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Abstract

Adverse Drug Events (ADEs) are common and occur in approximately 2-5% of hospitalized
adult patients. Each ADE is estimated to increase healthcare cost by more than $3,200.
Severe ADEs rank among the top 5 or 6 leading causes of death in the United States.
Prevention, early detection and mitigation of ADEs could save both lives and dollars.
Employing Natural Language Processing (NLP) techniques on Electronic Health Records
(EHRs) provides an effective way of real-time pharmacovigilance and drug safety surveil-
lance. Thus, in this research, we developed a system for three different NLP tasks namely:
Named Entity Recognition (NER), Relation Identification and Integrated task (integra-
tive system to conduct NER and relation identification together). Our system achieved
F-1 measures of 0.829 for Named Entity Recognition, 0.840 for Relation Identification and
0.617 for Integrated task. Our system ranked 1st in the integrated task and 2nd in both
entity extraction and relation identification tasks.

Keywords: Deep Learning, Adverse Drug Events, Named Entity Extraction, Relation
Identification, BILSTM-CRF, Attention-BiLL.STM

1. Introduction

Information extraction methods for named entity recognition (NER) and relation identifi-
cation is a fundamental requirement in automatic adverse drug event extraction. Accuracy
of these foundational analytics will significantly impact adverse drug reaction curation and
further, has the potential to improve clinical decision support systems. BiLSTM-CRF mod-
els (Huang et al., 2015) have previously shown to accurately recognize entities in biomedical
and clinical corpora (Chalapathy et al., 2016; Habibi et al., 2017; Li et al., 2017; Dandala
et al., 2017). In this research, we used BILSTM-CRF models for named entity recognition.
Attention mechanism is a technique often used in neural translation of text introduced in
Bahdanau et al. (2014). The Attention mechanism allows the networks to selectively focus
on specific information, which has benefited serveral natural language processing (NLP)
tasks such as factoid question answering (Hermann et al., 2015), machine translation (Bah-
danau et al., 2014) and relation classification (Zhou et al., 2016). In this paper, we used
Attention mechanism for relation classification task similar to Zhou et al. (2016).
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The rest of the paper is organized as follows: Section 2 describes the dataset; Section
3 discusses our system architecture for the entity and relation identification tasks; Section
4 describes our methods and the experimental settings of our system and in Section 5, we
conclude with insights and future work.

2. Datasets and pre-processing

The entire dataset contains 1092 de-identified clinical notes from Electronic Health Records
(EHRs) of 21 cancer patients. Each EHR note was annotated with medication information
(name, dosage, route, frequency, duration), adverse drug events (ADEs), indications, other
signs and symptoms (SSLIFs), and relations among those entities. An SSLIF is labeled as
an ADE if it is a side effect of a drug and it is labeled as Indication if it is an affliction that
a doctor is actively treating with a medication. An important characteristic of ADEs or
Indications is that their labels (ADE, Indication) are not only determined by intra-sentential
but also by inter-sentential contexts. In this dataset, only 61% of the ADEs and 46%
of Indications participate in “adverse” or “reason” relationship within the same sentence
respectively. Thus, it is important to capture inter-sentential relationships between entities
to associate them with appropriate label. Jagannatha and Yu (2016) demonstrated the
importance of inter-sentential contexts to improve NER system by capturing the sequential
information at the document level (LSTM-document) rather than at the sentence level.

In this research, we used sentences as logical units of contextual information. In entity
extraction task, contextual evidence in the sentence is used to identify the span of the entity
and associate with its corresponding type. However, In relation identification task, for a
given pair of entities in a document, sentences in which they appear as well as sentences
that are between them in the original document serve as contextual evidence in determining
the relation type. Thus, it is important to obtain accurate sentence segments as the context
for a sequence model is limited to the words present in the sentence. However, sentence
segmentation is a non-trivial task in clinical notes. Unlike regular text passages, sentences
in a note do not always end with regular punctuation marks and new line characters are
introduced by textwrap settings in EHR systems. Manually Inspecting this dataset, we
determined the textwrap is around 80 characters.

As a first step, We identified logical blocks of text which we refer as pseudo-paragraphs.
To identify the pseudo-paragraphs, we first selectively replaced the newline characters with
white space characters. For each line of text, we replaced the newline character with a white
space, if the length of the line was between 70 and 85 (because textwrap is around 80). As
a next step, we split the lines to multiple blocks or pseudo-paragraphs considering given
two new-line characters occur consecutively. The identified blocks or pseudo-paragraphs
are then fed into Stanford sentence segmenter for identifying sentences within that pseudo-
paragraph. Furthermore, we used Stanford parser Manning et al. (2014) for tokenization,
sentence segmentation and parts-of-speech tagging.

3. Entity and Relation Extraction

With the recent advancements in deep learning research, several neural network architec-
tures have been successfully applied to concept and relation extraction. Among these,
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architectures based on bi-directional LSTMs have been proven to be effective (Huang et al.,
2015; Ma and Hovy, 2016; Zhou et al., 2016; Zhang and Wang, 2015). In this section, we
describe our NER and relation identification systems in detail.

3.1. Entity Extraction

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is a type of recurrent
neural network (RNN) that models interdependencies in sequential data and addresses the
vanishing or exploding gradients problem (Bengio et al., 1994) of vanilla RNNs by using
adaptive gating mechanism. Although Bi-directional LSTM networks have the ability to
capture long distance inter-dependencies, previous research suggests additionally capturing
the correlations between adjacent labels can help in sequence labeling problems (Lample
et al., 2016; Collobert et al., 2011; Huang et al., 2015). Conditional random fields (CRF)
Sutton et al. (2012) helps in capturing these correlations between adjacent tags. Thus, In
this research, we used BILSTM-CRF for entity extraction similar to Huang et al. (2015).

As mentioned earlier, only 61% of the ADEs and 46% of indications occur in “adverse”
or “reason” relationship within the same sentence. This implies that the required context
for the remaining instances is present across multiple sentences. For these two types, any
model that only takes the context within a sentence will not be sufficient. Hence, we
perform our entity extraction over two steps. In the first step, we used a BiLSTM-CRF
neural network to model generic entity types. Generic entity types are obtained by replacing
ADE and Indication labels with SSLIF label from the original training data. In the second
step, the predictions from the relation identification task are used to infer the original type
from the generic type. For example, the target entity of an “adverse” relation is updated
to ADE type (from SSLIF). Character embeddings, word embeddings and part-of-speech
embeddings are provided as inputs to the BILSTM-CRF network.

3.2. Relation Identification

We used Attention-BiLSTM architecture introduced by Zhou et al. (2016) for relation iden-
tification. This network takes tokens, types (outputs of entity extraction model) and posi-
tional indicators of source and target concepts as inputs. As introduced in section 2, this
dataset contains intra and inter-sentential relationships. The entities participating in an
inter-sentential relation can occur anywhere in a document; thus resulting a large number
of possible entity-pairs. While it is trivial to take all entity pairs in a EHR note to achieve
100% recall, this results in a highly unbalanced dataset containing a large number of nega-
tive relation instances. Previous research on inter-sentential relation extraction (Swampillai
and Stevenson, 2011; Quirk and Poon, 2016; Peng et al., 2017) suggests addressing this is-
sue either by undersampling the negative class or by training a cost-sensitive classifier helps
in learning better relation extraction model. Inspired by this, as a preprocessing step, we
selectively undersampled negative examples by using the following heuristics:

e For each relation type, we estimated the relative number of sentences between source
and target entities using the training data. We used this heuristic to control/reduce
the number of negative examples. For example, forming relation pairs between all
Medications and SSLIFs (indications/ADEs) that are within 7 sentences (in both
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positive and negative direction) yields 98% recall. While, we lost 2% recall, we signif-
icantly reduced (about 70%) the number of negative Medication-SSLIF pairs. Sim-
ilarly, for manner/route relation type, forming relation pairs. between medication
and route entities (within 1 sentence in both forward and backward directions) yields
99% recall. This heuristic is extremely useful in removing a large number of negative
examples.

e Additionally, we developed a rule-based/heuristic-based methodology to identify sec-
tion boundaries. We used section labels as boundaries to form relation pairs that
occur only within a given section. This further helped in removing the negative pairs
without losing much recall.

e Each relation type has a dominant pair of source and target entity types. For example,
majority of dosage relation instances have medication as source entity and dose as
target entity. For each pair of source and target entity types, we considered only
dominant type of relation as valid and removed the pairs with other relation labels.

3.3. Task specific embeddings
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Figure 1: Mapper training for task-specific embeddings.
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Performance of NLP tasks drops significantly when moving from training data to held-
out dataset (Petrov et al., 2010). One of the primary reasons for such a drop is words that do
not appear in the training data appear in test data (referred as out-of-training vocabulary).
In deep learning architectures, it is a common practice to learn one embedding for all
the rare words in training data and using this learned representation for all unseen words
during the testing. Another alternative is to use intial embeddings (pre-trained embeddings
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obtained from large dataset) for all unseen words. However, such an approach often leads
to errors (Madhyastha et al., 2015).

Recent research suggests (Madhyastha et al., 2015; Jhamtani et al., 2017) learning task-
specific embeddings for unseen words from a large vocabulary helps in improving NLP
tasks. This methodology has significant effect especially when dealing with data such as
EHRs because: 1) The total number of variations, for example medication name SSLIFs),
in training data are very small compared to the real world data, and 2) sentences are short
or often times they occur without any contextual information. Learning task-specific em-
beddings can significantly help such cases by leveraging embeddings from external resources
and adapting them to the task-at-hand.

As shown in Figure 1, we learn a non-linear mapper function to map from initial em-
beddings to the task-specific embeddings space, via a multi-loss objective function using
words in the training data. Finally, the learned mapping function is used to transform the
initial embeddings of all out-of-training words and we use these transformed embeddings to
represent the unseen words during the test phase. In our system, task-specific embeddings
are learnt for both entity extraction and relation identification models.

4. Experimental Settings and Results

We divided the released training dataset into two additional datasets (development and
an internal test dataset). Development data was 10% and internal test data was 20% of
the released training data. We used the word embeddings that are released as part of the
challenge (Jagannatha and Yu, 2016). We fixed word embeddings size to 200, character
embeddings size to 50 and part-of-speech embeddings length to 20. The part-of-speech and
character embeddings are initialized randomly.

4.1. Hyperparameter tuning

There are four hyper-parameters in our models, namely the dropout rate, learning rate,
regularization parameter, and hidden layer size. The hyperparameters for our models were
tuned on the development set for each task. Previous research suggests using dropout
mitigates over-fitting and especially beneficial to the NER task (Ma and Hovy, 2016). We
experimented by tuning the hyperparameters with different settings: dropout rates (0.0,
0.1, 0.2, 0.3, 0.4 and 0.5), hidden layer sizes (100, 150, 200) and regularization parameter
(1e7®,1e7 %, 1e77, 1e7®). We chose Adam (Kingma and Ba, 2014) as our stochastic optimizer
and tuned the learning rate at (le=2,1e73,1e=*). We used early stopping (Graves, 2013)
based on performance on development dataset. The best performance appear at around
20 epochs and 15 epochs for concept and relation extraction respectively. We performed
hyper-parameter tuning and used the network parameters listed in 1. We used both dropout
and L2 regularization for optimizing the network parameters.

4.2. Results

Table 2 and Table 3 shows our results on internal and released test datasets for the en-
tity and relation extraction tasks respectively. These results are obtained by using the
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Table 1: Network hyperparmeters

Parameter Entity Extraction | Relation Identification
Dropout 0.5 0.5

Learning rate le-3 le-4

Regularization le-6 le-4

Hidden layer size | 200 100

hyperparameters shown in Table 1. As a first experiment, we used BiLSTM-CRF for con-
cept extraction and Attention-BLSTM for relation extraction. In this experiment, during
the evaluation phase, we used pre-trained embeddings for unseen words. We refer to this
experiment as Model-A. To understand the importance of task-specific embeddings for un-
seen/rare words, we conducted a separate experiment in which we learned task-specific
embedding for all unseen words during the training phase as explained in Section 3.3. We
refer to this experiment as Model-B. Table 2 compares the performance of these experiments
on our internal test dataset.Table-3 lists the performance of Model-B on the external test
dataset.

Table 2: Performance on internal test dataset

Task Model-A Model-B
Precision Recall F-1 Precision Recall F1
Entity Extraction 0.889 0.860  0.874 | 0.893 0.885  0.889
Relation Identification | 0.954 0.921  0.937 | 0.955 0.925  0.940
Integrated task 0.833 0.703 0.762 | 0.845 0.719 0.777

Table 3: Performance on external test dataset

Task F1

Entity Extraction 0.8285
Relation Identification | 0.8402
Integrated task 0.6170

On the internal test dataset, Model-A achieved F-measures of 0.874, 0.937 and 0.762
for the entity extraction, relation extraction and integrated task respectively. As shown in
Table 2, using task-specific embeddings for unseen words achieved better performance for
all the three tasks. For a fair comparision, we used the same parameter in all these systems
and used same input features/embeddings.

Table 3 shows our results on the external dataset released by the organizers. Among all
the submitted systems to MADE, our systems achieved second-best accuracy in both entity
extraction and relation identification tasks and achieved the highest accuracy overall. Our
system significantly outperforrmed the other systems in the integrated task.
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5. Conclusions and Future Work

Here, we reported on using state-of-the-art deep learning neural networks for identifying
entities and relations relevant to ADEs. We used a two-stage process for entity extraction
by using both BiLSTM-CRF and Attention-BiLSTM models. We achieved state-of-art
results on entity and relation extraction tasks and developed the best overall system for
the integrated task. Furthermore, higher accuracy of Model-B over Model-A highlights the
importance of learning task specific embeddings for unseen words. The following section
lists the future steps that can be explored:

e Embeddings - Using embeddings trained on a large number of Electronic Health
Records. Especially, this may benefit identifying concepts which are spelling mis-
takes or abbreviations.

e Representation - Handling nested concepts (about 1%) i.e, (span of one or more con-
cepts overlaps with each other) with more advanced decoding schemes that avoid lossy
representation.

e Semi-structured nature of EHRs - EHR data has rich semi-structured information such
as sub-headings and structured contents (medication, diagnosis tables). In the future,
we plan to build cascading models which can also exploit this structured information
as well as semi-structured information in more depth.

e External knowledge - Incorporating external knowledge from manually curated seman-
tic networks such as UMLS or incorporating associations extracted from large number
of EHRs to identify relationships. This is particularly helpful in identifying relations
which do not have sufficient lexical cues between the source and target entities.
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