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Abstract

This study investigates a method for predicting compound risk based on in vitro assay
data and estimated Cqz, the maximum concentration of a drug in the body. The method
makes use of Venn-Abers predictors and Support Vector Machines to compute compound
risk with respect to a biological target. The method has been applied to in vitro ion-channel
data generated to assess cardiac risk and introduces a more intuitive way to reflect cardiac
risk.
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1. Introduction

Drug discovery is a costly and time consuming process that involves several steps and needs
to take a multitude of factors into account (Bunnage, 2011; Gautam and Pan, 2016). First a
biological pathway that can effect the disease of interest needs to be identified. Then a drug
target, usually a protein or enzyme, needs to be located within that pathway. The drug
target has to be susceptible to intervention by a compound in such a way that the disease
state is affected and the patient is stabilized or better still cured of the disease. Focus is then
shifted to find a compound that interacts with the target and gives the desired physiological
effect. To achieve that, the compound needs to be highly active against the drug target but
it also needs to be specific to that target and not be active against targets that can cause
a safety risk, off targets. In compound optimization all these constraints need to be taken
into account together with the information about how the human body can handle the
compound through absorption, distribution, metabolism and excretion (ADME) (Ballard
et al., 2012). Safety liabilities can stem from all organs in the body and their respective
biological processes. In this work we focus on cardiovascular, CV, safety liabilities.
Cardiovascular safety liabilities are a major cause of drug attrition in all stages of drug
discovery and development. In early stages of drug discovery compounds can be screened
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to reveal potential CV risk using in vitro assays of selected ion channels that regulate
heart function. At AstraZeneca, the following ion channels are screened routinely hERG,
NaV1.5, CaV1.2, Kv4.3 and Kv7.1. Inhibition of these ion channels is an early indicator of
CV risk, thus the assays can be used to rank compounds. Quantitative Structure-Activity
Relationship (QSAR) models have been used to predict the outcome of these assays for
specific compounds. In practice screening data has been preferred since such predictions
generally lack a good measure of the risk for the individual compounds.

In 2005 Vovk, Gammerman and Shafer introduced the concept of Venn predictors (Vovk
et al., 2005). Venn predictors offer a way to assign a calibrated probability to predictions.
Venn-Abers prediction is a special case of Venn prediction that can be applied on top of a
machine learning model under standard assumptions regarding data generation(Vovk and
Petej, 2014). In essence this means that the predicted probabilities reflect the long-term
relative frequencies.

Assessing potential safety risk for a compound is commonly done in terms of a safety
margin in terms of n-folds above expected Ci,qz, the maximum concentration of a drug in the
body after administration of the maximum recommended therapeutic dose. To mimic that,
we propose to compute the probability that the Crosg, ie the concentration at which 50%
inhibition is observed, of an assay is below n-folds of C},4. and thus create an individualized
prediction for the compound rather than a general threshold. In this work we show how
Venn-Abers predictors can be applied to a panel of assays, how it can be used together with
Cinaz t0 assess cardiac risk of potential drugs and be an effective way to deliver enhanced
decision making to projects.

2. Method

To obtain compound specific probabilities of cardiovascular risk it is necessary to take the
required compound exposure or compound concentration into account. Compound safety is
assessed as fold difference, or ratio, between the maximum concentration of the drug in the
body, Ciuaz, and the Croso of the off target interaction, thus experimental margin mg =
%. To predict a test compound its Ci,q, value is used together with a desired margin,
expressed in folds, f, of Cyaz, thus calculated margin mg = f % Cpas, f € [10, 30, 100].
Using the desired m¢ gives a concentration, on the same scale as the Cros0 data from the
in vitro assay. By using the compound specific concentration as cutoff for the Crosg data
results in a binary classifier that allows us to predict if the compound of interest is likely to
have a Crosg above or below the cutoff, meo. To assess the target risk, the aim is to predict
the probability that the off target C'roso is below me. Thus, it is not sufficient to obtain a
predicted label, a precise probability of the likelihood is also required.

In this paper we used Venn-Abers (Vovk and Petej, 2014) predictors to calculate that
risk. Venn-Abers predictors are a special case of Venn predictors, (Vovk et al., 2003),
implemented on top of a scoring classifier. Venn-Abers predictors inherits the properties of
Venn predictors, i.e. that the multiprobabilisic predictions are perfectly calibrated (Vovk
and Petej, 2014) which means that the probabilities are matched by observed frequencies.
To apply Venn-Abers predictors, the only assumption needed is that the data is drawn
independently from each other from an identical distribution (3.i.d.)
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Many machine learning algorithms for classification are scoring classifiers, thus returning
a prediction score s(x) where the actual label prediction is obtained by comparing the
prediction score to a threshold. Support Vector Machines (SVM’s), used here, are scoring
classifiers, returning the distance to the hyper plane as a prediction score s(x).

If scores can be calibrated by applying a monotonically increasing function g to s(x)
then g(s(x)) can be used as a valid probability, i.e. the predictors get the probabilities
right, at least on average. Such a calibrator can be obtained by isotonic regression (Ayer
et al., 1955). By obtaining the scores from the machine learning model for the calibration
set and for the test example, isotonic regression can be applied twice for a binary problem,
once for each label. By assuming that the test example belongs to a certain class and using
isotonic regression to obtain the corresponding probability, the Venn-Abers method output
a probability for each of the two labels, i.e. pg and p;. However, label specific probabilities
are not desirable to make an over all assessment and thus log loss is used to obtain a precise
probability that minimizes regret

b1
p=—2 1
1 —po+mp )

2.1. Data

In vitro data to assess cardiac liabilities is generated in a staged approach at AstraZeneca
and uses the hERG channel as a first pass filter. If a compound has a Cjcsp lower than
10pM in the hERG in vitro test then follow up measurements are performed in the in vitro
assays for NaV1.5, Kv4.3 and Kv7.1. As a result the data set for hERG is about five
times larger compared to NaV1.5. For this study, targets have been limited to hERG and
NaV1.5. The standard experimental concentration range in Molar (M) of the assays are
between 10nM and 33uM with possible extension to 100uM. The defined response from the
experiment is a calculated Cjcsg value.

Human C),,; data compiled from internal sources at AstraZeneca together with exper-
imental data in at least the hERG assay, generated a list of 67 compounds. This data set
was used as test set and all compounds in the test set were removed from the training data
prior to model building.

2.2. Training Procedure

For each compound and each m¢ the proposed procedure the response is binary, [0,1]
and calculated from the Croso data by comparing to me. The training examples with
Cros0 < me are assigned label 1, and training examples with Crosg > me are assigned
label 0. For each such data set the available training data was separated into a proper
training set (75% of the data) used for building the machine learning model and a Venn-
Abers calibration set (25% of the data).

In this work a Support Vector Machine model system was used with a linear kernel and
the cost parameter set to 0.05 for all models, based on previous experience. The signature
descriptors (Faulon and Churchwell, 2003; Faulon et al., 2003) were used as objects or
feature vector and the binary response from the assay data as response. The signature
descriptor describes a compound by a set of strings and corresponding counts where the
strings represent subgraphs of the compound, centered at an vertex (atom) and expanded
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to include all neighbor vertexes h edges (bonds) away from the centre vertex. Signature
descriptors are calculated for all atoms in a compound. The signature descriptors used in
this work were generated by CDK Steinbeck et al. (2003) and the signatures were limited
to h € [1,3] thus one to three bonds away from the centre atom. The signature vectors are
very sparse, with an information density below 1%. The distance to the hyperplane was
used as scoring function for the Venn-Abers method. A single probability prediction was
obtained with the method that minimizes the maximum regret under log loss.

Using this procedure, a series of QSAR models were built to predict cardiac risk for
individual compounds at m¢ for each compound respectively. Compounds were considered
safe if mgo < Croso. This way, a test compound x will be predicted to have an Cjosg over
mg¢ for x, if similar compounds have an Crosg over m¢o for x.

The available training data for hERG was 70375 compounds which generated a total of
125352 signatures. For NaV1.5 the numbers were 24351 which generated 130469 signatures.

3. Results

3.1. Example cases for risk assessment

To demonstrate the benefit of using Venn-Abers probabilities to assess cardiovascular risk
three example compounds have been retrieved from the test data. The three compounds,
one of which has low, one moderate and the last high risk exemplify how the data can be
used and presented to projects and is showcased using hERG data.

Figure 1 shows a histogram of the training data based on Ciosg values for each test
compound. On the histogram, the test compound Cjcsg is marked as a dashed green line
and the three m¢ based on 10, 30 and 100 fold of test compound C,4, are shown as blue
lines. This plot shows how the Cjcosg data is separated into binary data sets and Figure
2 shows the respective distribution of actives, label 1, and in-actives, label 0, in each data
set respectively. For the low risk compound the training data sets are very unbalanced. As
can be seen in Figure 1, the moderate and the high risk compound have the same Cj,qz,
consequently, the respective subfigures in Figure 2 are identical.

The resulting predictions are visualized in Figure 3. Both sub figures show predicted
probabilities of risk on the y axis and each compound is distinguished by color. Sub figure
3(a) shows the results based on f on the x axis and shows mg for each compound as dashed
lines where the lines and the dots for the predicted probabilities share the same color for
each compound. Sub figure 3(b) shows the predicted probabilities against concentration,
with the Crosg values for the respective compounds as dashed lines. The two sub figures
shows a nice separation between the three cases and that it is possible to detect the change
for the moderate risk compound as the required m¢ increase. The figures also show the
difference in risk between the low and high risk compounds that have very similar Cyeosg
values but where the C),,, makes the difference resulting in a sufficient margin for the low
risk compound and no margin for the high risk compound.

3.2. hERG

This section contains summary plots for the test data on the hERG target. Figure 4 is a
representation of predicted risk for each f, showing that there is a good separation between
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Figure 1: Distribution of training data (IC50) and overlaid experimental Cjcs9 and me for
the three example compounds
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Figure 2: Distribution of binary training data for the three example compounds based on
the three m¢ margins
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Figure 3: Predicted probabilities for the three example compounds. The dots represent
the probabilities at the three margins (10, 30 and 100 * Ci,4,) for the three test
compounds. The low, moderate and high risk compounds are colored purple,
yellow and blue respectively.
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the classes in the predicted data. Figure 5 shows predicted probabilities against mg for
each f. The respective f is highlighted using a dashed line. This shows that the separation
is very good for cases that are far from the decision point and that it is still quite good
for cases closer to the actual cutoff. With a model like this it could also be of interest
to rerun some compounds in the experimental assay that are close to the cutoff and that
are likely to be incorrectly predicted. Figure 6 shows the cumulative distributions for the
Venn-Abers probabilities and for the log loss probability p. The obtained probabilities are
tight for all test cases indicating low uncertainty. In comparison, the dotted line shows the
experimental results, tested, for the same examples.

Probability distribution for each label and f

1.0

0.8
> 0.6
5
3
o
s 0.4

0.2

=0
10 30 100

Figure 4: Distribution of predicted probabilities, p, for each f grouped by experimental
labels 0,1
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Figure 5: Log-loss weighted Venn-Abers probabilities vs mg with f highlighted by a dashed
line
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Figure 6: Cumulative p, pg and p; together with the activity distribution for the experi-
mentally tested compounds. For the hERG endpoint

10



USING VENN-ABERS PREDICTORS TO ASSESSCARDIO-VASCULAR RISK

3.3. NaV1l.5

Summary plots for the test data on the NaV1.5 target. Figure 7 is a representation of
predicted risk for each m¢, showing that there is a separation between the classes in the
predicted data. Figure 8 shows predicted probabilities against mg for each f. The respective
f is highlighted using a dashed line. This shows that the separation for NaV1.5 is less clear
than for hERG. In comparison, the dotted line shows the experimental results, tested,
for the same examples. Figure 9 shows the cumulative distributions for the Venn-Abers
probabilities and for the log loss weighted probability p.
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Figure 7: Distribution of predicted probabilities, p, for each margin grouped by experimen-
tal labels 0,1

4. Concluding remarks

This study shows that Venn-Abers in combination with SVM can be used effectively to
predict cardiac risk based on hERG and NaV1.5 data and can be an effective way to triage
compounds. Today, Cy,qz is used together with a predicted Croso to calculate the predicted
margin which requires a regression model for predicting Cros9. By framing the question as
a binary problem not only can we assign valid probabilities to the risk but it also allows us
to use all generated data, including data outside assay experimental limits. The result is a
more intuitive way to assess risk as that is the predicted endpoint, rather than predicting
a Croso which is subsequently converted into a margin which in turn describes the risk. To
fully assess the potential of the method larger test sets are needed as well as predictions
of compound C,,4,. In early projects Ch,qz is not known but can be estimated. In future
work, we will use these probabilities and produce a measure of over all risk across multiple
targets incorporating mechanistic knowledge to further enhance the value to projects. In
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Figure 8: Log-loss weighted Venn-Abers probabilities vs mg with f highlighted by a dashed
line
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this study human C),4, data has been used to define the concentrations required to obtain
specific margins. In early drug discovery human C),4, data is generally not available. For
future use and effective application in discovery projects Cj,q. needs to be estimated from
in vitro and in vivo data. For early screens, data on primary target interaction can be used
together with data on ADME properties. The method has a huge potential as it simplifies
the decision process and that the result can be more reliable since more data is available for
modeling compared to the regression case where data needs to have defined Cycosg values.
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