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Abstract

We are concerned with a multivariate re-
sponse regression problem where the interest
is in considering correlations both across re-
sponse variates and across response samples.
In this paper we develop a new Bayesian non-
parametric model for such a setting based on
Dirichlet process priors. Building on an ad-
ditive kernel model, we allow each sample to
have its own regression matrix. Although
this overcomplete representation could in
principle suffer from severe overfitting prob-
lems, we are able to provide effective control
over the model via a matrix-variate Dirich-
let process prior on the regression matrices.
Our model is able to share statistical strength
among regression matrices due to the clus-
tering property of the Dirichlet process. We
make use of a Markov chain Monte Carlo al-
gorithm for inference and prediction. Com-
pared with other Bayesian kernel models, our
model has advantages in both computational
and statistical efficiency.

1 Introduction

In this paper we are concerned with a multivariate
supervised learning problem based on a training data
set {(xi,yi)}n

1 . We in particular consider a regression
problem where xi ⊂ Rp is an input vector and yi ∈ Rq

is a q-dimensional continuous vector of responses.

In the univariate setting (i.e. q = 1), Gaussian pro-
cesses (GPs) (Neal, 1999; Rasmussen and Williams,
2006) provide a flexible approach to regression. How-
ever, a typical treatment in the multivariate setting is
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to exploit several independent GPs, with one GP for
each response variate. This treatment can not capture
statistical relationships among the response variates.
To cope with this problem, Boyle and Frean (2005)
developed a so-called dependent GP model. The ap-
plications of the model are limited, however, because
it is based on an nq×nq covariance matrix.

Other methods for capturing the dependency
among multiple response variates include “co-
kriging” (Cressie, 1993), “curds and whey” (Breiman
and Friedman, 1997) and semiparametric latent factor
models (Teh et al., 2005). In this paper, we make
use of Dirichlet processes to capture the relationship
among the response variates. We also show that
our approach provides leverage on problems where
the data are not iid (independent and identically
distributed).

Dirichlet processes (DPs) (Ferguson, 1973) or DP mix-
ture models (Lo, 1984) are classical Bayesian nonpara-
metric modeling tools. After Markov chain Monte
Carlo (MCMC) algorithms were developed for DP
mixture models in the 1990s (see, for example, (Bush
and MacEachern, 1996; Escobar and West, 1995;
MacEachern, 1998; Neal, 2000)), DP mixture models
have seen a wide range of applications in the literature.
A DP is a distribution on probability measures (i.e.,
it is a random measure) that yields clustering phe-
nomena when one considers repeated draws from the
random measure. This clustering property allows DPs
to formalize the notion of “borrowing strength” across
related studies (Antoniak, 1974; Ferguson, 1973).

In recent years, one of the most important develop-
ments in the DP literature is the dependent DP (DDP)
of MacEachern (1999). The DDP is a general frame-
work for describing dependency among a collection of
random measures. This is achieved by treating the
weights and the atoms in the stick-breaking represen-
tation of the DP (Sethuraman, 1994) as stochastic pro-
cesses (De Iorio et al., 2004; Dunson et al., 2008; Grif-
fin and Steel, 2006). However, this framework typi-
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cally leads to demanding computations because con-
ventional ways to devise MCMC algorithms for DP
mixture models based on the Pólya urn scheme (Black-
well and MacQueen, 1973) can no longer be used under
the framework.

This paper is concerned with the formulation of DPs
in dependent nonparametric models for multivariate-
response regression problems. Our point of departure
is an expansion of the regression function fj(x) in a se-
ries expansion using a combination of basis functions;
that is,

fj(x) = bj0 +
n∑

l=1

bjlK(xl,x), j = 1, . . . , q

where the bj0 are offset terms, the bjl are regression
coefficients, and K(·, ·) is the kernel function.

Let B = [b1, . . . ,bq] where bj = (bj0, bj1, . . . , bjn)′ for
j = 1, . . . , q be the regression matrix. In the usual set-
ting, either the columns of B or the rows of B are as-
sumed to be independent. This can yield a model that
ignores the dependence between the response variates
or between the response samples. To take an extreme
alternative nonparametric approach, we might endow
each sample with its own regression matrix. This could
overfit, thus we envision a DP prior to provide a joint
distribution on the regression matrices. The clustering
property of DPs naturally allows the sharing of statis-
tical strength between the samples and between the
responses. Moreover, the clustering property is able
to transfer statistical strength from existing regression
matrices to new regression matrices, and thus yield
out-of-sample prediction.

We refer to the resulting DP prior as a matrix-variate
DP since it is developed for describing a set of ran-
dom matrices. We employ the Pólya urn scheme for
Bayesian inference. Our regression model is a con-
jugate model, and Bayesian inference for this model
proceeds via a relatively straightforward merging of
MCMC techniques (Bush and MacEachern, 1996; Es-
cobar and West, 1995; MacEachern, 1998; Neal, 2000).

Our regression model not only captures the relation-
ship among the response samples, but also the rela-
tionship among the response variates. The spatial DP
model of Gelfand et al. (2005) is also able to model
these two types of the relationships. Since the base
measure in the spatial DP model is defined as a Gaus-
sian process, this model typically requires repeatedly
inverting n×n matrices, limiting their applications in
large-scale datasets. However, our model can avoid
this limitation.

It is worth noting that the kernel weighted mixture of
DPs (Dunson et al., 2007) is to capture the relationship
among the response samples, but it cannot be used to

model the dependence among the response variates.
Our model is also different from the method of Dunson
et al. (2008) in which only one regression matrix for
all samples is employed and a so-called matrix stick-
breaking process is proposed to define a joint prior for
the elements of this regression matrix.

To simplify our presentation, we will employ the no-
tation of Gupta and Nagar (2000) for matrix-variate
distributions. That is, for an s×t random matrix Z,
Z ∼ Ns,t(M,A⊗B) means that Z follows a matrix-
variate normal distribution with mean matrix M (s×t)
and covariance matrix A⊗B, where A (s×s) and B
(t×t) are positive definite. For an s×s random ma-
trix C, C ∼Ws(r,D) means that C follows a Wishart
distribution with r degrees of freedom and an s×s pos-
itive definite parameter matrix D.

The rest of this paper is organized as follows. Section 2
presents a Bayesian nonparametric regression model
based on the matrix-variate DP mixture prior. An
experimental analysis is presented in Section 3 and we
summarize in Section 4.

2 Matrix-variate DP mixture priors
for Multivariate Regression

We consider the following regression model

yi = B′
igi + εi, (1)

where gi = (1,K(x1,xi), . . . , K(xn,xi))′ ((n+1)×1)
for short and Bi ((n+1)×q) is the regression matrix
corresponding to xi. Unlike a conventional regression
model, the current model allows each input sample xi

to have its own regression matrix Bi.

2.1 Matrix-variate DP Priors

To capture relationships among the Bi, we introduce
a DP prior to model the joint distribution of the Bi.
In particular, we assume that p(y1, . . . ,yn) follows a
DP mixture model:

[yi|Bi,Σ] ind∼ Nq(yi|B′
igi, τΣ), i = 1, . . . , n;

[Bi|G] iid∼ G, i = 1, . . . , n; (2)
G ∼ DP(νG0).

Here Σ is a q×q positive definite matrix, ν > 0 is the
concentration parameter of the DP prior and G0 is the
base distribution. In this paper, we define G0 as

G0(·|Σ,Λ) = Nn+1,q(0, Λ⊗Σ),

where 0 represents the zero vector (or matrix) whose
dimensionality is dependent upon the context and Λ =
diag(λ1, λ2, . . . , λn+1) is a diagonal matrix with λi > 0
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for i = 1, . . . , n+1. Since the base measure follows a
matrix-variate distribution, we refer to the resulting
DP as a matrix-variate DP.

In addition, we assume that ν, τ−1 and λ−1
i follow

Gamma distributions: Ga(ν|aν , bν), Ga(τ−1|aτ

2 , bτ

2 )
and Ga(λ−1

i |ai

2 , bi

2 ); and we assume that Σ−1 follows
Wishart distribution: Wq(Σ−1|ρ, R).

As was showed by Blackwell and MacQueen (1973),
integrating over G results in a Pólya urn scheme for
the Bi; that is,

B1 ∼ G0,

[Bi|B1, . . . ,Bi−1] ∼
νG0 +

∑i−1
l=1 δ(Bi|Bl)

ν + i− 1
,

where δ(Bi|Bl) is a point mass at Bl. It is easily seen
that as ν → 0, all the Bi are identical to B1, which
follows G0. When ν → ∞, the Bi become iid G0.
Since the Bi are exchangeable, the Pólya urn scheme
can be written as

[Bi|B−i] ∼
νNn+1,q

(
Bi|0, Λ⊗Σ

)
+

∑
l 6=i δ(Bi|Bl)

ν + n− 1
,

(3)
where B−i represents {Bl : l 6= i}.

2.2 Posterior Inference

The discreteness of the random distribution G plays
a central role in Bayesian inference and computation,
because with positive probability, some of the Bi are
identical. This is the well known clustering property of
the DP. Assume that there are c distinct values among
the Bi as Q = {Q1, . . . ,Qc}, and that there are nk

occurrences of Qk such that
∑c

k=1 nk = n. The vector
of configuration indicators w = (w1, . . . , wn) is defined
by wi = k if and only if Bi = Qk for i = 1, . . . , n. Thus
(Q,w) is an equivalent representation of the Bi, and
hence (3) reduces to

[Bi|B−i] (4)

∼
νNn+1,q

(
Bi|0, Λ⊗Σ

)
+

∑c
k=1 nk(−i)δ(Bi|Qk)

ν + n− 1
,

where nk(−i) refers to the cardinality of cluster k with
Bi removed, and

Qk
iid∼ Nn+1,q

(
Qk|0, Λ⊗Σ

)
, k = 1, . . . , c.

Hence, we can express the joint distribution of Y =
[y1, . . . ,yn]′ (n×q) as

[Y|w,Q, τ ] ∼
c∏

k=1

∏

i: wi=k

Nq(yi|Q′
kgi, τΣ).

Integrating out the Qk yields the marginal distribution
of Y as

[Y|w, τ,Λ,Σ] ∼
c∏

k=1

Nnk,q

(
Yk|0, (τInk+GkΛG′

k)⊗Σ
)
,

(5)

where Yk and Gk are respectively nk×q and
nk×(n+1) matrices consisting of those yi and gi with
wi = k. For each k = 1, . . . , c, we have

[Qk|Y,w,Λ,Σ, τ ] ∼ Nn+1,q

(
Qk|ΘkG

′
kYk, τΘk⊗Σ

)
(6)

where Θk = (τΛ−1 + G′
kGk)−1.

Posterior inference is achieved by generating realiza-
tions of the parameters from the conditional joint den-
sity [B, τ,Λ|Y]. We use Gibbs sampler, which consists
of the following steps (see the Appendix for a detailed
presentation):

(a) Update (Bi, wi) from
[(Bi, wi)|(B−i,w−i),Λ, τ,Σ,Y] for i = 1, . . . , n;

(b) Update Qk from [Qk|w,Λ, ν, τ,Y] for k =
1, . . . , c;

(c) Update τ−1, Σ−1 and λ−1
i (i = 1, . . . , n+1)

from [τ−1|Y,B,Σ, aτ , bτ ], [Σ−1|Y,B, τ,R, ρ] and
[λ−1

i |{β(k)
i }c

k=1,Σ, ai, bi] where β
(k)
i is the ith row

of Qk;

(d) Update ν from p(ν|aν , bν , c).

Our method groups the regression matrices Bi into
c clusters by using the matrix-variate DP prior. The
main computational burden of our method comes from
the calculation of Θk, but fortunately we can use
the Sherman-Morrison-Woodbury formula (Golub and
Loan, 1996) to calculate Θk efficiently. In particular,
we have

Θk = (τΛ−1 + G′
kGk)−1

= τ−1Λ− τ−1ΛG′
k(τInk

+ GkΛG′
k)−1GkΛ.

Thus, the formula allows us to invert an nk×nk matrix
instead of an n×n matrix. Since nk is typically far
smaller than n, the algorithm is still efficient for a
large-scale dataset.

2.3 Prediction

Given a new input vector x0, we wish to predict the
corresponding response y0. Let B0 be the associated
regression matrix. Prediction in our model is based on
the cluster structure of the Bi.
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In this paper we are interested in Bayesian prediction.
Using the structure of the DP prior, we have

[B0|Q,w, ν,Λ] (7)

∼
ν

ν+n
Nn+1,q(B0|0, Λ⊗Σ) +

1
ν+n

c∑

k=1

nkδ(B0|Qk).

Let {Q(t),Σ(t), τ (t),Λ(t), ν(t)}, t = 1, . . . , T be the
MCMC realizations of the parameters after the burn-
in. We present two Bayesian approaches. The first
approach is to draw B(t)

0 from (7) with the parame-
ter realizations. We thus have B̂0 = 1

T

∑T
t=1 B(t)

0 , and
hence ŷ0 = B̂′

0g0.

The second approach is based on the posterior distri-
bution of y0, which is given by

p(y0|x0,Y)

=
∫

p(y0|x0,B0,Y)p(B0|Q,w)p(Q|Y,w)dQdB0.

Integrating over B0, we have

p̂(y0|x0,Y)

=
1

(ν+n)T

T∑
t=1

{
c∑

k=1

nkp
(
y0|x0,Q

(t)
k , τ (t)Σ(t)

)

+ν

∫
p(y0|x0,B0)Nn+1,q

(
B0|0,Λ(t)⊗Σ(t)

)
dB0

}

=
1

(ν+n)T

T∑
t=1

{
c∑

k=1

nkNq

(
y0|(Q(t)

k )′g0, τ
(t)Σ(t)

)

+νNq

(
y0|0, (τ (t) + g′0Λ

(t)g0)Σ(t)
)
}

.

Thus, we obtain the following prediction of y0:

ŷ0 =
1
T

T∑
t=1

y(t)
0 , (8)

where y(t)
0 are the MCMC realizations of y0 from

p̂(y0|x0,Y) after the burn-in.

3 Experimental Analysis

In this section we conducted numerical experiments to
analyze the performance of our proposed Bayesian re-
gression based on the matrix-variate Dirichlet process
(MDP) mixture model.

Our analysis was implemented on the four datasets:
chemometrics, Boston housing, forest fires,
automobile, and robot arm. The chemometrics
data taken from Skagerberg et al. (1992) were

used in Breiman and Friedman (1997) to ana-
lyze their regression methods, and it contains
56 samples. The robot arm dataset was used
by Teh et al. (2005) for modeling the domain
of multi-joint robot arm dynamics. The Boston
housing, forest fires, and automobile datasets
were taken from UCI, and they are available from
http://archive.ics.uci.edu/ml/datasets.html.
The Table 1 summarized these benchmark datasets.

In our experiments, for all the four datasets the in-
put samples were standardized to have zero mean and
unity variance. Moreover, each dataset was randomly
partitioned into two disjoint subsets as the training
and test datasets, according to percentages listed in
the last column of Table 1. In addition, each sample
in all the datasets was divided into (q =)6 responses
and p input variables. Note that the Boston housing
data are typically used for univariate response regres-
sion problems. Here we formulated this dataset as a
6-response regression problem for our purpose.

We compared our method with the Gaussian process-
based regression (GPR) (Rasmussen and Williams,
2006), the support vector regression (SVR) (Schölkopf
and Smola, 2002), the independent DP (iDP) mixture-
based regression, and the spatial DP (sDP) mixture-
based regression (Gelfand et al., 2005). It should be
mentioned that: (1) the iDP-based regression is to
model the columns of Y = [yij ] (n×q) as q mutually in-
dependent DP mixture models, so it does not consider
correlations between the response variates; (2) the sDP
mixture model is a specification of nonparametric de-
pendent modeling that can effectively take advantage
of the correlations among the response variates.

For the sake of simplicity, we used the RBF Gaus-
sian kernel function with a single scale parameter, i.e.,
K(xi,xj) = exp(−‖xi − xj‖2/2θ2). Although in prin-
ciple we can estimate the scale parameter θ2 using
MCMC algorithms (see, e.g., (Gelfand et al., 2005;
Zhang and Jordan, 2006)), we simply specified θ2 as
the mean of Euclidean distances among the training
dataset. In general, such a choice was empirically
verified to be effective. For those methods based on
the MCMC, we ran each MCMC algorithm for 5, 000
sweeps, discarding the first 1, 000 as the burn-in, and
retaining every fifth realization of the parameters after
the burn-in for inference and prediction. The hyperpa-
rameters were set as follows: aν = 10, bν = 1, aτ = 10,
bτ = 1, ai = 40, bi = 1, ρ = q+1, and R = Iq + 1

q1q1′q,
where Iq is the q×q identity matrix and 1q is the q×1
vector of ones.

The regression performance is measured in terms of
two quantities: the root-mean-square error (RMSE)
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and the mean absolute percentage error (MAPE):

RMSE =

√√√√ 1
m

m∑

i=1

(yj(xi)− ỹj(xi))2

and

MAPE =
1
m

m∑

i=1

∣∣∣∣
yj(xi)− ỹj(xi)

yj(xi)

∣∣∣∣ ,

where m is the number of the test data, yj(xi) is the
jth response corresponding to input vector xi, and
ỹj(xi) is the jth prediction computed from a regression
method. It is well known that RMSE is a measure of
the absolute deviation of the estimated quantity from
the actual quantity, giving more weight to large er-
rors, whereas MAPE is usually used to compare the
accuracy of the model on different series.

Tables 2 and 3 show the estimated prediction errors
(RMSE and MAPE) for the four datasets. Note the
average error listed in the last column of Tables 2 and 3
is calculated according to the definitions of RMSE and
MAPE on all responses. As we can see, the regression
methods based on both the MDP and sDP mixture
models tend to out-perform the other three methods,
presumably because the MDP and sDP mixture mod-
els can take advantage of the correlations between the
responses.

The computation of the sDP mixture model is de-
manding because its MCMC algorithm involves the
computation of n×n matrices at each sweep. In addi-
tion, this algorithm needs to calculate the densities of
n-variate normal distributions. In the experiments, we
found that the ratios (say, r) between some of these
values become very large. This results in a slowly
mixing Markov chain. To alleviate this problem, we
applied a simple truncation trick; namely, r is set to
0.001 if r < 0.001 and set to 1000 if r > 1000. As
discussed in Section 2.2, the MDP and iDP mixture
models are efficient computationally. Moreover, their
MCMC algorithms only involve calculating the densi-
ties of q-variate or univariate normal distributions (see
Section 2.2). Thus, they work very well without the
need for the truncation trick.

Finally, we report the posterior distribution of the
number c of clusters for our MDP mixture model in
Figure 1. It is worth noting that the sDP model cap-
tures the correlation between q GPs by using the clus-
tering property of DPs. In our regression problems,
q (= 6) takes a small value, thus the q GPs were
very often clustered into one cluster during the MCMC
sweeps. It seems somewhat strong for sDP to borrow
the strength across the response variates. However,
our model captures the correlation between the re-
sponse variates in terms of a full covariance matrix
R, which was defined as an equicorrelation matrix.

Table 1: Summary of the benchmark datasets: p−the
dimension of the input vector; q−the dimension of the
output vector; k−the size of the dataset; n−the num-
ber of the training data.

Dataset p q k n/k
Chemometrics 22 6 56 60%
Boston housing 8 6 506 60%
Forest fires 7 6 517 30%
Automobile 20 6 205 50%
Robot arm 12 6 1500 60%

4 Conclusion

We have derived a new Bayesian nonparametric kernel
regression method based on the matrix-variate Dirich-
let process mixture prior and introduced an MCMC
algorithm for inference and prediction. Possible exten-
sions of the approach would involve using other expo-
nential family models (Ibrahim and Kleinman, 1998;
Xue et al., 2007). For example, we can develop ex-
tensions to multi-class classification problems by mix-
ing the matrix-variate DP with a generalized additive
model.

Appendix: The MCMC Algorithm

We can use Gibbs sampling to draw [B, τ,Σ,Λ, ν|Y].
The required full conditionals are

(a) [(Bi, wi)|(B−i,w−i), ν,Λ,Σ,Y] for i = 1, . . . , n;

(b) [Qk|w,Λ, τ,Σ, ν,Y] for k = 1, . . . , c;

(c) [τ−1|Y,B,Σ, aτ , bτ ];

(d) [Σ−1|Y,B, τ,R, ρ];

(e) [λ−1
i |{β(k)

i }c
k=1,Σ, ai, bi] for i = 1, . . . , n+1;

(f) [ν|aν , bν , c].

The Gibbs sampler exploits the simple structure of the
conditional posterior for each Bi. That is, for i =
1, . . . , n, the conditional distribution is given by

[Bi|B−i, Y,Λ,Σ, τ ] (9)

∝ q0N(yi|B′
igi, τΣ)Nn+1(Bi|0, Λ⊗Σ) +

∑

j 6=i

qjδ(Bi|Bj),

where qj = Nq(yi|B′
jgi, τΣ) and

q0 = ν

∫
Nq(yi|B′

igi, τΣ)Nn+1,q(Bi|0, Λ⊗Σ)dBi

= νNq(yi|0, (g′iΛgi + τ)Σ).
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Figure 1: Posterior distribution of the number c of clusters, visited in the 4, 000 sweeps after the burn-in, for the
different datasets: (a) chemometrics; (b) Boston housing; (c) forest fires; (d) automobile; (e) robot arm.

Table 2: Evaluation results on the root-mean-square error (RMSE) for all datasets.

Dataset Method y1 y2 y3 y4 y5 y6 Ave.

Chemometrics

GP 0.2087 0.1252 0.6296 0.3581 0.5099 0.3892 0.4073
SVR 0.1970 0.1218 0.5755 0.3568 0.5000 0.3827 0.3891
iDPs 0.4146 0.3900 0.2722 0.4294 0.3154 0.4484 0.3836
sDP 0.2668 0.2719 0.3631 0.2730 0.2685 0.3113 0.2924
MDP 0.2015 0.2553 0.2727 0.2396 0.2818 0.2945 0.2576

Boston housing

GP 2.2907 2.5563 2.5267 4.3983 1.7337 3.1622 2.9016
SVR 0.9505 0.9725 1.0298 2.1701 1.0999 1.2499 1.3160
iDPs 0.8448 0.9062 0.6672 0.9945 0.6493 0.8097 0.8212
sDP 0.8304 0.5386 0.5698 1.0216 0.3963 0.5978 0.6591
MDP 0.8332 0.5544 0.5440 0.9900 0.4026 0.5787 0.6505

Forest fires

GP 3.8510 3.8755 0.9889 2.5171 1.0531 3.4328 2.8884
SVR 2.6902 2.6721 0.9924 2.2670 1.0162 1.6733 2.0139
iDPs 1.2047 1.2268 3.5418 1.1959 3.8747 3.0723 2.6263
sDP 1.1166 1.1087 1.6035 1.0266 1.4227 1.6172 1.3379
MDP 1.0529 1.0451 0.6632 1.0013 0.5007 0.7364 0.8599

Automobile

GP 0.2355 0.4754 0.8225 0.6811 0.6087 1.0763 0.7013
SVR 0.2515 0.4128 0.7915 1.0152 0.9969 0.6204 0.7382
iDPs 0.6414 0.7566 0.7481 0.3740 0.6085 0.8037 0.6727
sDP 0.2487 0.4813 0.7052 0.3637 0.4284 0.4593 0.4686
MDP 0.2542 0.4357 0.5877 0.3592 0.4336 0.3914 0.4223

Robot arm

GP 0.4117 0.5109 0.3717 0.4958 0.5189 0.4191 0.4590
SVR 0.4200 0.4933 0.3643 0.4668 0.4986 0.4053 0.4441
iDPs 0.4322 0.4786 0.4041 0.4369 0.4555 0.3637 0.4301
sDP 0.4249 0.4640 0.3729 0.4296 0.4400 0.3765 0.4193
MDP 0.4083 0.4413 0.3631 0.4429 0.4432 0.3701 0.4129
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Table 3: Evaluation results (%) on the mean absolute percentage error (MAPE) for all datasets.

Dataset Method y1 y2 y3 y4 y5 y6 Ave.

Chemomtrics

GP 0.1569 0.0941 0.4685 0.2720 0.3830 0.2915 0.2777
SVR 0.1470 0.0915 0.4392 0.2697 0.3767 0.2872 0.2686
iDPs 0.3079 0.2525 0.2065 0.2573 0.2142 0.3082 0.2578
sDP 0.1991 0.1928 0.2727 0.2076 0.2114 0.2499 0.2223
MDP 0.1605 0.2017 0.2188 0.1845 0.2298 0.2436 0.2065

Boston housing

GP 1.0661 1.4774 1.4978 2.6362 1.0269 1.5832 1.5479
SVR 0.3170 0.4944 0.5117 0.9246 0.5732 0.7304 0.5919
iDPs 0.3569 0.6095 0.5169 0.5498 0.4728 0.5433 0.5082
sDP 0.2838 0.3344 0.3877 0.5826 0.2996 0.3858 0.3790
MDP 0.2456 0.3389 0.3796 0.5497 0.2906 0.3994 0.3673

Forest fires

GP 2.9336 2.9121 0.6710 1.8789 0.5971 2.4587 1.9086
SVR 1.7718 1.7424 0.4662 1.4312 0.5025 0.9875 1.1503
iDPs 1.0000 0.9587 2.8157 1.0172 3.0546 2.4526 1.8831
sDP 0.9425 0.8676 1.4386 0.8776 1.1048 1.4033 1.1057
MDP 0.9210 0.7948 0.5087 0.8798 0.2969 0.6201 0.6702

Automobile

GP 0.1204 0.2396 0.5144 0.4521 0.3832 0.6592 0.3948
SVR 0.1128 0.2132 0.5811 0.6895 0.7213 0.3943 0.4521
iDPs 0.4949 0.6072 0.6300 0.2760 0.5323 0.3350 0.4792
sDP 0.1409 0.2948 0.5473 0.2649 0.3056 0.3012 0.3091
MDP 0.1487 0.2778 0.4256 0.2583 0.3161 0.2506 0.2795

Robot arm

GP 0.2186 0.2441 0.2036 0.2120 0.2527 0.2074 0.2231
SVR 0.2133 0.2362 0.2001 0.2037 0.2436 0.1983 0.2159
iDPs 0.2208 0.2593 0.2318 0.2192 0.2553 0.1989 0.2309
sDP 0.2152 0.2494 0.2021 0.2001 0.2426 0.1829 0.2154
MDP 0.2195 0.2326 0.2076 0.2120 0.2367 0.1946 0.2172

According to (4), (9) thus reduces to

[Bi|B−i,yi,Λ,Σ, τ ] ∝ q0Nn+1,q(Bi|Aigiy′i, τAi ⊗Σ)

+
c∑

k=1

nk(−i)qkδ(Bi|Qk),

where Ai = (τΛ−1 + gig′i)
−1. Thus, given B−i, with

probability proportional to nk(−i)qk, we draw Bi from
distribution δ(·|Qk), or with probability proportional
to q0, we draw Bi from Nn+1,n(·|Aigiy′i, τAi ⊗ Σ).
Here we again use the Sherman-Morrison-Woodbury
formula to calculate Ai. That is,

Ai = (τΛ−1+gig
′
i)
−1 = τ−1Λ−τ−1Λgi(τ+g′iΛgi)

−1g′iΛ,

which involves reciprocal computations.

To speed mixing of the Markov chain, Bush and
MacEachern (1996) suggested resampling the Qk af-
ter every step. For each k = 1, . . . , c, we have

[Qk|Y,w, τ,Λ,Σ]

∝ Nn+1,q(Qk|0, Λ⊗Σ)
∏

i: wi=k

Nq

(
yi|Q′

kgi, τΣ
)
,

from which it follows that the conditional density of
Qk is given by (6).

Given the prior of τ−1, we then obtain the update of
τ−1 as
[τ−1|Y,B,Σ, aτ , bτ ]

∼ Ga
(
τ−1

∣∣∣aτ+nq

2
,
bτ+

∑n
i=1(yi−B′

igi)
′Σ−1(yi−B′

igi)

2

)
.

The update of Σ is given by

[Σ−1|Y,B, τ, ρ,R]

∼Wq

(
Σ−1

∣∣∣ρ + n,R + τ−1
n∑

i=1

(yi−B′
igi)(yi−B′

igi)′
)
.

Since the λi for i = 1, 2, . . . , n+1 are only dependent
on the Qk, we use the Gibbs sampler to update them
from their own conditional distributions as

[λi
−1|Q, ai, bi]

∼ Ga
(
η
∣∣∣ai+qc

2
,
bi +

∑c
k=1(β

(k)
i )′Σ−1β

(k)
i

2

)
,

where (β(k)
i )′ is the ith row of Qk.

As for the estimate of ν, we follow the data augmenta-
tion technique proposed by Escobar and West (1995).
That is, given the currently sampled values of c and ν,
ones sample an random variable ω from Beta distribu-
tion Be(ν + 1, n); ones then sample a new ν from the
following mixture as

[ν|ω, c] ∼ π0Ga(aν+c, bν− log(ω))
+ (1− π0)Ga(aν+c−1, bν− log(ω))

with π0 = ν+c−1
aν+c−1+n(bν− log(ω)) .
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