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Abstract

MADEL1.0 is a public natural language processing challenge aiming to extract medication
and adverse drug events from Electronic Health Records. This work presents NER and
RI systems developed by UArizona team for the MADE1.0 competition. We propose a
neural NER system for medical named entity recognition using both local and context
features for each individual word and a simple but effective SVM-based pairwise relation
classification system for identifying relations between medical entities and attributes. Our
system achieves 81.56%, 83.18%, and 59.85% F1 score in the three tasks of MADEL.Q
challenge, respectively, ranked amongst the top three teams for Task 2 and 3.
Keywords: Adverse Drug Event, Information Extraction, Neural Network

1. Introduction

Adverse drug events (ADEs) are dangerous problems which may lead to unexpected outcome
and death in severe cases. According to the report from Agency of Healthcare Research
and Quality, ADEs are the main type of nonsurgical adverse event occurring in hospitals
in the United States, with an estimated 1.6 million events in 2010(Agency for Health care
Research and Quality). Patients hospitalized with an ADE have an increased length of stay,
higher costs, and increased risk of in-hospital death compared with those not experiencing
an ADE (Poudel et al., 2017). It is commonly accepted that the progress in pharmacovig-
ilance depends on the analysis of ADE-related information from different data sources,
especially from electronic health records (EHRs). Employing natural language processing
(NLP) techniques on electronic health records (EHRs) provides an effective way of real-time
pharmacovigilance and drug safety surveillance.

The shared task MADE1.0 hosted by University of Massachusetts Medical School aims
to promote advanced techniques to detect medication and ADEs from EHRs. They an-
notated 1092 EHR notes with medications, as well as relations to their corresponding at-
tributes, indications and adverse events in Bioc format. MADE1.0 challenge defines three
tasks: Task 1 Named entity recognition (NER), Task 2 Relation identification (RI), and
Task 3 Integrated task (IT). Similar to the three tasks in MADE1L.0 challenge, ADEs ex-
traction is always decomposed into two subtasks, NER and RI. In biomedical named entity
recognition tasks, deep learning has yielded numerous state-of-the-art results. Such deep
learning systems include Bi-directional Long Short Term Memory and Conditional Random
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Field (LSTM-CRF) model in Jagannatha and Yu (2016b), and a hybrid system integrat-
ing character-based bi-directional LSTM into the word-level LSTM-CRF model (Gridach,
2017). To mitigate the limited data issue, Lee et al. (2017) transfer a neural network (NN)
model trained on a large labeled dataset (MIMIC) to another dataset with a limited number
of labels which improves the state-of-the-art results on i2b2 2014 and i2b2 2016 datasets.
The relation identification task in ADE extraction usually involves identifying complex n-
ary relations, for instance, drugs can have multiple adverse effects simultaneously. In the
i2b2 2010 shared task, the No.1 ranked system used an SVM classifier to approach the re-
lation identification task as a pairwise relation classification problem (Roberts et al., 2010).
Instead of using pairwise relation classifiers, McDonald et al. (2005) propose to create a
graph from pairs of entities that are likely to be related, and then score maximal cliques
in that graph as potential complex relation instances. Several recent works adopt the non-
pipeline approach, using joint models to solve the two subtasks simultaneously (Riedel and
McCallum, 2011; McClosky et al., 2012).

To address the MADE1.0 ADE NLP challenge, we design two independent systems for
taskl and task2, respectively. The integrated task is approached by running the two systems
sequentially, using the output of the former as input to the latter. The paper is organized
as follows: we first present how we preprocess the documents in Section 2, and then explain
the NER model for task 1 in Section 3. The RI system is explained in Section 4, and results
and analysis are presented in Section 5.

2. Text Preprocessing

Text preprocessing is one of the most important step for information extraction, Akkasi
et al. (2016) specifically show the effects of tokenization on the final performance of an
NER system on chemical and biomedical text. FEffects of encoding techniques on NER
performance was highlighed in Cho et al. (2013). We first use the NLTK sentence tokenizer
(Bird and Loper, 2004) to segment the paragraphs into sentences and then use the NLTK
regexp tokenizer (Bird and Loper, 2004) to tokenize sentences into words.

Our preprocessing code for segmenting sentences into tokens included specific rules for
certain cases such as 2mg, 5days, nontender,Noncontributory, etc., where each token is
further segmented, for example, 2mg is segmented into 2 and mg, and Noncontributory is
splitted into Non and contributory. We do not use any external resources for segmentation
but results may vary with changes in segmentation technique as highlighted by Akkasi et al.
(2016). Further, to make the most of pre-trained word embedding resources, we lowercase
the words for finding its corresponding word embeddings, but for extracting the characters
and affix feature, words are taken in their original form without lowercasing so that the
word shape information is kept. The words not found in the word embedding vocabulary
are assigned the word embedding of the unknown token (assigned as UNK). To further
reduce the vocabulary size, the numerical characters and words are replaced by a single
token named NUM.

58



UARIZONA AT THE MADE1.0

Output B-DruaG O B-Druc
T 1 T
CRF [T 1] [T 1] A
T D T

Bi-LSTM (T T [T 1] mm—
[

Embed | 100 [

T 0 T — 0 T T — T T T —
Feature asp rin asprin C(asprin) () 1] or C(or) hep rinheparinC(heparin)

— " —_— " —_—
Input asprin or heparin

Figure 1: NER model architecture diagram taken from Yadav et al. (2018). The input
is asprin or heparin. At the feature layer, asp is the prefix, rin is the suffix,
C(asprin) is a vector representation generated from characters of asprin. If the
word doesn’t have any subword information, both prefix and suffix are set as ().

3. NER System

NER is a type of sequence tagging task where each piece of a medical entity is assigned a
label that identifies the medical entity that it evokes. We express such labels using the BIO
tagging system, where B stands for the beginning of an annotation, I for the inside, and O
for outside any annotation. We do not consider the multi-label cases where a single word is
assigned to more than 1 tag in this version of the NER system since less than 1.0% of the
entities in the entire training dataset have the same offset.

3.1. Neural Architecture

RNNs are the state-of-the-art on sequence tagging tasks (Lample et al., 2016; Graves et al.,
2013), thanks to their ability to make predictions conditioned on long distance features,
so we also adopt them here. Since many medical entities have special morphological and
orthographic information, we want input representations that are sensitive to the spelling
of words. As such, our NER system uses the base model of Lample et al. (2016) where we
exploit both word context features and word composition with characters using RNNs. In
this work, we use LSTM recurrent units in our RNN model, since LSTMs are capable of
learning long-term dependencies as well as solving the vanishing gradient problem.

Figure 1 describes the architecture of our model. It first converts the input into features
that feed into embedding layers. In the embedding layer, each feature is mapped to a dense
vector, and such dense vectors including embeddings for the prefix, suffix, the word itself,
and the character-level representation, are then concatenated to form the final representa-
tion of the word. The vector representation of each individual word from the embedding
layer is then fed into a bi-directional LSTM layer to allow access to both past (left) and
future (right) context information. The output of the Bi-LSTM is then given to a CRF
layer which outputs one label for each input. The reason for using a CRF layer is that
it considers the correlations between labels in neighborhoods and jointly decode the best
chain of labels for a given input sequence.
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Figure 2: The Bidirectional-LSTM neural network for extracting character-level represen-
tations of words. The input of the neural network is characters of the asprin, and
the output at the last step of the Bi-LSTM layer is used as the character-level
representations of word.

3.2. Input Representation

The input vector representation is generated by concatenating a word embedding, prefix
embedding, suffix embedding, and character-level word representation:

e Word Embedding: we use the skip-gram word embeddings trained through a shallow
neural network provided by the shared task organizers (Jagannatha and Yu, 2016b,a).

e Prefix and Suffix embedding: we utilize the sub-word affixes from the start and at
the end of the word to explicitly provide sub-word information. Yadav et al. (2018)
show that what the model learns about affixes is complementary to a recurrent layer
over characters, and the usage of affix features in the model improves the performance
for the NER task. We select n-gram prefixes and suffixes of words having frequency
above a specific threshold to approximate frequent prefixes and suffixes as morphemes
of a language.

e Character-level word representation: we use a Bi-LSTM based feature extractor to
produce character-level word representations, as shown in Figure 2. Characters of a
word are fed into an embedding layer to generate a representation for each character,
and the output of the embedding layer is then fed as the input to a Bi-LSTM layer
to generate a word-level representation.

Both character and affix embeddings are randomly initialized.

3.3. Network Training

We use the following hyper-parameters: the embedding size of the character, word, prefix,
and suffix features are 50, 300, 30 and 30, respectively; the size of the LSTM units in the
character-level word representation feature extractor is set to 25; to avoid overfitting, we use
dropout with probability 0.60 for the NER embedding layer (applied after concatenating
word embedding, character-level word representation and affix embeddings); we trained the
model with Stochastic Gradient Descent (SGD) on mini-batches of size 50, and set the

60



UARIZONA AT THE MADE1.0

learning rate, and learning decay rate as 0.10, and 0.99, respectively. We implement our
model in tensorflow and run the model on the El-Gato supercomputer at the University of
Arizona, and the model is trained for 150 epochs on the entire training dataset.

4. RI System

Given the NER annotations, the RI system aims to extract 7 well-defined relations between
Medical Attributes and their relevant Medical Entities. Note that the medical entity and
its associated attribute may not appear in the same sentence or even paragraph, and that
each medical attribute may link to zero or more medical entities. Considering the facts in
the dataset, we build a simple but effective system to approach the task as 7 independent
pairwise relation classification problems, one for each relation type.

4.1. Generate Entity-Attribute Pairs

For each medical attribute, we obtain a set of medical entity candidates that may participate
in a relation using the rules that 1) medical entities appear within a 3-entity window of
medical attributes, for example, all Drug entities appearing within a 3-Drug window of
the attribute Frequency would be considered as candidates; 2) the distance in number of
characters between the attribute and entity candidate is smaller than 1000. The generation
of the entity-attribute pairs is liberal, covering more than 97% of the positive pairs, while
still filtering out infrequent negative ones, thus mitigating the imbalanced class issues of
the entity-attribute pairs.

4.2. Features

The relation classifiers use 4 types of features to predict binary output for each entity-
attribute pair:

e Position: the position of the entity candidate with respect to the attribute among the
entire entity candidates of the attribute, where the position of medical attribute is set
to 0. The position of the entity candidate ranges from -3 to +3.

e Distance: the distance in number of characters and words between the entity pair.

e Bag of Words: all words within a 10-word window before and after the entity and
attribute, plus the entity and attribute texts. We retained as features only the 903
words that appeared in such context windows with frequencies >500 across the entire
dataset. Thus, for each entity pair we generated 903 bag-of-word features: the counts
of how many times each unique word appears in the context.

e Bag of Entities: the counts of all annotation types between the entity and attribute.

4.3. Learning Model

For each entity-attribute relation classifier, we trained a support vector machine using
C-Support Vector Classifier (Chang and Lin, 2011) in scikitlearn python package. We
experimented with multiple kernels and selected the radial basis function with the kernel
coefficient, v, and the penalty parameter, C, set to their defaults. We tuned the class
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Entity type Strict Scores Approximate/Relaxed scores
R P F1 R P F1
Drug 87.06 88.05 87.55 89.53 92.90 91.18

Indication | 58.33 62.25 60.23 58.32 62.96 60.55
Frequency | 82.85 87.08 84.91 83.09 90.95 86.85
Severity 74.91 77.52 76.19 80.15 87.96 83.87

Dose 84.02 85.73 84.87 94.80 93.19 93.99
Duration 76.69 78.46 77.57 75.81 81.08 78.36
Route 92.29 92.76 92.53 78.54 81.31 79.90
ADE 42.23 79.13 55.07 41.23 80.11 54.44
SSLIF 82.11 81.74 81.93 82.77 82.80 82.79
Overall 80.42 82.73 81.56 81.34 84.64 82.95

Table 1: Task -1 NER results: Precision (P), recall (R), and F; of our models on MADE1.0
test dataset using official evaluation script provided by the organizers. Strict
evaluation includes exact match of entity boundaries and character offset along
with exact match of entity type, while relaxed evaluation is conducted at word
level.

weight for each relation classifier for the best performance in 5-fold cross validation. Other
parameters were set to their defaults.

5. Results & Discussion

Training and evaluation of UArizona system utilizes the 1092 de-identified EHR notes from
21 cancer patients provided by the task organizers. The results of Task-1 NER on the test
dataset are reported in Table 1. We find that for drug entity attributes Drug (drug name),
Frequency, Route, Dosage, and Duration, our model works much better than the remaining
medical entities. For example, the model obtains 87.55% F1 score for Drug identification
in strict evaluation, which is the second highest score among all other entities, while for
the ADE and Indication (called the medical symptom entities), the model only gets 55.07%
and 60.23% F1 in strict evaluation. The performance differences between these two different
entity types could be attributed to the annotation distributions in the dataset, i.e., there are
much more drug entity attributes than medical symptom entities, and the tokens annotated
as medical symptom entities are much more diversified than tokens annotated as drug entity
attributes. It is also notable that the identification score 81.93% for entity SSLIF is much
higher than other medical symptom entities ADE and Indication, since ADE only refers
to the medical signs or symptoms resulting from the normal use of a drug and Indication
only refers to the symptoms being actively treated, without using external knowledge like
medical ontology, it is difficult for the model to make the inferences by using the word
context and local features alone.

Table 2 shows the results of Task-2 RI and Task-3 IT on the test dataset. Since the
organizers did not release the complete test dataset, we can only report the F1 score for
task 2 and 3 here. By using the RI system alone on the gold identified entities, the system
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Task F1
Task 2 RI 83.18
Task 3 IT 59.85

Table 2: Task 2 RI and Task 3 IT results: Fj of our models on MADEL.0 test dataset.

achieves the overall F1 of 83.18%. And when integrating both NER and RI systems for
task-3, our system obtains 59.85% F1 score. At the step of generating entity-attribute pairs
in RI system, we narrow down the scope by adding constraints such as distance rule, which
could increase the precision, but also ignore the long-term dependency, and thus resulting
in low performance for extracting adverse and reason relations.

6. Conclusion and Future Work

Our system is currently amongst the top three teams for Task 2 and 3 in the MADE 1.0
challenge, but there are still many improvements that can be made. Notably, we do not use
any external resources except the pre-trained word embedding in our system, we believe
that by using existing knowledge resources, such as SNOMED-CT, our system could be
more robust and accurate on this ADEs task. We also plan to expand our use of neural
models to the RI task, and implement a joint model to extract both entities and relations
simultaneously.
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