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Abstract

The article is devoted to investigating an application of aggregating algorithms to the
problem of the long-term forecasting. We examine the classic aggregating algorithms based
on the exponential reweighing. For the general Vovk’s aggregating algorithm we provide
its probabilistic interpretation and its generalization for the long-term forecasting. For the
special basic case of Vovk’s algorithm we provide two its modifications for the long-term
forecasting. The first one is theoretically close to an optimal algorithm and is based on
replication of independent copies. It provides the time-independent regret bound with
respect to the best expert in the pool. The second one is not optimal but is more practical
(explicitly models dependencies in observations) and has O(v/T) regret bound, where T is
the length of the game.

Keywords: aggregating algorithm, long-term forecasting, prediction with experts’ advice,
delayed feedback.

1. Introduction

We consider the online game of prediction with experts’ advice. A master (aggregating)
algorithm at every stept = 1,...,T of the game has to combine aggregated prediction from
predictions of a finite pool of N experts (see e.g. Littlestone and Warmuth (1994), Freund
and Schapire (1997), Vovk (1990), Vovk (1998), Cesa-Bianchi and Lugosi (2006), Adamskiy
et al. (2016) among others). We investigate the adversarial case, that is, no assumptions
are made about the nature of the data (stochastic, deterministic, etc.).

In the classical online scenario, all predictions at step ¢ are made for the next step ¢ + 1.
The true outcome is revealed immediately at the beginning of the next step of the game
and the algorithm suffers loss using a loss function.
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In contrast to the classical scenario, we consider the long-term forecasting. At each step
t of the game, the predictions are made for some pre-determined point ¢ + D ahead (where
D > 1 is some fixed known horizon), and the true outcome is revealed only at step ¢t + D.

The performance of the aggregating algorithm is measured by the regret over the entire
game. The regret Ry is the difference between the cumulative loss of the online aggregating
algorithm and the loss of some given comparator. A typical comparator is the best fixed
expert in the pool or the best fixed convex linear combination of experts. The goal of an
aggregating algorithm is to minimize the regret, that is, Ry — min.

It turns out that there exists a wide range of aggregating algorithms for the classic
scenario (D = 1). The majority of them are based on the exponential reweighing methods
(see Littlestone and Warmuth (1994), Freund and Schapire (1997), Vovk (1990), Vovk
(1998), Cesa-Bianchi and Lugosi (2006), Adamskiy et al. (2016), etc.). At the same time,
several algorithms come from the general theory of online convex optimization by Hazan
(2016). Such algorithms are based on online gradient descent methods.

There is no right answer to the question which category of algorithms is better in
practice. Algorithms from both groups have good theoretical performance. Regret (with
respect to some given comparator) is usually bounded by a sublinear function of 7"

1. Ry < O(T) for Fixed Share with constant share by Herbster and Warmuth (1998);
2. Ry < O(V/T) for Regularized Follow The Leader according to Hazan (2016);

3. Ry < O(InT) for Fixed Share with decreasing share by Adamskiy et al. (2016);

4. Rp < O(1) in aggregating algorithm by Vovk (1998);

and so on. In fact, the applicability of every particular algorithm and the regret bound
depends on the properties of the loss function (convexity, Lipschitz, exponential concavity,
mixability, etc.).

When it comes to long-term forecasting, many of these algorithms do not have theoretical
guaranties of performance or even do not have a version for the long-term forecasting. Long-
term forecasting implies delayed feedback. Thus, the problem of modifying the algorithms
for the long-term forecasting can be partially solved by the general results of the theory of
forecasting with the delayed feedback.

The main idea in the field of the forecasting with the delayed feedback belongs to
Weinberger and Ordentlich (2002). They studied the simple case of binary sequences
prediction under fixed known delay feedback D. According to their results, an optimal®
predictor p},(zi4-plze, ..., x1) for the delay D can be obtained from an optimal predictor
Pi(xey1|zt, ..., x1) for the delay 1. The method implies running D independent copies of
predictor p; on D disjoint time grids GRy = {t | t = d (mod D)} for 1< d < D. Thus,

p*D(iUtJrD\mt, B 961) = pf($t+D|wt, Tt—D,Tt—2D,- - )

for all t. We illustrate the optimal partition of the timeline in Figure 1.
It turns out, their result also works for the general problem of forecasting under the
fixed known delay feedback, in particular, for the prediction with expert advice (we prove

1. An optimal predictor is any predictor with the regret which is less or equal to the minimax regret. There
may exist more than one optimal predictor.
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Figure 1: The optimal approach to the problem of forecasting with the fixed known delay
D. The timeline is partitioned into D disjoint grids GRy. Games on different
grids are considered separately. Each game has fixed known delay 1 (not D).

this in Appendix A). Thus, it is easy to apply any l-step-ahead forecasting aggregating
algorithm to the problem of long-term forecasting by running its D independent copies on
D disjoint grids GRy (for d = 1,...,D). We call algorithms obtained by this method as
replicated algorithms.

Nevertheless, one may say that such a theoretically optimal approach is practically far
from optimal because it uses only % of observed data at every step of the game. Moreover,
separate learning processes on grids GRy (for d = 1,..., D) do not even interact.

Gradient-descent-based aggregating algorithms have several non-replicated adaptations
for the long-term forecasting. The most obvious adaptation is the delayed gradient descent
by Quanrud and Khashabi (2015). Also, the problem of prediction with experts’ advice can
be considered as a special case of online convex optimization with memory by Anava et al.
(2015). Both approaches provide Ry < O(v/T) classical regret bound.? Thus, the practical
and theoretical problem of modifying the gradient descent based aggregating algorithms for
long-term forecasting can be considered as solved.

In this work, we investigate the problem of modifying aggregating algorithms based on
exponential reweighing for the long-term forecasting. We consider the general aggregating
algorithm by Vovk (1999) for the 1-step-ahead forecasting and provide its reasonable non-
replicated generalization for the D-th-step-ahead forecasting. These algorithms are denoted
by G1 and Gp respectively. We obtain a general expression for the regret bound of Gp.

2. We do not include the value of the forecasting horizon D in regret bounds because in this article we
are interested only in the regret asymptotic behavior w.r.t. 7. In all algorithms that we discuss the
asymptotic behavior w.r.t. D is sublinear or linear.
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As an important special case, we consider the classical exponentially reweighing algorithm
V1 by Vovk (1998), that is a case of G, designed to compete with the best expert in the
pool. The algorithm Vi can be considered close to an optimal one because it provides
constant T-independent regret bound. We provide its replicated modification Vp for the
long-term forecasting. We also propose a non-replicated modification Vg C for the long-term
forecasting of V1 (motivated by reasonable practical approach).® Our main result here is
that the regret bound for VA is O(VT).

All the algorithms that we develop and investigate require the loss function to be expo-
nentially concave. This is a common assumption (see e.g. Kivinen and Warmuth (1999))
for the algorithms based on the exponential reweighing.*

The main contributions of this article are the following:

1. Developing the general non-replicated exponentially reweighing aggregating algorithm
Gp for the problem of long-term prediction with experts’ advice and estimating its
regret.

2. Developing the non-replicated adaptation Vg C of the powerful aggregating algorithm
Vi by Vovk (1998). The obtained algorithm has O(v/T) regret bound with respect to
the best expert in the pool.

In our previous work (see Korotin et al. (2017)) we also studied the application of
algorithm Vj to the long-term forecasting. We applied the method of Mixing Past Posteriors
by Bousquet and Warmuth (2003) to connect the independent learning processes on separate
grids GRy (for d = 1,...,D). We obtained the algorithm VDGC that partially connects the
learning processes on these grids.”

In contrast to our previous work, in this article we consider the general probabilistic
framework for the long-term forecasting (algorithms G and Gp). We obtain the algorithm
Vg C that fully connects the learning processes on different grids, see details in Subsection
4.3.

The article is structured as follows.

In Section 2 we set up the problem of long-term prediction with experts’ advice and
state the protocol of the online game.

In Section 3 we discuss the aggregating algorithms for the 1-step-ahead forecasting. In
Subsection 3.1 we describe the general model G by Vovk (1999) and consider its special
case V7 in Subsection 3.2.

In Section 4 we discuss aggregating algorithms for the D-th-step-ahead forecasting:
we develop general model Gp in Subsection 4.1. Then we discuss its two special cases:
algorithm Vp in Subsection 4.2 that is a replicated version of Vi and our non-replicated
version V¢ in Subsection 4.3. We prove the O(v/T) regret bound for V5.

In Appendix A we generalize the result by Weinberger and Ordentlich (2002) to the case
of long-term prediction with experts’ advice and prove that the approach with replicating
1-step-ahead predictors for D-th-step-ahead forecasting is optimal.

3. FC — full connection.
4. Usually, even more general assumption is used that the loss function is mixable.
5. GC — grid connection.
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2. Preliminaries

We use bold font to denote vectors (e.g. w € RM for some integer M). In most cases,

superscript refers to index/coordinate of an element in the vector (e.g. (w!,...,w") = w).
Subscript is always used to indicate time (e.g. I, Ry, w,, wy, etc.).
For any integer M we denote the probability simplex of dimension M by
Ay = {p such that (p € RA) A (|[pi = 1) A (p > 0)}.
We use the notation e € R% to denote the unit vector (1,1,...,1). The dimension M

of the vector is always clear from the context. Note that 7 € Ayy.
The words prediction and forecasting are absolute synonyms in this paper.

2.1. A Game of Long-Term Forecasting with Experts’ Advice

We consider the online game of D-th-step-ahead forecasting of time series w; € by
aggregating a finite pool of N forecasting experts. We use N’ = {1,..., N} to denote the
pool and n € N as an index of an expert.

At each integer step t = 1,2,...,T — D experts n € N present their forecasts §hp EE
of time series {w, }7_; for the time moment ¢+ D. The master (aggregating) algorithm com-
bines these forecasts into a single (aggregated) forecast v4+p € I' C = for the time moment
t+D.

After the corresponding outcome wy p is revealed (on the step ¢+ D of the game), both
experts and algorithm suffer losses using a loss function A : 2 x Z — R,. We denote the
loss of expert n € N on step t + D by I, , = Mwiyp, & p) and the loss of the aggregating
algorithm by hy1p = AMwirp, Ve+p). We fix the protocol of the game below.

Protocol (D-th-step-ahead forecasting with Experts’ advice)

Get the experts n € N predictions £ € = for steps t = 1,..., D.
Compute the aggregated predictions v, € I" for stepst=1,...,D.

FORt=1,...,T
1. Observe the true outcome w; € €.

2. Suffer losses from past predictions

(a) Compute the losses I} = A(wy, &) for all n € NV of the experts’ forecasts £ made at the
step t — D.

(b) Compute the loss hy = A(we,v:) of the aggregating algorithm’s forecast y; made at the
stept — D.

3. Make the forecast for the next step (if ¢t < T — 1)

(a) Get the experts n € N predictions £, , € E for the step ¢ + D.
(b) Compute the aggregated prediction 4:4p € I" of the algorithm.

ENDFOR

We assume that the forecasts &' of all experts n € N for first D time moments ¢ =
1,..., D are given before the game.
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The variables L% = 3.7 7" (for all n € N) and Hy = 3./_, h; correspond to the cumu-
lative losses of expert n and the aggregating algorithm over the entire game respectively. We
also denote the vector of experts’ forecasts for the step t + D by &.4+p = (§§+D, .. ,{ﬁrD).

In the general protocol sets = and I' C = may not be equal. For example, the problem
of combining N soft classifiers into a hard one has Z = [0,1] and I' = {0,1} C Z. In this
article we assume that the sets of possible experts’ and algorithm’s forecasts are equal, that
is = =I'. Moreover, we assume that = = I" is a convex set. We will not use the notation =
anymore.

The performance of the algorithm is measured by the (cumulative) regret. The cumu-
lative regret is the difference between the cumulative loss of the aggregating algorithm and
the cumulative loss of some given comparator. A typical approach is to compete with the
best expert in the pool. The cumulative regret with respect to the best expert is

— 3 n
RT = HT - TIIIél/{l[LT (1)
The goal of the aggregating algorithm is to minimize the regret, that is, Ry — min.
In order to theoretically guarantee algorithm’s performance, some upper bound is usually
proved for the cumulative regret Ry < f(T)).
In the base setting (1), sub-linear upper bound f(7T') for the regret leads to asymptotic
performance of the algorithm equal to the performance of the best expert. More precisely,
we have limp_, o % =0.

2.2. Exponentially concave loss functions

We investigate learning with exponentially concave loss functions. Loss function
A:OxT — R+

is called n-exponentially concave (for some n > 0) if for all w € Q and all probability
distributions 7t on set I' the following holds true:

e~ M\ wyyr) Z/ e MPN@N e (dy), (2)
vyel

where

Y = L . ym(dy) = Exy. (3)

In (2) variable 7, is called aggregated prediction. Since I' is convex, we have v, € I'.

If a loss function is n-exponentially concave, it is also n’-exponentially concave for all
n" € (0,n]. This fact immediately follows from the general properties of exponentially
concave functions. For more details see the book by Hazan (2016).

Note that the basic square loss and the log loss functions are both exponentially concave.
This fact is proved by Kivinen and Warmuth (1999).
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3. Aggregating Algorithm for 1-Step-Ahead Forecasting

In this section we discuss basic aggregating algorithms for 1-step-ahead forecasting based
on exponential reweighing. Our framework is built on the general aggregating algorithm
G1 by Vovk (1999), we discuss it in Subsection 3.1. The simplest and earliest version V; by
Vovk (1998) of this algorithm is discussed in Subsection 3.2.

3.1. General Model

We investigate the adversarial case, that is, no assumptions (functional, stochastic, etc)
are made about the nature of data and experts. However, it turns out that in this case it
is convenient to develop algorithms using some probabilistic interpretations.

Recall that & = (&},...,&") is a vector of experts’ predictions of w;. Loss function
A Q xT'— Ry is n-exponentially concave for some 1 > 0.

We assume that data is generated using some probabilistic model with hidden states.
The model is shown in Figure 2.

Figure 2: Probabilistic model of data generation process.

We suppose that there is some hidden sequence of experts ny € N (for t = 1,2,...,T)
that generates the experts predictions &. Particular, hidden expert n; at step ¢ is called
active expert. The conditional probability to observe the vector & of experts’ predictions
at step t is

e_nA(wtvgzlt)
n) = ————,
pEln) =,
where Z; = fgel“ e~Mwi8) d¢ is the normalizing constant.® We denote E; = (£;,...,&;) and
Q= (wi,...,wy) forallt=1,...,T.
For the first active expert n; some known prior distribution is given p(ni) = po(ni).
The sequence (ny,...,nr) of active experts is generated step-by-step. Fort € {1,...,T—1}

6. Constant Z; is ni-independent. In the article we do not need to compute the exact value of the normal-
izing constant Z;.
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each n;4q is sampled from some known distribution p(ng41|N¢), where Ny = (nq,...,n).
Thus, active expert ns11 depends on the previous experts N;.
The considered probabilistic model is:®

T T
N Zr) = pNe) - p(Er ) = o) [ToeNio)] - | TTotedn]|. -
t=2

A similar equation holds true for ¢ < T

PNILEy) = p(NG) - PEING) = [po<n1>:r[2p<nT|NT_1>] - [ﬁlpmna].

The probability p(N7) is that of hidden states (active experts).”

Suppose that the current time moment is ¢. We observe the experts’ predictions =;
made earlier, time series {2; and predictions &1 for the step ¢ + 1. Since we observe {2,
and E;, we are able to estimate the conditional distribution p(N;|E;) of hidden variables
N;. This estimate allows us to compute the conditional distribution on the active expert
n¢+1 at the moment ¢ + 1. We denote for all ny11 € N

wi = pneg1|Be) = Z (1IN PN Ey). (5)
NeeNt
We use the weight vector w1 = (w} TRERR ,wﬁl) to combine the aggregated prediction

for the step t + 1:

N
Vi1 = Z I P |Be) = (wig1, Eq1) = Zw?+1§?+1'
n=1

nt+1€N

The aggregating algorithm is shown below. We denote it by G1 = Gi(p), where p
indicates the probability distribution p(N7) of active experts to which the algorithm is
applied.

Algorithm G;(p) (Aggregating algorithm for distribution p of active experts)

Set initial prediction weights wi'' = po(nq).
Get the experts n € N predictions £ € T for the step ¢ = 1.
Compute the aggregated prediction v; = (w1, &) for the step ¢t = 1.

FORt=1,...,T

1. Observe the true outcome w; € €.

7. In case p(ni+1|Ni) = p(nit+1|n:), we obtain traditional Hidden Markov Process. The hidden state at
step t + 1 depends only on the previous hidden state at step t.

8. The correct way is to include the time series values w: as the conditional parameter in the model
probabilistic distribution, that is, p(N7,E7|Qr). We omit the values w; in probabilities p(-) in order
not to overburden the notation.

9. The form p(N7) = po(n1) [[i_, p(ne|Ni—1) is used only for convenience and association with online
scenario. It does not impose any restrictions on the type of probability distribution. In fact, p(N1) may
be any distribution on AT,
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2. Update the weights

(a) Calculate the prediction weights w1 = (w}, ..., w! ), where
wy ™ = p(ne |E)

for all ny4 1 € N.
3. Make forecast for the next step (if t <T — 1)

(a) Get the experts n € N predictions £, € I for the step ¢ + 1.
(b) Combine the aggregated prediction vi41 = (wiy1,&41) € T of the algorithm.

ENDFOR

To estimate the performance of the obtained algorithm, we prove Theorem 1. Recall
that Hp is the cumulative loss of the algorithm over the entire game.

Theorem 1 For the algorithm Gy applied to the model (4) the following upper bound for
the cumulative loss over the entire game holds true:

1 N
Hr < —; In |:EP(NT) [enLTT]:| . (6)

Similar results were obtained by Vovk (1999). In this article we reformulate these results
in terms of our interpretable probabilistic framework. This is required for the completeness
of the exposition and theoretical analysis of algorithm Gp (see Subsection 4.1).

Proof Define the mixloss at the step ¢:

my = _l]n [ Z e—nA(wmfgt) . w't’lt] (7)
g nteEN

Since A is n-exponentially concave function, for the aggregated prediction v, = (wy, &) and
probability distribution w; we have

e*n)\(wtﬁt)z E e*ﬁA(wt,ﬁﬁt)w?t
nt€N

)

which is equal to e”™* > ¢~ We conclude that h; < my for all t € {1,...,T}. Thus,
the similar inequality is true for the cumulative loss of the algorithm and the cumulative
mixloss:

T T
Hp = th < th = M.
t=1 t=1

Now lets compute M.
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For all ¢

1 _ nt —_
mp=—=In[ Y e M8 p(ny|E; )] =
N nteN

—lln[ Z Zy - p(&tlnt) 'p(nt’Et—l)] -
n nte€N

1 InZ; — ?171n [ Z (&) -p(nt]E.t_l)] =

" neeN
1 1
——1In Zt - — lnp(&]Et,l).
n n

We compute

T T T
1
Hr<Mr=Y m=-n[[Z - -Wn[]p&E) =
t=1 — t=1
1 T T
%IHH Zy— —lnp(Br) =——1In [Ep(/\/ )[efnLT ]] (8)
t=1
and finish the proof. |

In the current form it is difficult to understand the meaning of the theorem. However,
the main idea is partially shown in the following corollary.

Corollary 2 The regret of the algorithm G1(p) with respect to the sequence N, = {nj,...,nk}
of experts has the following upper bound:

T
ny 1 *
Rp(N7) = Hr =) " < ~ In p(N7). (9)
t=1

Proof We simply bound (6):

*

1 N7 1 I A
Hr <~ o []EP(NT) et ]] < [mxv;)-e—" ’ ] = DU = mp(N),
t=1
|

Applying algorithm G to different probability models p makes it possible to obtain
the upper regret bound with respect to particular sequences N7.!° Choosing different p
makes it possible to obtain adaptive algorithms (e.g. Fixed Share by Herbster and Warmuth

10. In this article we do not raise the question of computational efficiency of algorithm Gi(p). In fact,
computational time and required memory can be pretty high for complicated distributions p, even O(NT).
Nevertheless, all the special algorithms that we consider (Vi,Vp, VL) are computationally efficient.
They require < O(NT) computational time and < O(N D) memory.

10
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(1998), Adamskiy et al. (2016), Vovk (1999)). Such algorithms provide low regret not only
with respect to the best constant sequence of experts, but also with some more complicated

sequences.
For example, suppose we are to obtain minimal possible regret bound with respect to
the subset of sequences (N1)* € AT In this case it is reasonable to set p(N7) = I NT) |

for all Ny € (NT)* and p(N7) = 0 for all other Ap.
Nevertheless, the most popular approach is to compete with the best (fixed) expert.
This approach is simple and, at the same time, serves as the basis for our research.

3.2. Case of Hidden Markov Process: Classical Vovk’s Algorithm

Consider the simplified dependence of active experts shown on Figure 3. For all ¢ expert
ny+1 depends only on the previous expert ny, that is, p(ni1|N7) = p(nes1|ne).

T

&, &

W, w- W3 Wy W

Figure 3: Hidden Markov Model model for data generation process.

The classic Vovk’s aggregating algorithm Vj is obtained from G by applying it to the
simple distribution p. We put p(n1) = % (for all ny € N) and p(ng|ni—1) = [ny = ny—1] (for
all t > 1 and ny,ns—1 € N'). We denote the algorithm G; for the described p by V;.

According to Corollary 2, algorithm V; has the following regret bound with respect to
the best constant expert N: = (n*,...,n*):

d In N
Rr(N7) = Hr — Zl?* < lnP(NT) ' (10)
=1

At the same time, it is easy to recurrently compute the weights w; step by step, that
is, w1 = wa — .... We get

—nL;? ne ,—nly*t
—_— — e w;'te
w _p(nt|:'t) = no n '
o Yoo e L wpeh
Thus, algorithm V7 is a powerful and computationally efficient tool to aggregate experts
in the game of the 1-step-ahead forecasting.

11
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4. Aggregating Algorithm for Long-Term Forecasting

The Section is devoted to aggregating algorithms for the long-term forecasting. In
Subsection 4.1 we provide a natural long-term forecasting generalization Gp of algorithm
G1 by Vovk (1999). We provide the general regret bound and discuss the difficulties that
prevent us from obtaining general bound in a simple form. In Subsection 4.2 we show how
the replicated version Vp for the long-term forecasting of Vj fits into the general model,
and prove its regret bound. In Subsection 4.3 we describe non-replicated version Vg ¢ for
the long-term forecasting of V; and prove its O(v/T) regret bound.

4.1. General Model

We describe the natural algorithm obtained by enhancing Gp for the problem of the
D-th-step-ahead forecasting below and denote it by Gp. Note that weights w; in Gp differ
for different D (for the same probability model p).

Algorithm Gp(p) (Aggregating algorithm for distribution p of active experts)

Set initial prediction weights w;'* = p(n;) for allt =1,..., D and ny € N.
Get the predictions €' € T of experts n € N for steps t =1,..., D.
Compute the aggregated predictions v; = (wy, &) for steps t = 1,..., D.

FORt=1,...,T
1. Observe the true outcome w; € 2.
2. Update the weights
(a) Calculate the prediction weights w;p = (w},...,w), where

w;? = p(neyp|Er)

for all ng,p € N.
3. Make forecast for the next step (if t < T — 1)

(a) Get the predictions £, , € T of experts n € N for the step ¢t + D.
(b) Combine the aggregated prediction ;4 p = (witp, &+ p) € T of the algorithm.

ENDFOR

Despite the fact that algorithm Gp (for D > 1) is the direct modification of G, it seems
hard to obtain the adequate general bound of the loss of the form (6). Indeed, let us try to
apply the ideas of Theorem 1 proof to algorithm Gp.

Denote by m; the mixloss from (7). Recall that the weights w;" here are equal to the
probabilities p(n;|Z;—p) but not p(n;=;_1). Again, for n-exponentially concave function
we have h; < my. Similar to the proof of Theorem 1, we compute for all ¢

1 1
my = ——1InZ — —Inp(&|Z_p),
n n

where we assume E;_p = & for ¢ < D. The cumulative mixloss is equal to

12
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T T T
1 1
H<M=> m=-n[[Z--W]]p&E-n) (11)
t=1 U t=1 n t=1

Unfortunately, for D > 1 in the general case this expression can not be simplified in the
same way as in Theorem 1 for G7.

However, there exist some simple theoretical cases when this bound can be simplified.
For a fixed D, the obvious one is when

T

pWNr) = ] p), (12)
t=T—D+1
where we use ./\A/} = (...,ng—ap,n4—p,n) for all t = 1,...,T. Note that (12) means that

probability distributions on separate grids GR; (for d = 1,..., D) are independent. In this
case, the learning process separates into D disjoint one-step ahead forecasting games on
grids GR;. We have p(&|Z:—p) = p(&|=Z:—p) and (11) is simplified to

1 T 1 T
H<M=-h][z--n J] »E) =
n t=1 il t=T—-D+1
T T
1 1 = 1 LT
“W[[Zz-—-m [ »E)=-"In [Ep(NT) [e7ntr ]],
N t=1 N t=T—-D+1 "

where By = {&.,&_p,&—op, ...} for all t.

In Appendix A we prove that the approach (12) may be considered as optimal when
the goal is to compete with the best expert. Nevertheless, there are no guaranties that this
approach is optimal in the general case.

4.2. Optimal Approach: Replicated Vovk’s Algorithm

Algorithm V) can be considered as close to optimal (for the 1-step-ahead forecasting
and competing with the best expert in the pool) because of its low constant regret bound
Ry < % One can obtain the aggregating algorithm Vp for the long-term forecasting
whose regret is close to optimal when competing with the best constant active expert.
The idea is to run D independent one-step-ahead forecasting algorithms V; on D disjoint
subgrids GRy (for d € {1,...,D}). This idea is motivated by Theorem 4 from Appendix
A.

To show how this method fits into the general model Gp, we define p(Np) = (%)D for
all Np € NP, Next, for all t > D we set p(ni1|N;) = p(ner1|nis1-p) = [ner1 = nev1-pl,
that is, active expert n;11 depends only on expert n;11_p that was active D steps ago. The
described model is shown in Figure 4.

For simplicity, we assume that 7T is a multiple of D. Since Vp runs D independent copies
of V7, it is easy to estimate its regret with respect to the best expert:

\ ZT w1 \ In N
t=1
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El EZ et £D+1 £D+2 e ET

Figure 4: The probabilistic model for algorithm Vp.

At the same time, the weights’ updating process is simple (it can be separated into
grids). We have

o~ n
oMLt w?tDe—nlth
:p(nt|5th): = = )
N —nLn N n -l
SN e Y wipe D

where L = S°E_, 17 for all t. This formula allows efficient recurrent computation

nt
wy

= WD — Wt — WD — ...

4.3. Practical Approach: Non-Replicated Vovk’s Algorithm

Despite the fact that algorithm Vp is theoretically close to optimal for competing with
the best expert, it has several practically obvious disadvantages. With the increase of
D the overall length of subgames decreases (~ %) and subgrids become more infrequent.
Moreover, to set the forecasting weight w;, p at step ¢ we use only = % previous observations
and forecasts.

One may wonder why not use all the observed losses to set the weight w4+ p. We apply
the algorithm Gp to the probability distribution p from Subsection 3.2 which is a case of
model from Figure 3. We denote the obtained algorithm by VII; c

The weights are efficiently recomputed --- — w;—1 — w; — w1 — ... according to

the formula

ng _Jnt
e*nLt—D 'U)file n’p
w?t — p(nt‘Et—D) = N T]L;LD = N o —nl?,D .
D on—1 W€

Zn:l e

Theorem 3 For the n*-exponentially concave (for some n) and L-Lipshitz for all w w.r.t.
second argument v € I' and || - || loss function

A QxTI'—[0,H|] C Ry

with maxer [|v|lr < B there exists Ty such that for all T > Ty the following holds true:
there exists 1 > n* > 0 such that algorithm Vgc = Gp(p) with N experts and learning

14
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rate n* has regret bound

Ry <O(WNIN -VT)

with respect to the best expert in the pool.

Proof We use the superscript (...)” to denote the variables obtained by algorithm Gp(p)
(for example, weights w}”, predictions 7/, etc.). Our main idea is to prove that the weights
wp are approximately equal to the weights w; obtained in the one-step-ahead forecasting
game G1(p) with the same experts and same time series w;. Thus, the forecasts v and ~}
have approximately the same losses h? and h} respectively.

We compare both algorithms with the same (yet unknown) learning rate 7. Note that

wy, = wﬁD. For all t we have

(W) = (wifp_y)? ~ (wi)? - ¢ Do)

t—1

where Ly' p oy g = 2y pya b
losses H1. and HE of forecasts of aggregating algorithms G1(p) = V1 and Gp(p) = VA for
the given p from Subsection 3.2.

We estimate the difference between the cumulative

T T T T
|Hp — HP| = 1) hi =Y L1 <> b= hP 1= Mwn ) = Mwn 7)) <
1 t=1 t=1

t=1 t=

T T T
LY v =le =LY llwi, &) — (wf &)llr = LY Iw; —wf &)|r <
t=1 t=1 t=1

T N T N
LY Y ) = )P - €8l < BLY Y (wi)' = (w)?| <
t=1 n=1 t=1 n=1
BLTN -max|(uf))! — (w})?|  (13)

Our goal is to estimate the maximum. In fact, we are to estimate the maximum possible
single weight change over D — 1 steps in algorithm G1(p) or Gp(p).

W.lo.g. we assume that the maximum is achieved at step ¢ on the 1-st coordinate
(n = 1). We denote * = wP € Ay and a € Ay, where a, ~ e Mfe-D1e-1) (so that
(wM! ~ apxy). The latter equation imposes several restrictions on a. In fact, for all
n,n’ € N the following must be true: o < e MP-DH  where H is the upper bound for
the loss A(w,y). We denote the subset of such vectors a by A’y C Ap.

Note that 'wtl ~ (x1-a1,xe-ag,...,xN-ay). We are to bound the maximum

max | max [|m - .1‘1611’:|]
TEAN ~acAly ! 25:1 TpOn '

We consider the case z; > Nx#‘”a (the other case is similar). In this case

n=1Tnln
max [max T —;jlal}] = max <a:1[max [1— Z:N(M}D

T D S AP L NS D S
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We examine the behavior of [1 — N#] under the fixed x.
n=1Tnan
ax ZQCQ Lnln S an
l— = — max | < ;:Z—xn% max (14)
anl Tnln acAyy ai a acA’y
: a (D-1)H Sh1 Tnn —n(D-1)H
Since 2 <e =N , we have % < (1 —xp)e , and the argument a
that maximizes (14) does not depend on xa,...,zN. W lLo.g. we can assume that a =
l-a 1-a 1—a _ e—n(D— 1)H .
(@, 5% 1>~ ,N 1), where a = (N= 1) e aD-DH < N At the same time, we can assume
1— 1—x
that = = (v, =5, =7 - ,Nl) Thus,
Tr1a1 xra
max [mag Ty ] = max [:L“ - (1%)(1%)].
TEAN “acAl, D ey Tnln z€(0,1) ra+ 1

The derivative is equal to zero at z* = Ima” fﬁlaz\?)(Nfl). Substituting z = z* and a =

e—n(D-1)H
(N—1)+e-n(D-1H

we obtain the N-independent expression:

(1 oy /e—n(D—l)H)2

1 — e—n(D-1H

(15)

We are interested in the behavior near n = 0. A closer look at the Maclaurin series of

numerator and denominator give us the decomposition

0+ 0p + 2 B2
0+77(D—1)H+...

At 1 — 0 the function is equal to 0. There exist some 1n° > 0, such that for all 0 < n < 7

expression (15) can be bounded by some n-linear function U(D,H) -n = [% + €|n.

Thus, expression (13) is bounded by

TN - B'L-N'U(D,H)} -n=FNTy
Weset F=B-L-U(D,H). Next,
In N
HP < Hh+ |H:— HP| < [Ly + —] + FNTy,
n

where L} = min,cpn L7 = mingen [Zle l?’] is the loss of the best constant expert.

In

Choosing 7" = arg min, - [% + FNTn} = F—]\%ﬂ, we obtain

Ry <2VFNInN -VT = O(VNInNVT)

regret bound with respect to the best expert in the pool.
Note that in order to use linear approximation of maximum we need n < n°. More-
over, to bound the loss H} we need n*-exponentially concave function A. This means that

n* < min{n°, n*}. Since n* = IL“NA; ~ %, there exists some huge Ty such that for T' > Ty

the required conditions are met. |
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5. Conclusion

The problem of long-term forecasting is of high importance. In the article we developed
general algorithm Gp(p) for the D-th-step ahead forecasting with experts’ advice (where
p is the distribution over active experts). The algorithm uses the ideas of the general
aggregating algorithm G by Vovk (1999). We also provided the expression for the upper
bound for the loss of algorithm Gp(p) for any probability distribution p over active experts.

For its important special case V5 ¢ we proved the O(v/T) regret bound w.r.t. the best
expert in the pool. Algorithm Vg ¢ is a practical long-term forecasting modification of
algorithm V; by Vovk (1998).

It seems possible to apply the approach from the proof of Theorem 3 in order to ob-
tain simpler and more understandable loss bound for algorithm G p(p) for any probability
distribution p. This statement serves as the challenge for our further research.
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Appendix A. Optimal Approach to Delayed Feedback Forecasting with
Experts’ Advice

The appendix is devoted to obtaining the minimax regret bound for the problem of
the D-th-step-ahead forecasting as a function of the minimax bound for the 1-step-ahead
forecasting. We consider the general protocol of the D-th-step-ahead forecasting game with
experts’ advice from Subsection 2.1. Within the framework of the task, we desire to compete
with the best expert in the pool.

We use € to denote the sequence (wi, ...,w;) of time series values at first ¢ steps. Pair
I; = (94,24 p) is the information that an online algorithm knows on the step ¢ of the game.
Let Sp be the set of all possible online randomized prediction aggregation algorithms with
the forecasting horizon D and game length ¢. Each online algorithm s € Sp, for given time
series 2; and experts answers =; provides a sequence of distributions (ﬂf(’y), ...,ﬂf('y)),
where each distribution 72(y) is a function of I,_p for 7 = 1,...,t. We write 7i(vy) =

pu
7TS(")/|I7—_D>.
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The expected cumulative loss of the algorithm s € Sp; on a given Ir is

t
8 It E:: wT7 ]
=1

and the cumulative loss of expert n:

t
Li(I) =) Mwr, &)
=1
The online performance of the algorithm s € Sp; for the given I; is measured by the
expected cumulative regret over ¢ rounds:

RP(s,1,) = HP (s, I,) — min L*(I})
neN

with respect to the best expert. Here A(w,7) : 2 x I' — R, is some loss function, not
necessary convex, Lipshitz or exponentially concave. The performance of the strategy s is

R,{j(s) = mIafo)(s,It),
t

that is the maximal expected regret over all possible games I;. The strategy sp,, that
achieves the minimal regret
Spt = arg min RP (s)
Sp ESD it

is called optimal (may not be unique).

Theorem 4 For the given Qp, B, forecasting horizon D and game length T (such that T
is a multiple of D) we have

RP(spr) > D+ Rpp(sir/p)-

Proof Let s = s}, € Spr be the optimal strategy. We define new one-step ahead
forecasting strategy s” € Si r based on s. Let

=5 =75 7 (y/I7-Dp).
=[%]D+1 r=[%]D+1

For every one-step ahead forecasting game I T /D= (Q’T /D> _.T / D) we create a new D-step
ahead forecasting game Iy = (Q7, B7). We set wi’ = wi, pyyy and (§)" = (£ py,) for all
t=1,2,...,Tand n e N.

The last step is to define one- step ahead forecasting strategy s’ for one-step ahead
forecasting game I}/D We set m = 7r(t )D+1"
We compute the loss of the algorithm s on I7. /D
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T
HE (5, 1) = 3B [Mw!',7)] =
t=1
T T/D - D
ZEﬂ'tg [)\(wft/D]—f—l”Y)] = Z |:ZEﬂ€t1>D+T [}\(wé/’ry)]] — (16)
t=1 t=1 Lr=1
T/D /D
. p " _ , " _
2 |:D Eﬁft_1)D+1 [A(wt 77)]:| D tzl [Eﬁt—l)D-H [/\(wt ,")/)]:| (17)
T/D
=D Z [wa/ [)‘(Wiﬁ)]] =D- Hzl“/D(S,»Ic/r/D)- (18)
t=1

In line (16) we split the sum into 7'/ D sequential groups of losses of length D. In transition
from (16) to (17) we note that the strategy 7 provides the same loss within each group.
In transition from (17) to (18) we use the definition of 7%". Also we note that

Ly(Ir) = D - Ly p(I7p). (19)

Thus, for every I, /p We have

RE(s, 1) = D Ryp(s', Irp).

According to the definition of the minimax regret, for the one-step forecasting game of
length T'/D there exists such I}/D that

RIT/D(S/a Ir/p) > RIT/D(SLT/D)

For I7, /D and the corresponding sequence we obtain

RP(s) > RE(s,1{') = D - Ryp(s', Iyp) = D - Ry p(s1.1/p)
This ends the proof. |

In fact, from Theorem 4 we can conclude that an optimal aggregating algorithm A7, for
the long-term forecasting with experts’ advice and competing with the best expert can be
obtained by a simple replicating technique from the optimal algorithm A7 for the 1-step
ahead forecasting and competing with the best expert.

However, if the goal is not to compete with the best expert (but, for example, to compete
with the best alternating sequence of experts with no more than K switches or some other
limited sequence), this theorem may also work. All the computations still remain true in the
general case, except for (19). This equality should be replaced (if possible) by the analogue.
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