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Abstract

Iterative screening, where selected hits from a given round of screening are used to enrich a
compound activity prediction model for the next iteration, enables more efficient screening
campaigns. The portion of the compound library that should be screened in each iteration
is often arbitrarily decided. This is because no accurate information between screening
size and the number of hits to be retrieved exists. In this article, a novel method based
on Venn-Abers predictors was used to determine the optimal number of compounds to be
screened in order to get a desired number of hits. We found that Venn-Abers predictors
provide accurate information to support a reliable and flexible decision about the portion
size of the compound library that should be screened in each iteration. In addition, the
method exhibited great ability in producing an enriched subset in terms of hits and their
diversity.
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1. Introduction

In early stages of drug discovery, chemists, pharmacologists, and clinicians used to work
closely together in interdisciplinary project teams. Thus, knowledge about medicinal chem-
istry from different perspectives was put together to design potentially active and suitable
compounds for further testing (Drews, 2000). In the 1980s, high-throughput screening
(HTS) was developed; and since then it became increasingly accepted as a consequence of
important improvements in: combinatorial chemistry, data processing, robotics and sensors.

HTS enables rapid screening of large collections of compounds to find relationships
with drug targets (Macarron, 2006; Mayr and Fuerst, 2008), in order to get some active
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compounds or hits, i.e. typically a compound is considered to be a hit when its activity
against a desired drug target exceeds a threshold. A drug target might be a protein or
an enzyme which function can be altered through the intervention of a drug in a way to
favourably influence disease. The most promising hits will be starting points for further
investigation. This stage is called lead generation, whose is followed by lead optimization.
A higher number of diverse hits increase the chances of finding promising leads.

HTS has become one of the main techniques in early stages of drug discovery. However,
HTS has important limitations, in particular HTS campaigns are expensive and time con-
suming. This is because the great majority of all screened compounds are inactive. Efforts
have been focus on the identification of smaller screening sets which are likely to contain
a higher fraction of diverse hits among screened compounds (Phatak et al., 2009). Despite
these efforts and computational advances, HT'S campaigns remain an expensive endeavour.
Iterative screening might be considered the state of the art approach to make HTS more
efficient. This consist of screening libraries in an iterative fashion, screening a subset of the
compound library and using the results to decide which subset of compounds to screen for
the next cycle. The decision is taken by a machine learning model. Thus, this approach is
an iterative process of model building and subsequent prediction of new compounds. Iter-
ative screening was proven valuable to enhance hits discovery and diversity in (Paricharak
et al., 2016).

In this work, machine learning methods for compound activity prediction complemented
with probabilistic prediction were used. This is of great utility for triaging compounds, and
it enables screening of a set of potentially active compounds which is significantly enriched
in terms of hits compared to a purely random sample of the compound collection. In
drug discovery this approach is referred to as Quantitative Structure-Activity Relationship
(QSAR) modelling, where the chemical structure of compounds is used as the predictor
variable, and whether the compound is a hit or not as the target variable.

Any scoring classifier allows ranking compounds to optimize experimental testing. How-
ever, in an iterative screening scenario, the choice of the portion size of the compound library
to be screened in each iteration cannot be approached by traditional machine learning meth-
ods. To exemplify this, the selection of a small portion of the highest ranked compounds
would yield high enrichment but few hits identified. On the contrary a large portion would
yield more hits identified because the portion would be larger; but lower enrichment because
compounds lower in the ranking were selected, and thus the average probability of selected
compounds being a hit would be lower.

We hypothesize that probabilistic prediction has the potential to offer accurate informa-
tion to support a reliable and flexible solution to this choice. In order to test this hypothesis,
Fast Venn-Abers predictors were used in this work (Vovk et al., 2015; Toccaceli et al., 2016).

In this paper, a QSAR model complemented with Venn-Abers predictors to predict the
probabilities of a large number of compounds being active against three different targets was
implemented. The Compounds were ranked according to these probabilities. Thereafter,
three subsets for each target were selected according to different probability thresholds. For
each subset, the cumulative sum of the probabilities provided by Venn-Abers predictors
was compared to the amount of hits selected. The closeness of these numbers indicates the
ability of the method to determine the size of the portion of the compound library that
needs to be screened in order to retrieve a desired number of hits. This is, in an iterative
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screening scenario, the ability to provide suitable information to determine the size of the
subset to screen in the next iteration. Finally, enrichment offered by the model in terms of
hits and their diversity, was evaluated against random selection.

2. The Choice of Fast Venn-Abers Predictors

During an iterative screening campaign, the optimal number of compounds to be screened
at the next iteration is usually not known. To tackle this problem, conformal prediction
(Vovk et al., 2005) has been suggested in Svensson et al. (2017). This method provides a
framework for generating confidence predictors with a fixed error rate (Vovk et al., 2005).
This is achieved by comparing predictions and actual values for compounds present in a
so-called calibration set. In a simple fashion, in the case of two classes classification, the
labels (e.g. active, inactive) are assigned to the compound being predicted in a way it
results to four different classes: active, inactive, both labels simultaneously or none of the
labels. This can limit the use of conformal prediction as the two latter classifications (e.g.
both or none of the labels) present little practical use.

The efficiency of a conformal predictor is then defined as the number of single label
predictions which can vary depending on the confidence level applied. Thus, in order to
optimize efficiency, multiple confident levels have to be tested which increase the computa-
tional time and the process complexity. In addition, for an iterative screening purpose, a
confidence level that maximizes efficiency might not lead to a dataset of a suitable size for
the next screening iteration. A confidence level that optimizes a gain-cost function for the
training set has been suggested, but this assumes that the results remain consistent to the
test set (Svensson et al., 2017).

Probabilistic prediction provides the probability distribution of each label for two given
training and test sets. If these probabilities are true, it means that their cumulative sums for
a certain number of compounds to screen would correspond to the number of hits retrieved.
For the probabilities to be true, the predictors need to get the probabilities right, at least
on average, for each value of the prediction. In such case, we can state that the probabilistic
predictor is valid. Unfortunately, it is not possible to make point probabilistic predictions.

Venn predictors (Vovk et al., 2003) circumvent this problem by returning multiple prob-
abilities, i.e. same number of probabilities as possible labels, one of which is the valid
one. Besides, validity is restricted to calibration, i.e. probabilities are matched by observed
frequencies. The only assumption made by Venn predictors is that the data is drawn in-
dependently from each other from an identical distribution (i.i.d.). Venn-Abers predictors
are a natural class of Venn predictors that can be computed from any scoring classifier, e.g.
support vector machine (SVM).

The Venn-Abers method enables automatic transformation of a scoring classifier into a
Venn-Abers predictor (Vovk and Petej, 2014). The Venn-Abers method is a modification of
the Zadrozny and Elkan’s method (Zadrozny and Elkan, 2002) which is based on isotonic
regression (Ayer et al., 1955) while the former overcomes the tendency to overfitting. This
is because Venn-Abers predictors inherit the properties of Venn predictors, and therefore
are perfectly calibrated, i.e. probabilities are matched by observed frequencies.

However, Venn-Abers predictors present two limitations. Firstly, in a transductive form,
it requires the underlying classifier model and the isotonic regression being calculated twice
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for each test sample. This can lead to high computing cost which can be reduced by
employing an inductive approach (see below). Secondly, as Venn-Abers predictors apply to
binary problems, they returns two probabilities (pg and p;) for each prediction which can
be difficult to use in some cases.

In the inductive approach, the overall data set is split into a proper training and cal-
ibration sets. The training set is used to build the underlying machine learning classifier
model, e.g. SVM, which produces scores. The calibration data are employed to ”train”
the isotonic calibrator which transforms the scores into estimated probabilities. The SVM
scores are computed only once, while the isotonic regression is recalculated two times for
each test object. Inductive Venn-Abers predictors (IVAPs) are automatically valid and per-
fectly calibrated (Vovk et al., 2015). While IVAPs reduce the computational load compared
to the transductive Venn-Abers approach, it is still resource demanding for large datasets
(e.g. big pharma HTS collection). As recalculating the isotonic regression for every label
values and test object is the main limiting factor, it is therefore possible to exploit the fact
that only one data point is added to an otherwise fixed calibration set. This way, a new al-
gorithm that produces exactly the same results in a much reduced computational effort was
proposed in (Vovk et al., 2015). This algorithm make the computational cost of Venn-Abers
affordable even on large data set sizes. The algorithm is called Fast Venn-Abers (Toccaceli
et al., 2016), and it is the one used in this work.

Point probabilities can be derived from the multiprobabilities output by Venn-Abers
predictors. Different options to calculate the point probabilities can be used. One possibility
is to combine the two probabilities pg and p; to minimize the regret, which is, according
a chosen loss function, the error for choosing the wrong probability. In the case of a log
loss, the probability p can be calculated following the Equation (1). Subsequently, the
limitation of dealing with multiprobabilistic predictions is overcome as a single value p is
suggested. In addition, the difference between p; and pg provide a valuable measurement
of uncertainty. However, the point probabilities no longer benefit the calibration property
of the multiprobabilistic prediction. Nevertheless, experimental evidence suggests that the
point predictions still exhibit high accuracy (Vovk et al., 2015). It is important to note that
the multiprobability prediction as represented by pg and p; returned by an IVAP always
satisfy pg < p1. For practical reasons, pg and p; can be interpreted as the lower and upper
probability margins. In practice, (po and p;) are often close to each other for large training
and calibration sets (Vovk et al., 2015).

b1
p=—— 1
1—po+m )

An alternative to Venn-Abers predictors is Platt scaling (Platt, 2000). Platt scaling is
a similar method but requires distribution assumptions as it fits a sigmoid as calibrator.
The advantage of Venn-Abers predictors lay in the uncertainty information contained in
the difference between pg and pi, as well as in the fact that they are theoretically valid.
Furthermore, Fast Venn-Abers predictors have been reported to outperform Platt scaling
along several datasets (Vovk et al., 2015; Toccaceli et al., 2016). Their improvement over
Platt scaling is larger the more the functional dependency of probabilities to scores departs
from a sigmoid (Toccaceli et al., 2016).
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2.1. Practical application of IVAPs

Here, a brief description of how to apply inductive Venn-Abers predictors is provided.
Firstly the training set needs to be separated into proper training and calibration. Then,
a machine learning model is used to calculate prediction scores for the calibration set and
a test sample. These scores, including the test score, are sorted in lexicographical order.
Using the sorted prediction scores and the real labels for the calibration data, two isotonic
regressors are computed, one where the test sample assumes positive label and another
one where it assumes negative label. The intersection of the test score with the positive
regression line is p1, i.e. the maximum probability of the test sample having the positive
label. Analogously, its intersection with the negative regression line is pg, i.e. the minimum
probability of the test sample having the positive label.

3. Methods
3.1. Data

AstraZeneca in-house HTS data was utilized in this work. More specifically, three large
HTS assays were selected. The activity of compounds, of a large compound library, were
experimentally tested against three different potential drug targets. The three assays are
described in Table 1. They were chosen to represent typical cases with high, moderate and
low proportion of hits, denoted HHRT (High Hit Rate Target), MHRT (Moderate Hit Rate
Target), and LHRT (Low Hit Rate Target) respectively.

Table 1: Characteristics of the Three Datasets Used

Target Active Inactive % of Active
HHRT 47946 1643931 2.83%
MHRT 16410 1964086 0.83%
LHRT 6626 1954785 0.34%

The compounds were described by signature descriptors (Faulon et al., 2003) derived
from the chemical structure of the compounds. Each signature corresponds to the number
of occurrences of a particular substructure in the compound. The resulting dataset can be
viewed as a sparse matrix of attributes were each signature is a column, and each row is a
compound. The number of signatures is in the order of hundreds of thousands, however the
density of the matrix, understood as features of compounds with non-zero value, is always
under 0.1%.

3.2. Machine learning and Fast Venn-Abers Predictors

For each model, the dataset was split into an initial proper training set of 100 000 instances,
a calibration set of 50 000 instances, and a test set containing the rest of the instances. The
proper training and calibration sets correspond, approximately, to a 5% and a 2.5% of the
full dataset respectively. Compounds for all three sets were picked randomly from each full
HTS essay; thus proper training, calibration and testing were I1D.
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All models consisted of a support vector machine (Vapnik., 1995), and were implemented
using LibLinear (Fan et al., 2008). The penalty parameter, i.e. cost, was automatically
optimized by a new functionality in the LibLinear algorithm version 2.20. Venn-Abers
predictors were calculated using the python/numpy function VennABERS.py. This function
was developed by Paolo Toccacely in the frame of the EU project ExCAPE (Toccaceli et al.,
2016); and it is an implementation of the Fast Venn-Abers Predictor described in (Vovk
et al., 2015).

For each essay, after optimizing the cost using the proper training data, an SVM is
trained as well using the proper training data. The resulting model was used to output
scores for each compound of the calibration and test sets. The distance to the hyperplane
was used as scoring function. Thereafter, the calibration set and the test scores were
used as input to the VennABERS.py function which output calibrated probabilities of each
compound in the test set for being a hit. Finally, since Venn-Abers produce two probabilities
per instance, the log loss function in Equation (1) was used to obtain single probabilistic
predictions that facilitate the ranking of compounds.

3.3. Screening Summary

The screening workflow proposed here used an initial screening of 150 000 compounds for
each HTS essay. The results from this initial screening were used to produce probabilistic
predictions, i.e. p, of compounds being a hit, which were used to rank compounds. At
this point, three different probability thresholds at 1%, 5% and 10% probability were used
to select compounds. Because the datasets were randomly split for each model, and new
models were built for each threshold, the number of hits in proper training, calibration, and
test sets slightly varied for each threshold.

3.4. Performance evaluation measures

Performance of the models was evaluated using the area under the ROC curve (Bradley,
1997), AUC. Enrichment of selected sets of compounds were evaluated in terms of number
of hits retrieved and their respective diversity. This way, number of hits retrieved and
percentage of hits selected were quantified for the different thresholds and targets. In order
to evaluate diversity, molecular framework (MF) (Bemis and Murcko, 1996), topological
framework (Schuffenhauer et al., 2007) (TF), and clusters were considered. Clusters were
generated by FLUSH (Blomberg et al., 2009) on the basis of the ECFP4 fingerprint (Rogers
and Hahn, 2010). Only MF and TF shared by at least a hit were considered. In the same
way only clusters containing hits were considered. Both, hits and diversity enrichment, were
compared against random selection.

Further, to evaluate the validity of the method, the cumulative sums of labels and
probabilities of predicted compounds were plotted for each target. Afterwards, the number
of expected and retrieved hits for the different thresholds were calculated. The minimum
number of expected hits was calculated as the cumulative sum of pg of screened compounds
for each combination of thresholds and targets. Analogously, the maximum number of
expected hits was calculated as the cumulative sum of p; of screened compounds for each
case. The actual number of expected hits was calculated as the cumulative sum of p of
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screened compounds for each case. In addition, calibration validity plots have been provided
for a visual representation of the validity of the method.

Whereas experiments could have been run just one time per target, then selecting dif-
ferent thresholds on the output, they were repeated for each threshold and again for ROC
and calibration plots. The rationale was controlling the influence of the random selection of
proper training and calibration sets. Otherwise, both SVM and the Venn-Abers method are
deterministic, therefore repeated experiments on the same model would provide the same
outcome.

4. Results

4.1. Performance of the Models

Figures 1, 2 and 3 show the ROC of the three different models corresponding to the three
targets. A target with a higher proportion of hits represent a less skewed dataset, i.e. a
lower ratio Active/Inactive. Thus, in principle, it would have higher performance. This way
the AUC of HHRT was 0.92 representing very high performance. The AUC of MHRT was
0.75 and the AUC of LHRT was 0.74, thus the performance of the MHRT was just slightly
higher than the one of the LHRT, on the specific draw of the data set used.
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Figure 1: ROC curve of the model for the HHRT.

4.2. Hits Enrichment

Table 2 provides results representing hits enrichment. As expected lower thresholds and
targets with higher hit rate select a higher number of compounds. Also as expected, higher
thresholds offer higher accuracy and enrichment. Nevertheless, even at the lowest threshold
(1%) of the HHRT, the enrichment is substantial when compared to random selection.

4.3. Diversity Enrichment

Table 3 shows the amount and percentage of MF, TF, and clusters contained in the test set
that are represented in retrieved hits. Surely, lower thresholds selected more compounds
and retrieved more hits; therefore lower thresholds identify a higher number and percentage
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Figure 2: ROC curve of the model for the MHRT.
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Figure 3: ROC curve of the model for the LHRT.
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of MF, TF and clusters. In the same way, in targets with higher hit rate, more hits and
consequently more MF, TF, and clusters were identified.

Comparing the percentage of compounds selected to the percentage of MF, TF, and
clusters identified, diversity enrichment seems to be remarkable. This relative enrichment is
higher the lower the number of compounds selected. To exemplify this, with a threshold of
10% probability in the LHRT, 0.24% of test compounds were selected; in those compounds,
16.2%, 16.8%, and 13.8% of all MF, TF and clusters respectively, contained in the test set,
were represented. On the other extreme, with a threshold of 1% probability in the HHRT,
32.8% of the compounds were selected; in those compounds, 86.4%, 79.1%, and 83.7% of
MF, TF and clusters respectively, were represented. Nevertheless, it is still to prove whether
this diversity enrichment would hold after several iterations.

Random selection retrieve a much lower amount of hits that selection by probability
ranking. For that reason, random selection identify a much lower amount of MF, TF, and
clusters. However, more MF, TF, and clusters per hit were represented in randomly selected
hits; what, although not desired, could be expected. The reason is that QSAR models
predict compounds with structures similar to known hits as hits. Therefore, predicted hits
have a higher probability to share MF, TF or cluster with known hits.

4.4. Venn-Abers Method Empirical Validation

Figures 4, 5 and 6 show the cumulative sums of labels and probabilities of ranked compounds
against number of compounds to screen, for each target respectively. These figures are a
suitable proof of validity since they provide an estimation of the number of hits that would
be retrieved together with the retrospectively observed number of hits retrieved. In addition
the cumulative sums of pg and p; show the upper and lower margins of expected hits for
each number of compounds to screen. Finally, the curve provide information about where
the relation between the number of compounds screened and the number of hits retrieved
is maximized.

Expected and actual number of hits were close for all three targets. The difference
between upper and lower margins of expected hits, i.e. cumulative sums of p; and pg re-
spectively, was low for all three targets. This mean that average uncertainty was low. Nev-
ertheless, HHRT exhibited significant higher precision and lower uncertainty than MHRT
which exhibited significant higher precision and lower uncertainty than LHRT.

Figures 7, 8 and 9 visualize the accuracy of the calibration on the test set. We observe
how the calibration is very accurate for the bins containing a high number of predicted
compounds. Otherwise, calibration is less accurate for bins with very low number of com-
pounds. This is logical because perfect calibration can only be expected on average, i.e. the
average of output probabilities would match the average of predicted compounds being hits.
Thus the calibration accuracy is subjected to the law of large numbers (Bernoulli, 1713).

Table 4 shows the hits retrieved, for each combination of thresholds and targets, against
predictions output by the Venn-Abers predictors for the selected subsets of compounds.
This way the cumulative sums of p and labels are shown. In addition the cumulative sums
of pg and p; are shown because they represent the minimum and maximum hits retrieval
that can be expected.
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Figure 4: Cumulative sums of predicted probabilities and hits retrieved for the HHRT. The
cumulative sums of pg and p; represent predictions of minimum and maximum
hits to retrieve; the cumulative sum of p represent the prediction of hits to retrieve;
the cumulative sum of labels represent the retrospectively observed hits retrieved.
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Figure 5: Cumulative sums of predicted probabilities and hits retrieved for the MHRT. The
cumulative sums of pg and p; represent predictions of minimum and maximum
hits to retrieve; the cumulative sum of p represent the prediction of hits to retrieve;
the cumulative sum of labels represent the retrospectively observed hits retrieved.
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Cumulative Sums of Compound Activity Predictions
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Figure 6: Cumulative sums of predicted probabilities and hits retrieved for the LHRT. The
cumulative sums of pg and p; represent predictions of minimum and maximum
hits to retrieve; the cumulative sum of p represent the prediction of hits to retrieve;
the cumulative sum of labels represent the retrospectively observed hits retrieved.

Empirical results of Table 4 show remarkably well-calibrated predictions. This way the
cumulative sum of labels is always very close to the cumulative sum of p; with a relative root
square error of 3.1 + 3.9%. In addition the cumulative sum of labels is always in between
the cumulative sums of py and p1; except in one case (HHRT at 10% threshold) where it is
very slightly under the low margin. This might happen, despite perfect calibration, because
probabilities must be matched by observed frequencies on average in the long run.

Table 4: Method Validation Evaluation Results

Hits Retrieved Hits expected (cumsum of Relative difference
p) [at least (cumsum of py) between expected
- at most (cumsum of p1)]  and retrieved

Target Threshold (cumsum of labels)

HORT 1% 39969 40232 39345 - 40699 0.66%
5% 32851 32421 (31964 - 32866] 1.32%
10% 30434 30969 [30511 - 31415] 1.74%

MHRT 1% 6835 6852 [6372 - 7104] 0.25%
5% 4616 4833 [4612 - 5035] 4.59%
10% 4057 4138 [3935 - 4361] 1.98%

LHRT 1% 2175 2477 [2112 - 2604] 12.98%
5% 1683 1665 [1442 - 1756] 1.08%
10% 1432 1483 [1296 - 1593] 3.50%
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1o Calibration plots (reliability curve)
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Figure 7: Calibration plots for HHRT, showing how well calibrated the predictions are
compared to observed outcome. The plots have been generated by picking 20
bins linearly distributed between 0 and 1, forming the expected probability on
the x axis. The fraction of positives is the retrospectively observed probability of
being a hit.

14



VENN-ABERS PREDICTORS FOR IMPROVED COMPOUND ITERATIVE SCREENING IN DRUG DISCOVERY

1o Calibration plots (reliability curve)
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Figure 8: Calibration plots for MHRT, showing how well calibrated the predictions are
compared to observed outcome. The plots have been generated by picking 20
bins linearly distributed between 0 and 1, forming the expected probability on
the x axis. The fraction of positives is the retrospectively observed probability of
being a hit.
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1o Calibration plots (reliability curve)
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Figure 9: Calibration plots for LHRT, showing how well calibrated the predictions are com-
pared to observed outcome. The plots have been generated by picking 20 bins
linearly distributed between 0 and 1, forming the expected probability on the x
axis. The fraction of positives is the retrospectively observed probability of being
a hit.
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5. Conclusions and Future Work

In this work a novel method to determine the number of compounds that need to be screened
in order to get any desired number of hits was proposed. The method consisted of an SVM
combined with Venn-Abers predictors. In an iterative screening scenario, this method offer
the necessary information to decide the size of the portion of the compound library that
should be screened in each iteration.

The method was validated retrospectively using three drug targets which are represen-
tative targets with low, moderate and high proportion of hits. Results showed that the
proposed method results in an accurate and reliable estimation of the number hits that
would be retrieved after screening a certain number of compounds.

We can observe Figures 4, 5 and 6 to exemplify the way to use the proposed method. In
a prospective scenario, we would need to screen an initial set of 150 000 compounds, selected
randomly from the compound library, and assign them to proper training and calibration
sets. After applying the method we would obtain Figures 4, 5 and 6 for, HHRT, MHRT
and LHRT respectively; however without the line of actual hits to retrieve. Observing the
curve provides information about where the relation between gain and cost is maximized,
i.e. considering hits retrieved being the gain and number of compounds screened the cost.
At that point, a decision on how many compounds should be screened needs to be taken.
This decision might have different restraining factors. For this reason the flexibility of the
method is a great advantage. We can imagine three different scenarios. For example, for the
MHRT, screening a number of compounds that stop just before the inflection point of the
curve is decided. This is a sensible decision to maximize enrichment in a reduced number
of iterations. In this case around 100 000 compounds would be selected and around 6 000
hits retrieved. Otherwise, for the HHRT, it could be decided to screen a reduced number of
compounds because this maximizes enrichment while still retrieving a substantial number
of hits. Finally, for the LHRT, time constrains could produce the decision of screening a
large number of compounds in order to generate a lead with only one iteration. This way,
around 250 000 compounds are screened in order to retrieve over 3 000 hits. In all three
cases, the difference between the number of hits expected over which the decision was taken
and the actual number of hits retrieved would have been very small.

In addition to the proposal and validation of the probabilistic prediction method, the
ability of the model to produce enriched subsets was evaluated in terms of hits and their
diversity. The model exhibited very good ability to rank compounds. This way, in all
subsets selected, i.e. combinations of targets and thresholds, the enrichment in terms of
number and percentage of hits was remarkable as compared to random selection. This way,
for the smallest subset which corresponded to a 0.24% of the test dataset, the enrichment
of hits was over 100 times higher than random. For the largest subset which corresponded
to a 32.8% of the test dataset, the enrichment of hits was near 3 times higher than random.
Diversity enrichment was as well high. However, randomly selected hits were more diverse
than hits selected by the proposed method. This indicates that an overall strategy for
compound selection could benefit from exploration approaches. Otherwise, the present
method is only targeting exploitation.

In conclusion, the method proposed in this article have the potential to make HTS for
drug discovery more efficient. Further, the results obtained warrant a more comprehensive
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study using more essays against other targets. In addition, enrichment should be compared
to current screening strategies. Finally, exploration strategies need to be as well considered.
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