayesian setting
the corresponding prior yields posteriors that cannot
be computed in closed form. Unfortunately, the ap-
proaches that are usually used for posterior inference
do not necessarily retain sparsity. For example, in
the Bayesian approach of Mallick et al. (2005), since
conjugate priors for the regression vector do not ex-
ist due to the non-normal conditional likelihood which
is obtained from the hinge loss, a data augmentation
methodology was employed to update the regression
vector. As a result, the regression vector is no longer
sparse.

In this paper we propose generalized kernel models
(GKMs) as a framework in which sparsity can be given
an explicit treatment and in which a fully Bayesian
methodology can be carried out. GKMs are derived
from generalized linear models (GLMs) in the RKHS.
Since active vectors are indexed by the nonzero com-
ponents of the regression vector in GKMs, we assign
to the regression vector a mixture of the point-mass
distribution and a prior which is called the Silverman



         973

Bayesian Generalized Kernel Models

g-prior (Silverman, 1985; Zhang et al., 2008). Our
point-mass mixture prior naturally possesses sparsity
because it allows a fraction of regression coefficients
in question to be zero. Thus it provides a Bayesian
approach to active vector selection.

In a recent paper, Zhang et al. (2008) provided a
theoretical analysis of the posterior consistency of a
Bayesian model choice procedure based on the Silver-
man g-prior. This prior is related to the Zellner g-
prior (Zellner, 1986), which has been widely applied to
Bayesian variable selection and Bayesian model selec-
tion (Smith and Kohn, 1996; George and McCulloch,
1997; Kohn et al., 2001; Nott and Green, 2004; Sha
et al., 2004) because of its computational tractability
in evaluating marginal likelihoods.

We apply the Silverman g-prior to the problem of
developing fully Bayesian GKMs, including Bayesian
approaches for parameter estimation, model selection
and response prediction, in the setting of classifica-
tion. In particular, motivated by the use of data aug-
mentation methodology in Bayesian computation for
Bayesian GLMs (Albert and Chib, 1993; Holmes and
Held, 2006), we exploit this methodology to devise an
MCMC algorithm for our Bayesian GKMs which uses
the reversible jump procedure (Green, 1995) for the
automatic selection of active vectors and the Bayesian
model averaging method (Raftery et al., 1997) for the
posterior prediction of future observations. Interest-
ingly, the reversible jump procedure with the help of
some matrix techniques can make the MCMC algo-
rithm computationally feasible, even for large datasets.

2 A Bayesian Approach for Kernel
Supervised Learning

We start with a supervised learning problem based on
a set of training data, {(xi, yi)}n

i=1, where xi ∈ X ⊂
Rp is an input vector and yi is a univariate continuous
output for the regression problem or binary output for
the classification problem. Our current concern is to
learn a predictive function f(x) from the training data.

Suppose f = u + h ∈ ({1} + HK) where HK is an
RKHS. Finding f(x) is then formulated as a regular-
ization problem of the form

min
f∈HK

{
1
n

n∑

i=1

L(yi, f(xi)) +
g

2
‖h‖2HK

}
, (1)

where L(y, f(x)) is a loss function, ‖h‖2HK
is the RKHS

norm and g > 0 is the regularization parameter. By
the representer theorem (Wahba, 1990), the solution
of (1) is of the form

f(x) = u +
n∑

j=1

βjK(x,xj), (2)

where u is called an offset term, K(·, ·) is the kernel
function and the βj are referred to as regression coef-
ficients. Noticing that ‖h‖2HK

=
∑n

i,j=1 K(xi,xj)βiβj

and substituting (2) into (1), we obtain the minimiza-
tion problem with respect to (w.r.t.) the βj as

min
u,β

{
1
n

n∑

i=1

L(yi, u + k′iβ) +
g

2
β′Kβ

}
, (3)

where β = (β1, . . . , βn)′ is the n×1 regression vector
and K = [k1, . . . ,kn] is the n×n kernel matrix with
ki = (K(xi,x1), . . . , K(xi,xn))′.

The predictive function (2) is based on a basis ex-
pansion of kernel functions. The predictive function
f(x) can also be expressed by a basis expansion of
feature functions. Given a Mercer reproducing kernel
K : X ×X → R, there exists a corresponding mapping
(say ψ) from the input space X to a feature space (say
F ⊂ Rr). That is, we have a vector-valued function
ψ(x) = (ψ1(x), . . . , ψr(x))′, which is called the feature
vector of x, such that K(xi,xj) = ψ(xi)′ψ(xj). By
the Mercer-Hilbert-Schmidt Theorem (Wahba, 1990),
we know that there exists an orthogonal sequence
of continuous eigenfunctions {φj} in the square inte-
grable Hilbert functional space L2(X ) and eigenval-
ues l1 ≥ l2 ≥ . . . ≥ 0. Furthermore, we have a def-
inition of the feature functions ψ : X → L2(X ) as
ψ(x) =

{√
ljφj(x)

}r

j=1
. That is, ψj(x) =

√
ljφj(x).

Thus the ψj(x) constitute a set of basis functions of
L2(X ). Consequently, they can be used to express the
predictive function as follows:

f(x) = u +
r∑

k=1

bkψk(x) = u + ψ(x)′b, (4)

where b = (b1, . . . , br)′. There are possibly infinitely
many basis functions in (4) because r is possibly in-
finite. In the case that r is infinite, one may use a
finite-dimensional approximation to f(x) by keeping
the first n ψj(x)’s and setting the remaining bj , j > n
to zero. Now letting b = Ψ′β, we re-derive (2) from
(4) due to K = ΨΨ′ where Ψ = [ψ(x1), . . . , ψ(xn)]′.

2.1 Generalized Kernel Models

In terms of the logarithmic scoring rule (Bernardo and
Smith, 1994), the loss L(y, f(x)) is viewed as the neg-
ative conditional log-likelihood in the Bayesian liter-
ature. This motivates us to construct the following
model

y ∼ p(y|µ) with µ = τ(u + k′β), (5)

where τ(·) is a given link function and k =
(K(x,x1), . . . ,K(x,xn))′. This model can be obtained
from the model of

y ∼ p(y|µ) with µ = τ(u + ψ(x)′b) (6)
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by using the transformation b = Ψ′β. Since the model
in (6) is in fact an extension of GLMs in the feature
space, we call model (5) the generalized kernel model
(GKM).

GKMs provide a unifying framework of kernel models
for regression and classification. With different p(y|µ)
and τ , we have different kernel models. In the regres-
sion problem, p(y|µ) is usually normal and τ is the
identity function.

In this paper we are mainly concerned with the classi-
fication problem where y is encoded as a binary value,
i.e., y ∈ {0, 1}. We thus model p(y|µ) as Bernoulli
distribution:

p(y|µ) = µy(1−µ)1−y = [τ(u+k′β)]y[1−τ(u+k′β)]1−y.

Typically, τ is either the logistic link τ(z) = exp(z)
1+exp(z)

or the probit link τ(z) = Φ(z), the cumulative distri-
bution function of a standard normal variable. The
probit link is widely used in Bayesian GLMs due to its
tractability in calculating the marginal likelihood. In
our fully Bayesian GKMs in Section 3, we will use this
link.

2.2 Silverman’s g-prior

Assume that the bk are independent Gaussian vari-
ables with E(bk) = 0 and E(b2

k) = g−1, that is,
b ∼ Nr(0, g−1Ir). Here and later, we denote by Im

the m×m identity matrix, by 1m the m×1 vector of
ones, and by 0 the zero vector or matrix with appropri-
ate size. Because of b = Ψ′β, we have β = K−1Ψb.
As a result, the prior for β is β ∼ Nn

(
0, g−1K−1

)
due to K−1ΨΨ′K−1 = K−1. It is possible that the
kernel matrix K is singular. For such a K, we use
its Moore-Penrose inverse K+ instead and still have
K+KK+ = K+. However, the prior distribution of β
becomes a singular normal distribution. In any case,
we always use K−1 for notational simplicity.

The prior Nn

(
0, K−1

)
for β was first proposed by

Silverman (1985) in his Bayesian formulation of spline
smoothing. Subsequently, Zhang et al. (2008) re-
ferred to the prior β ∼ Nn

(
0, g−1K−1

)
as the Silver-

man g-prior by analogy with the Zellner g-prior (Zell-
ner, 1986). When K is singular, similar to general-
ized singular g-prior (gsg-prior) (West, 2003), we call
Nn

(
0, g−1K−1

)
a generalized Silverman g-prior. It

is worth pointing out that Green (1985) argued that
the definition of Silverman’s prior is implicit. We have
presented an explicit derivation of this prior. Since the
prior density of β is proportional to exp(−gβ′Kβ/2),
the Silverman g-prior is design-dependent. Note also
that the regularization term gβ′Kβ/2 in (3) is readily
derived from this prior.

2.3 Sparse Models

Recall that the number of active vectors is equal to
the number of nonzero components of β. That is, if
βj = 0, the jth input vector is excluded from the basis
expansion in (2), otherwise the jth input vector is an
active vector. We are thus interested in a prior for
β which allows some components of β to be zero. In
particular, we assign a point-mass mixture prior to β
built on the Silverman g-prior.

We introduce an indicator binary vector γ =
(γ1, . . . , γn)′ such that γj = 1 if xj is an active vec-
tor and γj = 0 if it is not. Let nγ =

∑n
j=1 γj be the

number of active vectors, and let Kγ be the n×nγ sub-
matrix of K consisting of those columns of K for which
γj = 1. We further let Kγγ be the nγ×nγ submatrix
of Kγ consisting of those rows of Kγ for which γj = 1,
and βγ and kγ be the corresponding nγ×1 subvectors
of β and k. Based on GKMs in (5) and the Silverman
g-prior, we thus obtain the following sparse model

y ∼ p(y|τ(f(x))) (7)
f(x) = u + k′γβγ and βγ ∼ Nnγ (0, g−1K−1

γγ ).

In the existing literature for sparse classification and
regression, a typical choice of the prior on β is Lapla-
cian prior, also well known as L1-penalized regulariza-
tion. In frequentist treatments the corresponding L1

penalty term is well known to yield sparseness (Tib-
shirani, 1996). In the Bayesian setting, however, the
posterior distribution is not available in closed form,
thus approximations are needed; these are based on
the expression of the Laplacian prior as scale-mixtures-
of-normals or are based on a Laplace approximation.
This makes posterior inference tractable, but does not
necessarily retain sparseness. Thus, Tipping (2001)
and Figueiredo (2003) employed an empirical Bayes
approach instead.

In the Bayesian and complete SVMs of Mallick et al.
(2005), the prior on β is β ∼ Nn(0, Λ−1) where
Λ = diag(λ1, . . . , λn) is the n×n diagonal matrix with
λi > 0. Note that this prior does not induce the
regularization term gβ′Kβ/2 in (3). Note also that
the model selection problem of finding sparse support-
vector expansions is not addressed in this approach.
In this paper we give a Bayesian method for selecting
active vectors based on the mixture of the point-mass
prior and the Silverman g-prior.

3 Methodology

In this section we present a fully Bayesian GKM
(FBGKM) based on (7). Since p(y|τ(f(x))) is non-
normal for the classification problem, conjugate priors
for β usually do not exist. In order to facilitate the
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implementation of Bayesian inference in this setting,
we make use of the data augmentation methodology,
which has been used by Albert and Chib (1993) for
Bayesian GLMs and by Mallick et al. (2005) for their
Bayesian SVMs. The basic idea is to introduce auxil-
iary variables linking y and the model parameters. We
apply this methodology to our FBGKM.

3.1 Hierarchical Models

Let s = (s1, . . . , sn)′ be the auxiliary vector corre-
sponding to the training data {(xi, yi)}n

i=1. We in
particular define

s = u1n + Kγβγ + ε with ε ∼ Nn(0, σ2In).

Since τ is defined as the probit link in the FBGKM,
we have σ2 = 1 and

yi =

{
1 if si > 0
0 otherwise.

Given s, y = (y1, . . . , yn)′ is thus independent of u, β
and γ. Consequently, we can assign conjugate priors
to these parameters.

First, we assume u ∼ N(0, η−1) and g ∼
Ga(ag/2, bg/2), where Ga(a, b) represents a gamma
distribution. Let β̃γ = (u, β′γ)′. We thus have

β̃γ ∼ Nnγ+1(0, Σ−1
γ ) with Σγ =

[
η 0
0 gKγγ

]
.

By integrating out β̃γ , the marginal distribution of s
conditional on γ is normal, namely,

p(s|γ) = Nn(0, Qγ) (8)

with Qγ = In + K̃γΣ−1
γ K̃′

γ where K̃γ = [1n,Kγ ]
(n×(nγ+1)). Bayes’ theorem yields the following dis-
tribution of β̃γ conditional on s and γ:

[β̃γ |s,γ] ∼ Nnγ+1(Υ−1
γ K̃′

γs, Υ−1
γ ), (9)

where Υγ = K̃′
γK̃γ + Σγ .

Second, as in Kohn et al. (2001) and Nott and Green
(2004), we assign an independent Bernoulli prior to
each component of γ, namely,

p(γ|α) =
n∏

j=1

αγj (1− α)1−γj = αnγ (1− α)n−nγ ,

where α ∈ (0, 1). It is natural to place a Beta prior on
α, α ∼ B(aα, bα). Marginalizing out α results in the
following prior on γ:

p(γ) =
Be(nγ + aα, n− nγ + bα)

Be(aα, bα)
, (10)

where Be(·, ·) is the Beta function. Kohn et al. (2001)
proposed a method of selecting the hyperparameters
aα and bα by controlling the value of nγ . In the follow-
ing experiments, we use the uninformative fixed spec-
ification aα = 1 and bα = 1.

Finally, we assume that η follows Ga(aη/2, bη/2). As
in Zhang and Jordan (2006) and Mallick et al. (2005),
where the authors considered the Bayesian estimate of
the kernel function K, we can let K be indexed by
an unknown hyperparameter θ to which we assign a
prior. For simplicity, however, we shall keep K as well
as the hyperparameters aη, bη, ag and bg fixed in this
paper. In summary, we form a hierarchical model in
which the joint density of all variables mentioned takes
the form

p(y, s,γ, u, β, η, g)
= p(η)p(g)p(γ)p(u|η)p(β|g, γ)p(s|u,β, γ)p(y|s).

3.2 Inference

Our goal is to generate the realizations of parameters
from the conditional joint density p(s, u, β, γ, g|y) via
an MCMC algorithm. In order to speed up mixing
of the algorithm, we will use marginal posterior dis-
tributions whenever possible. Our MCMC algorithm
consists of the following steps.

Start Specify aη, bη, ag and bg, and initialize s, γ, g,
η, u and βγ .

Step (a) Impute each si from p(si|yi, u, βγ).

Step (b) Update η, g and β̃γ according to p(η|u),
p(g|βγ), and p(β̃γ |s, γ, η, g), respectively.

Step (c) Update γ from p(γ|s).

Step (a) is to draw s from p(s|y, u, βγ). We per-
form this step by using a technique which was pro-
posed by Holmes and Held (2006) for conventional
probit regression. In particular, s is updated from
its marginal distribution having integrated over β̃γ ;
that is, si is generated from p(si|s−i, yi, γ) where
s−i = (s1, . . . , si−1, si+1, . . . , sn)′. For details refer to
Holmes and Held (2006).

We now consider the updates of β̃γ , η and g. Given
s, these parameters are independent of y, so their
updates are based on p(β̃γ , η, g|s, γ). Hence, we up-
date β̃γ from [β̃γ |s,γ, η, g] ∼ Nnγ+1(Υ−1

γ K̃′
γs, Υ−1

γ ).
Since g is dependent only on βγ and the prior is con-
jugate, we use the Gibbs sampler to update g from its
conditional distribution, which is given by

[g|βγ ] ∼ Ga
(ag+nγ

2
,
bg + β′γKγγβγ

2

)
.
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The update of η is obtained from its conditional dis-
tribution as

[η|u] ∼ Ga
(aη+1

2
,
bη + u2

2

)
.

Step (c) is used for the automatic choice of active vec-
tors. To implement this step, we borrow a method de-
vised by Nott and Green (2004). This method was de-
rived from the reversible jump methodology of Green
(1995). Specifically, we generate a proposal γ∗ from
the current value of γ by one of three possible moves:

Birth move: randomly choose a 0 in γ and change
it to 1;

Death move: randomly choose a 1 in γ and
change it to 0;

Swap move: randomly choose a 0 and a 1 in γ and
switch them.

The acceptance probability for each move is

min{1, likelihood ratio× prior ratio× proposal ratio}.

Letting k = nγ , we denote the probabilities of birth,
death and swap by bk, dk and 1−bk−dk, respectively.
For birth, death and swap moves, their acceptance
probabilities are

min
{

1,
p(s|γ∗)p(γ∗)dk+1

p(s|γ)p(γ)bk

n−k

k+1

}
,

min
{

1,
p(s|γ∗)p(γ∗)bk−1

p(s|γ)p(γ)dk

k

n−k+1

}
,

min
{

1,
p(s|γ∗)p(γ∗)
p(s|γ)p(γ)

}
,

where p(s|γ) and p(γ) are given in (8) and (10). In our
experiments we set b0 = 1 and d0 = 0, bk = dk = 0.3
for 1 ≤ k ≤ kmax−1, and dk = 1 and bk = 0 for
kmax ≤ k ≤ n. Here, kmax is a specified maximum
number of active vectors such that kmax ≤ n.

An alternative to this approach is the stochastic
search method of George and McCulloch (1997). This
method also employs birth, death and swap moves; it
differs from the reversible jump procedure because it
does not incorporate the probabilities of birth, death
and swap into its acceptance probabilities.

Recall that the main computational burden of our
MCMC algorithm comes from the calculations of the
determinant and inverse of Qγ (Qγ∗) during the
MCMC sweeps. It is worth noting that when n is rel-
atively large, we can reduce the computation burden

by giving kmax a value far less than n, i.e., kmax ¿ n,
and then computing:

Q−1
γ = In − K̃γΥ−1

γ K̃′
γ

|Qγ | = |Υγ ||Σγ |−1 = η−1g−nγ |Kγγ |−1|Υγ |.

For example, for both the USPS and NewsGroups
datasets used in our experiments, we set kmax = 200 ¿
n. In this setting, we always have nγ ≤ kmax ¿ n.
Since Υγ and Kγγ are (nγ+1)×(nγ+1) and nγ×nγ ,
these formulae for Q−1

γ and |Qγ | are feasible compu-
tationally. This is an advantage over the stochastic
search method of George and McCulloch (1997). Fi-
nally, in the reversible jump method, the matrices in-
volved before and after each move only change a col-
umn and a row. Thus, it would be possible to ex-
ploit low-rank matrix update techniques to make the
method more efficient.

3.3 Prediction

Given a new input vector x∗, we now predict its label
y∗. The posterior predictive distribution of y∗ is

p(y∗|x∗,y) =
∫

p(y∗|x∗, β̃γ ,y)p(β̃γ |y)dβ̃γ .

We know that this integral cannot be computed in
closed form. Moreover, it is intractable to select the
model which is parameterized by βγ for prediction. An
intuitive approach is to choose a model with a value of
γ having the highest posterior probability among those
γ that appear during the MCMC sweeps. However,
this is expensive in terms of memory because γ takes
2n possible distinct values. To deal with this problem,
we use a Bayesian model averaging method (Raftery
et al., 1997) based on the MCMC algorithm. Specifi-
cally, we have

1
T

T∑
t=1

p
(
y∗ = 1

∣∣y,x∗, u(t), β(t)
γ

)
.

Here (·)(t) is the tth MCMC realization of (·), which
is taken at every Mth sweep after the burn-in of the
MCMC algorithm. In the following experiments we
set M = 5.

4 Experimental Evaluations

In this section, we conducted several experiments to
evaluate the performance of our proposed Bayesian
classification method, called FBGKM. For the sake
of clarity, we only considered the binary classification
problems and compared FBGKM with several related
classification methods. All experiments have been im-
plemented in Matlab on a Pentium 4 with a 2.80GHz
CPU and 2.00GB of RAM.
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Table 1: Summary of the Benchmark Datasets: n—
the size of the training data; m—the size of the test
data; p—the dimension of the input vector; kmax—the
maximum number of active vectors

Datasets n m p kmax

BCI 300 100 117 100
g241d 300 1200 241 200
Digit1 300 1200 241 200
COIL2 300 1200 241 200
USPS (0 vs.1) 500 1500 256 200
USPS (0 vs.9) 500 1500 256 200
Letters (A vs.B) 300 1255 16 100
Letters (A vs.C) 300 1225 16 100
NewsGroups 500 1485 893 200
Ringnorm 400 7000 20 400
Thyroid 140 75 5 140
Twonorm 400 7000 20 400
Waveform 400 4600 21 400

We performed the experiments on several benchmark
datasets: BCI, g241d, Digit1, COIL2, USPS digits
{(0 vs.1 ), (0 vs.9 )}, Letters {(A vs.B), (A vs.C )},
NewsGroups corpora, Ringnorm, Thyroid, Twonorm,
and Waveform. These datasets are available at
http://www.kyb.tuebingen.mpg.de/ssl-book/
and http://ida.first.gmd.de/∼raetsch/data
/benchmarks.htm.

Table 1 given a summary of these datasets. In our
experiments, each dataset was randomly partitioned
into two disjoint subsets as training and test datasets.
Twenty random partitions were employed for each
dataset, and several evaluation criteria were reported,
including average classification error rate, standard de-
viation, and average computational time.

We implemented the methods using the RBF Gaussian
kernel with a single parameter, that is, K(xi,xj) =
exp

(−∑p
l=1(xil−xjl)2/θ2

)
. The value of θ was set

as the mean Euclidean distance between training data
points. This setting was empirically found to be ef-
fective in real-world applications. In addition, we set
the hyperparameters in FBGKM as aη = 1, bη = 0.1,
ag = 4 and bg = 0.1. For all compared Bayesian clas-
sification methods, we run each MCMC algorithm for
10, 000 sweeps, discard the first 5, 000 as the burn-in,
and retain every 5th realization of parameters after
the burn-in for inference and prediction. This implies
that the Bayesian model averaging method works with
1, 000 (T = (10, 000−5, 000)/5) active sets.

4.1 Comparison with Bayesian Methods

Recall that the Bayesian SVM (BSVM) (Mallick et al.,
2005) and the complete SVM (CSVM) (Mallick et al.,
2005) are two existing Bayesian kernel methods closely

related to our FBGKM. We thus compared them with
FBGKM. Moreover, we only performed BSVM and
CSVM in the multiple setting, owing to their effective-
ness in experiments presented by (Mallick et al., 2005).
For comparison, we also implemented FBGKM with-
out Step (c) of the MCMC algorithm in Section 3.2.
That is, we considered an MCMC algorithm consist-
ing of Steps (a)-(b) where we fix nγ = n. We denoted
the resulting model by BGKM to distinguish it from
FBGKM.

We conducted the comparison on the first nine
datasets in Table 1. Table 2 reports the experi-
mental results. From this table, we can see that the
FBGKM has appealing computational advantages over
other three methods due to its sparse properties, and
that the FBGKM and BGKM methods based on the
Silverman g-prior achieve slightly lower classification
error rates than the other two methods on the whole.
Moreover, FBGKM and BGKM achieve roughly sim-
ilar classification error rates on all datasets involved
here, while FBGKM is more efficient than BGKM.

In the following experiments, we attempted to ana-
lyze the performance of the methods with respect to
the change of training size n and of maximum number
kmax of active vectors. For the sake of simplicity, we
only reported the results on the NewsGroups dataset.

Table 3 showed the experimental results when chang-
ing training size n and fixing the maximum number of
active vectors as kmax = 200. Note that the FBGKM
and BGKM methods slightly outperform BSVM and
CSVM in both classification error rate and computa-
tional cost. Note also that the scaling of the com-
putational cost of the FBGKM with respect to n is
relatively favorable.

Table 4 presents experimental results for the FBGKM
for different values of the maximum number kmax of
active vectors and for a fixed training size n = 800.
We see that the performance of the FBGKM is rela-
tively insensitive to the value of kmax. Note also that
its computational cost tends to increase slightly when
kmax increases.

Finally, in order to study the MCMC mixing perfor-
mance of our FBGKM method, we also reported the
numbers of active vectors on different datasets. In
Figure 1 we show the value nγ for to the first 6000
sweeps of MCMC on BCI, Digit1, Letters {(A vs.B)}
and NewsGroups datasets. These results suggest that
the model yields reasonably fast mixing, although fur-
ther study of mixing is needed on a wider range of
problems.
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Table 2: Experimental results of the five methods on different datasets: err− the test error rates(%); std− the
corresponding standard deviation; time− the corresponding computational time (s).

Dataset
BSVM CSVM BGKM FBGKM

err(±std) time err(±std) time err(±std) time err(±std) time
BCI 28.15(±2.15) 2.615× 103 29.40(±2.58) 2.596× 103 29.35(±2.82) 1.063× 103 29.83(±2.36) 0.688× 103

g241d 17.15(±1.68) 4.339× 103 17.63(±1.15) 4.365× 103 16.37(±1.11) 1.819× 103 16.30(±0.89) 1.451× 103

Digit1 4.86(±0.74) 5.248× 103 4.88(±0.75) 5.210× 103 4.87(±0.65) 2.459× 103 4.85(±0.67) 2.011× 103

COIL2 9.71(±0.81) 4.988× 103 9.86(±0.71) 4.996× 103 9.16(±0.99) 2.454× 103 9.797(±0.32) 1.502× 103

USPS(0 vs.1) 0.40(±0.30) 2.133× 104 0.35(±0.11) 2.047× 104 0.28(±0.05) 6.013× 103 0.28(±0.06) 2.700× 103

USPS(0 vs.9) 1.36(±0.36) 2.239× 104 1.40(±0.29) 2.230× 104 1.36(±0.28) 6.479× 103 1.37(±0.24) 2.974× 103

Letters(A vs.B) 0.92(±0.59) 2.009× 103 0.95(±0.45) 2.007× 103 0.75(±0.24) 0.914× 103 0.77(±0.24) 0.593× 103

Letters(A vs.C) 0.83(±0.15) 2.026× 103 0.93(±0.27) 2.042× 103 0.87(±0.15) 0.896× 103 0.84(±0.15) 0.596× 103

NewsGroups 5.62(±0.80) 2.286× 104 5.08(±0.33) 2.291× 104 4.92(±0.28) 6.270× 103 4.83(±0.25) 2.910× 103

Table 3: Experimental results of the five methods correspond to different training sizes n on the NewsGroups
dataset with kmax = 200: err− the test error rates(%); std− the corresponding standard deviation; time− the
corresponding computational time (s).

training size n
BSVM CSVM BGKM FBGKM

err(±std) time err(±std) time err(±std) time err(±std) time
n=300 5.99(±1.44) 5.949× 103 5.84(±0.80) 5.830× 103 5.37(±0.52) 2.467× 103 5.08(±0.49) 2.085× 103

n=400 5.65(±0.98) 1.173× 104 5.83(±0.93) 1.171× 104 5.10(±0.35) 4.674× 103 5.05(±0.39) 2.804× 103

n=500 5.62(±0.80) 2.286× 104 5.08(±0.33) 2.291× 104 4.92(±0.28) 6.270× 103 4.83(±0.25) 2.910× 103

n=600 5.77(±0.61) 3.458× 104 5.13(±0.20) 3.461× 104 4.92(±0.43) 8.340× 103 4.74(±0.28) 2.973× 103

n=700 5.63(±0.82) 5.195× 104 4.82(±0.21) 5.186× 104 4.44(±0.36) 1.207× 104 4.61(±0.52) 3.610× 103

n=800 5.14(±0.59) 7.754× 104 5.10(±0.16) 7.757× 104 4.49(±0.47) 1.673× 104 4.56(±0.34) 4.327× 103
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Figure 1: MCMC output for the numbers nγ of active
vectors of the FBGKM method on four datasets: (a)
BCI; (b) Digit1; (c) Letters (A vs.B); (d) NewsGroups.

4.2 Bayesian vs. Frequentist

Since the FBGKM method is a Bayesian alternative
to the IVM and SVM, it is useful to compare FBGKM
with the conventional IVM and SVM. We have done
this on the following datasets: Ringnorm, Thyroid,
Twonorm and Waveform. These datasets were also

Table 4: Experimental results of our FBGKM corre-
spond to different maximum numbers kmax of active
vectors on the NewsGroups dataset with n = 800:
err− the test error rates(%); std− the corresponding
standard deviation; time− the corresponding compu-
tational time (s).

training size n
FBGKM

err (±std) time
kmax = 300 4.55 (±0.46) 6.522× 103

kmax = 400 4.62 (±0.45) 7.189× 103

kmax = 500 4.64 (±0.37) 8.536× 103

kmax = 600 4.75 (±0.48) 1.033× 104

kmax = 700 4.72 (±0.28) 1.170× 104

used by Zhu and Hastie (2005) and detailed informa-
tion on the data can be found in (Rätsch et al., 2001).
Here each dataset was randomly partitioned into two
disjoint subsets as training and test datasets according
to the training and test sizes n and m in Table 1. In
addition, the maximum number kmax of active vectors
was set based on Table 1. The results shown in Table 5
were based on the average of these twenty realizations
and the results with the conventional IVM and SVM
are cited from Zhu and Hastie (2005). From Table 5,
we can see that our Bayesian approach slightly out-
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Table 5: Classification error rates (%) and correspond-
ing standard deviations of the compared methods on
the four datasets.
Datasets SVM IVM FBGKM
Ringnorm 2.03(±0.19) 1.97(±0.29) 1.51(±0.10)
Thyroid 4.80(±2.98) 5.00(±3.02) 4.60(±2.65)
Twonorm 2.90(±0.25) 2.45(±0.15) 2.86(±0.21)
Waveform 9.98(±0.43) 10.13(±0.47) 9.80(±0.31)

performs the frequentist approaches.

5 Conclusion

In this paper we have proposed fully Bayesian ker-
nel methods based on the Silverman g-prior and the
Bayesian model averaging method. We have devel-
oped an MCMC algorithm for parameter estimation,
model selection and posterior prediction. Although
our Bayesian methods have been devised for binary
classification problems, they can be readily extended
to multi-class problems. Moreover, we immediately
obtain a fully Bayesian approach to solving the SVM
model selection problem by following the treatment of
Mallick et al. (2005), who form a conditional likelihood
from the hinge loss (see also Sollich (2001)), and as-
signing the mixture of the point-mass distribution and
the Silverman g-prior to the regression vector.
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