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Abstract

The article is devoted to investigating an application of aggregating algorithms to the
problem of the long-term forecasting. We examine the classic aggregating algorithms based
on the exponential reweighing. For the general Vovk’s aggregating algorithm we provide
its probabilistic interpretation and its generalization for the long-term forecasting. For the
special basic case of Vovk’s algorithm we provide two its modifications for the long-term
forecasting. The first one is theoretically close to an optimal algorithm and is based on
replication of independent copies. It provides the time-independent regret bound with
respect to the best expert in the pool. The second one is not optimal but is more practical
(explicitly models dependencies in observations) and has O(

√
T ) regret bound, where T is

the length of the game.

Keywords: aggregating algorithm, long-term forecasting, prediction with experts’ advice,
delayed feedback.

1. Introduction

We consider the online game of prediction with experts’ advice. A master (aggregating)
algorithm at every step t = 1, . . . , T of the game has to combine aggregated prediction from
predictions of a finite pool of N experts (see e.g. Littlestone and Warmuth (1994), Freund
and Schapire (1997), Vovk (1990), Vovk (1998), Cesa-Bianchi and Lugosi (2006), Adamskiy
et al. (2016) among others). We investigate the adversarial case, that is, no assumptions
are made about the nature of the data (stochastic, deterministic, etc.).

In the classical online scenario, all predictions at step t are made for the next step t+ 1.
The true outcome is revealed immediately at the beginning of the next step of the game
and the algorithm suffers loss using a loss function.
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In contrast to the classical scenario, we consider the long-term forecasting. At each step
t of the game, the predictions are made for some pre-determined point t+D ahead (where
D ≥ 1 is some fixed known horizon), and the true outcome is revealed only at step t+D.

The performance of the aggregating algorithm is measured by the regret over the entire
game. The regret RT is the difference between the cumulative loss of the online aggregating
algorithm and the loss of some given comparator. A typical comparator is the best fixed
expert in the pool or the best fixed convex linear combination of experts. The goal of an
aggregating algorithm is to minimize the regret, that is, RT → min.

It turns out that there exists a wide range of aggregating algorithms for the classic
scenario (D = 1). The majority of them are based on the exponential reweighing methods
(see Littlestone and Warmuth (1994), Freund and Schapire (1997), Vovk (1990), Vovk
(1998), Cesa-Bianchi and Lugosi (2006), Adamskiy et al. (2016), etc.). At the same time,
several algorithms come from the general theory of online convex optimization by Hazan
(2016). Such algorithms are based on online gradient descent methods.

There is no right answer to the question which category of algorithms is better in
practice. Algorithms from both groups have good theoretical performance. Regret (with
respect to some given comparator) is usually bounded by a sublinear function of T :

1. RT ≤ O(T ) for Fixed Share with constant share by Herbster and Warmuth (1998);

2. RT ≤ O(
√
T ) for Regularized Follow The Leader according to Hazan (2016);

3. RT ≤ O(lnT ) for Fixed Share with decreasing share by Adamskiy et al. (2016);

4. RT ≤ O(1) in aggregating algorithm by Vovk (1998);

and so on. In fact, the applicability of every particular algorithm and the regret bound
depends on the properties of the loss function (convexity, Lipschitz, exponential concavity,
mixability, etc.).

When it comes to long-term forecasting, many of these algorithms do not have theoretical
guaranties of performance or even do not have a version for the long-term forecasting. Long-
term forecasting implies delayed feedback. Thus, the problem of modifying the algorithms
for the long-term forecasting can be partially solved by the general results of the theory of
forecasting with the delayed feedback.

The main idea in the field of the forecasting with the delayed feedback belongs to
Weinberger and Ordentlich (2002). They studied the simple case of binary sequences
prediction under fixed known delay feedback D. According to their results, an optimal1

predictor p∗D(xt+D|xt, . . . , x1) for the delay D can be obtained from an optimal predictor
p∗1(xt+1|xt, . . . , x1) for the delay 1. The method implies running D independent copies of
predictor p∗1 on D disjoint time grids GRd = {t | t ≡ d (mod D)} for 1≤ d ≤ D. Thus,

p∗D(xt+D|xt, . . . , x1) = p∗1(xt+D|xt, xt−D, xt−2D, . . . )

for all t. We illustrate the optimal partition of the timeline in Figure 1.
It turns out, their result also works for the general problem of forecasting under the

fixed known delay feedback, in particular, for the prediction with expert advice (we prove

1. An optimal predictor is any predictor with the regret which is less or equal to the minimax regret. There
may exist more than one optimal predictor.
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Figure 1: The optimal approach to the problem of forecasting with the fixed known delay
D. The timeline is partitioned into D disjoint grids GRd. Games on different
grids are considered separately. Each game has fixed known delay 1 (not D).

this in Appendix A). Thus, it is easy to apply any 1-step-ahead forecasting aggregating
algorithm to the problem of long-term forecasting by running its D independent copies on
D disjoint grids GRd (for d = 1, . . . , D). We call algorithms obtained by this method as
replicated algorithms.

Nevertheless, one may say that such a theoretically optimal approach is practically far
from optimal because it uses only 1

D of observed data at every step of the game. Moreover,
separate learning processes on grids GRd (for d = 1, . . . , D) do not even interact.

Gradient-descent-based aggregating algorithms have several non-replicated adaptations
for the long-term forecasting. The most obvious adaptation is the delayed gradient descent
by Quanrud and Khashabi (2015). Also, the problem of prediction with experts’ advice can
be considered as a special case of online convex optimization with memory by Anava et al.
(2015). Both approaches provide RT ≤ O(

√
T ) classical regret bound.2 Thus, the practical

and theoretical problem of modifying the gradient descent based aggregating algorithms for
long-term forecasting can be considered as solved.

In this work, we investigate the problem of modifying aggregating algorithms based on
exponential reweighing for the long-term forecasting. We consider the general aggregating
algorithm by Vovk (1999) for the 1-step-ahead forecasting and provide its reasonable non-
replicated generalization for the D-th-step-ahead forecasting. These algorithms are denoted
by G1 and GD respectively. We obtain a general expression for the regret bound of GD.

2. We do not include the value of the forecasting horizon D in regret bounds because in this article we
are interested only in the regret asymptotic behavior w.r.t. T . In all algorithms that we discuss the
asymptotic behavior w.r.t. D is sublinear or linear.
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As an important special case, we consider the classical exponentially reweighing algorithm
V1 by Vovk (1998), that is a case of G1, designed to compete with the best expert in the
pool. The algorithm V1 can be considered close to an optimal one because it provides
constant T -independent regret bound. We provide its replicated modification VD for the
long-term forecasting. We also propose a non-replicated modification V FC

D for the long-term
forecasting of V1 (motivated by reasonable practical approach).3 Our main result here is
that the regret bound for V FC

D is O(
√
T ).

All the algorithms that we develop and investigate require the loss function to be expo-
nentially concave. This is a common assumption (see e.g. Kivinen and Warmuth (1999))
for the algorithms based on the exponential reweighing.4

The main contributions of this article are the following:

1. Developing the general non-replicated exponentially reweighing aggregating algorithm
GD for the problem of long-term prediction with experts’ advice and estimating its
regret.

2. Developing the non-replicated adaptation V FC
D of the powerful aggregating algorithm

V1 by Vovk (1998). The obtained algorithm has O(
√
T ) regret bound with respect to

the best expert in the pool.

In our previous work (see Korotin et al. (2017)) we also studied the application of
algorithm V1 to the long-term forecasting. We applied the method of Mixing Past Posteriors
by Bousquet and Warmuth (2003) to connect the independent learning processes on separate
grids GRd (for d = 1, . . . , D). We obtained the algorithm V GC

D that partially connects the
learning processes on these grids.5

In contrast to our previous work, in this article we consider the general probabilistic
framework for the long-term forecasting (algorithms G1 and GD). We obtain the algorithm
V FC
D that fully connects the learning processes on different grids, see details in Subsection

4.3.

The article is structured as follows.
In Section 2 we set up the problem of long-term prediction with experts’ advice and

state the protocol of the online game.
In Section 3 we discuss the aggregating algorithms for the 1-step-ahead forecasting. In

Subsection 3.1 we describe the general model G1 by Vovk (1999) and consider its special
case V1 in Subsection 3.2.

In Section 4 we discuss aggregating algorithms for the D-th-step-ahead forecasting:
we develop general model GD in Subsection 4.1. Then we discuss its two special cases:
algorithm VD in Subsection 4.2 that is a replicated version of V1 and our non-replicated
version V FC

D in Subsection 4.3. We prove the O(
√
T ) regret bound for V FC

D .
In Appendix A we generalize the result by Weinberger and Ordentlich (2002) to the case

of long-term prediction with experts’ advice and prove that the approach with replicating
1-step-ahead predictors for D-th-step-ahead forecasting is optimal.

3. FC — full connection.
4. Usually, even more general assumption is used that the loss function is mixable.
5. GC — grid connection.
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2. Preliminaries

We use bold font to denote vectors (e.g. w ∈ RM for some integer M). In most cases,
superscript refers to index/coordinate of an element in the vector (e.g. (w1, . . . , wN ) = w).
Subscript is always used to indicate time (e.g. lt, RT , ωτ , w

n
t , etc.).

For any integer M we denote the probability simplex of dimension M by

∆M = {p such that (p ∈ RM+ ) ∧ (‖p‖1 = 1) ∧ (p > 0)}.

We use the notation e ∈ RM+ to denote the unit vector (1, 1, . . . , 1). The dimension M
of the vector is always clear from the context. Note that e

M ∈ ∆M .
The words prediction and forecasting are absolute synonyms in this paper.

2.1. A Game of Long-Term Forecasting with Experts’ Advice

We consider the online game of D-th-step-ahead forecasting of time series ωt ∈ Ω by
aggregating a finite pool of N forecasting experts. We use N = {1, . . . , N} to denote the
pool and n ∈ N as an index of an expert.

At each integer step t = 1, 2, . . . , T −D experts n ∈ N present their forecasts ξnt+D ∈ Ξ
of time series {ωτ}Tτ=1 for the time moment t+D. The master (aggregating) algorithm com-
bines these forecasts into a single (aggregated) forecast γt+D ∈ Γ ⊂ Ξ for the time moment
t+D.

After the corresponding outcome ωt+D is revealed (on the step t+D of the game), both
experts and algorithm suffer losses using a loss function λ : Ω× Ξ→ R+. We denote the
loss of expert n ∈ N on step t+D by lnt+D = λ(ωt+D, ξ

n
t+D) and the loss of the aggregating

algorithm by ht+D = λ(ωt+D, γt+D). We fix the protocol of the game below.

Protocol (D-th-step-ahead forecasting with Experts’ advice)

Get the experts n ∈ N predictions ξnt ∈ Ξ for steps t = 1, . . . , D.
Compute the aggregated predictions γt ∈ Γ for steps t = 1, . . . , D.

FOR t = 1, . . . , T

1. Observe the true outcome ωt ∈ Ω.

2. Suffer losses from past predictions

(a) Compute the losses lnt = λ(ωt, ξ
n
t ) for all n ∈ N of the experts’ forecasts ξnt made at the

step t−D.

(b) Compute the loss ht = λ(ωt, γt) of the aggregating algorithm’s forecast γt made at the
step t−D.

3. Make the forecast for the next step (if t ≤ T − 1)

(a) Get the experts n ∈ N predictions ξnt+D ∈ Ξ for the step t+D.

(b) Compute the aggregated prediction γt+D ∈ Γ of the algorithm.

ENDFOR

We assume that the forecasts ξnt of all experts n ∈ N for first D time moments t =
1, . . . , D are given before the game.

5



Korotin V’yugin Burnaev

The variables LnT =
∑T

t=1 l
n
t (for all n ∈ N ) and HT =

∑T
t=1 ht correspond to the cumu-

lative losses of expert n and the aggregating algorithm over the entire game respectively. We
also denote the vector of experts’ forecasts for the step t+D by ξt+D = (ξ1

t+D, . . . , ξ
N
t+D).

In the general protocol sets Ξ and Γ ⊂ Ξ may not be equal. For example, the problem
of combining N soft classifiers into a hard one has Ξ = [0, 1] and Γ = {0, 1} ( Ξ. In this
article we assume that the sets of possible experts’ and algorithm’s forecasts are equal, that
is Ξ = Γ. Moreover, we assume that Ξ = Γ is a convex set. We will not use the notation Ξ
anymore.

The performance of the algorithm is measured by the (cumulative) regret. The cumu-
lative regret is the difference between the cumulative loss of the aggregating algorithm and
the cumulative loss of some given comparator. A typical approach is to compete with the
best expert in the pool. The cumulative regret with respect to the best expert is

RT = HT − min
n∈N

LnT . (1)

The goal of the aggregating algorithm is to minimize the regret, that is, RT → min.
In order to theoretically guarantee algorithm’s performance, some upper bound is usually
proved for the cumulative regret RT ≤ f(T ).

In the base setting (1), sub-linear upper bound f(T ) for the regret leads to asymptotic
performance of the algorithm equal to the performance of the best expert. More precisely,
we have limT→∞

RT
T = 0.

2.2. Exponentially concave loss functions

We investigate learning with exponentially concave loss functions. Loss function

λ : Ω× Γ→ R+

is called η-exponentially concave (for some η > 0) if for all ω ∈ Ω and all probability
distributions π on set Γ the following holds true:

e−ηλ(ω,γπ) ≥
∫
γ∈Γ

e−ηλ(ω,γ)π(dγ), (2)

where

γπ =

∫
γ∈Γ

γπ(dγ) = Eπγ. (3)

In (2) variable γπ is called aggregated prediction. Since Γ is convex, we have γπ ∈ Γ.
If a loss function is η-exponentially concave, it is also η′-exponentially concave for all

η′ ∈ (0, η]. This fact immediately follows from the general properties of exponentially
concave functions. For more details see the book by Hazan (2016).

Note that the basic square loss and the log loss functions are both exponentially concave.
This fact is proved by Kivinen and Warmuth (1999).
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3. Aggregating Algorithm for 1-Step-Ahead Forecasting

In this section we discuss basic aggregating algorithms for 1-step-ahead forecasting based
on exponential reweighing. Our framework is built on the general aggregating algorithm
G1 by Vovk (1999), we discuss it in Subsection 3.1. The simplest and earliest version V1 by
Vovk (1998) of this algorithm is discussed in Subsection 3.2.

3.1. General Model

We investigate the adversarial case, that is, no assumptions (functional, stochastic, etc)
are made about the nature of data and experts. However, it turns out that in this case it
is convenient to develop algorithms using some probabilistic interpretations.

Recall that ξt = (ξ1
t , . . . , ξ

N
t ) is a vector of experts’ predictions of ωt. Loss function

λ : Ω× Γ→ R+ is η-exponentially concave for some η > 0.
We assume that data is generated using some probabilistic model with hidden states.

The model is shown in Figure 2.

Figure 2: Probabilistic model of data generation process.

We suppose that there is some hidden sequence of experts nt ∈ N (for t = 1, 2, . . . , T )
that generates the experts predictions ξt. Particular, hidden expert nt at step t is called
active expert. The conditional probability to observe the vector ξt of experts’ predictions
at step t is

p(ξt|nt) =
e−ηλ(ωt,ξ

nt
t )

Zt
,

where Zt =
∫
ξ∈Γ e

−ηλ(ωt,ξ)dξ is the normalizing constant.6 We denote Ξt = (ξ1, . . . , ξt) and

Ωt = (ω1, . . . , ωt) for all t = 1, . . . , T .
For the first active expert n1 some known prior distribution is given p(n1) = p0(n1).

The sequence (n1, . . . , nT ) of active experts is generated step-by-step. For t ∈ {1, . . . , T −1}

6. Constant Zt is nt-independent. In the article we do not need to compute the exact value of the normal-
izing constant Zt.
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each nt+1 is sampled from some known distribution p(nt+1|Nt), where Nt = (n1, . . . , nt).
7

Thus, active expert nt+1 depends on the previous experts Nt.
The considered probabilistic model is:8

p(NT ,ΞT ) = p(NT ) · p(ΞT |NT ) =

[
p0(n1)

T∏
t=2

p(nt|Nt−1)

]
·
[ T∏
t=1

p(ξt|nt)
]
. (4)

A similar equation holds true for t ≤ T :

p(Nt,Ξt) = p(Nt) · p(Ξt|Nt) =

[
p0(n1)

t∏
τ=2

p(nτ |Nτ−1)

]
·
[ t∏
τ=1

p(ξτ |nτ )

]
.

The probability p(NT ) is that of hidden states (active experts).9

Suppose that the current time moment is t. We observe the experts’ predictions Ξt

made earlier, time series Ωt and predictions ξt+1 for the step t + 1. Since we observe Ωt

and Ξt, we are able to estimate the conditional distribution p(Nt|Ξt) of hidden variables
Nt. This estimate allows us to compute the conditional distribution on the active expert
nt+1 at the moment t+ 1. We denote for all nt+1 ∈ N

w
nt+1

t+1 = p(nt+1|Ξt) =
∑
Nt∈N t

p(nt+1|Nt)p(Nt|Ξt). (5)

We use the weight vector wt+1 = (w1
t+1, . . . , w

N
t+1) to combine the aggregated prediction

for the step t+ 1:

γt+1 =
∑

nt+1∈N
ξ
nt+1

t+1 p(nt+1|Ξt) = 〈wt+1, ξt+1〉 =

N∑
n=1

wnt+1ξ
n
t+1.

The aggregating algorithm is shown below. We denote it by G1 = G1(p), where p
indicates the probability distribution p(NT ) of active experts to which the algorithm is
applied.

Algorithm G1(p) (Aggregating algorithm for distribution p of active experts)

Set initial prediction weights wn1
1 = p0(n1).

Get the experts n ∈ N predictions ξn1 ∈ Γ for the step t = 1.
Compute the aggregated prediction γ1 = 〈w1, ξ1〉 for the step t = 1.

FOR t = 1, . . . , T

1. Observe the true outcome ωt ∈ Ω.

7. In case p(nt+1|Nt) = p(nt+1|nt), we obtain traditional Hidden Markov Process. The hidden state at
step t + 1 depends only on the previous hidden state at step t.

8. The correct way is to include the time series values ωt as the conditional parameter in the model
probabilistic distribution, that is, p(NT ,ΞT |ΩT ). We omit the values ωt in probabilities p(·) in order
not to overburden the notation.

9. The form p(NT ) = p0(n1)
∏t
t=2 p(nt|Nt−1) is used only for convenience and association with online

scenario. It does not impose any restrictions on the type of probability distribution. In fact, p(NT ) may
be any distribution on N T .
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2. Update the weights

(a) Calculate the prediction weights wt+1 = (w1
t , . . . , w

N
t ), where

w
nt+1

t = p(nt+1|Ξt)

for all nt+1 ∈ N .

3. Make forecast for the next step (if t ≤ T − 1)

(a) Get the experts n ∈ N predictions ξnt+1 ∈ Γ for the step t+ 1.

(b) Combine the aggregated prediction γt+1 = 〈wt+1, ξt+1〉 ∈ Γ of the algorithm.

ENDFOR

To estimate the performance of the obtained algorithm, we prove Theorem 1. Recall
that HT is the cumulative loss of the algorithm over the entire game.

Theorem 1 For the algorithm G1 applied to the model (4) the following upper bound for
the cumulative loss over the entire game holds true:

HT ≤ −
1

η
ln

[
Ep(NT )

[
e−ηL

NT
T
]]
. (6)

Similar results were obtained by Vovk (1999). In this article we reformulate these results
in terms of our interpretable probabilistic framework. This is required for the completeness
of the exposition and theoretical analysis of algorithm GD (see Subsection 4.1).
Proof Define the mixloss at the step t:

mt = −1

η
ln
[ ∑
nt∈N

e−ηλ(ωt,ξ
nt
t ) · wntt

]
. (7)

Since λ is η-exponentially concave function, for the aggregated prediction γt = 〈wt, ξt〉 and
probability distribution wt we have

e−ηλ(ωt,γt) ≥
∑
nt∈N

e−ηλ(ωt,ξ
nt
t )wntt ,

which is equal to e−ηht ≥ e−ηmt . We conclude that ht ≤ mt for all t ∈ {1, . . . , T}. Thus,
the similar inequality is true for the cumulative loss of the algorithm and the cumulative
mixloss:

HT =
T∑
t=1

ht ≤
T∑
t=1

mt = MT .

Now lets compute MT .
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For all t

mt = −1

η
ln
[ ∑
nt∈N

e−ηλ(ωt,ξ
nt
t ) · p(nt|Ξt−1)

]
=

−1

η
ln
[ ∑
nt∈N

Zt · p(ξt|nt) · p(nt|Ξt−1)
]

=

−1

η
lnZt −

1

η
ln
[ ∑
nt∈N

p(ξt|nt) · p(nt|Ξt−1)
]

=

−1

η
lnZt −

1

η
ln p(ξt|Ξt−1).

We compute

HT ≤MT =
T∑
t=1

mt =
1

η
ln

T∏
t=1

Zt −
1

η
ln

T∏
t=1

p(ξt|Ξt−1) =

1

η
ln

T∏
t=1

Zt −
1

η
ln p(ΞT ) = −1

η
ln

[
Ep(NT )

[
e−ηL

NT
T
]]

(8)

and finish the proof.

In the current form it is difficult to understand the meaning of the theorem. However,
the main idea is partially shown in the following corollary.

Corollary 2 The regret of the algorithm G1(p) with respect to the sequence N ∗T = {n∗1, . . . , n∗T }
of experts has the following upper bound:

RT (N ∗T ) = HT −
T∑
t=1

l
n∗t
t ≤ −

1

η
ln p(N ∗T ). (9)

Proof We simply bound (6):

HT ≤ −
1

η
ln

[
Ep(NT )

[
e−ηL

NT
T
]]
≤ −1

η
ln

[
p(N ∗T ) · e−ηL

N∗T
T

]
=

T∑
t=1

l
n∗t
t −

1

η
ln p(N ∗T ).

Applying algorithm G1 to different probability models p makes it possible to obtain
the upper regret bound with respect to particular sequences NT .10 Choosing different p
makes it possible to obtain adaptive algorithms (e.g. Fixed Share by Herbster and Warmuth

10. In this article we do not raise the question of computational efficiency of algorithm G1(p). In fact,
computational time and required memory can be pretty high for complicated distributions p, even O(NT ).
Nevertheless, all the special algorithms that we consider (V1, VD, V

FC
D ) are computationally efficient.

They require ≤ O(NT ) computational time and ≤ O(ND) memory.

10
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(1998), Adamskiy et al. (2016), Vovk (1999)). Such algorithms provide low regret not only
with respect to the best constant sequence of experts, but also with some more complicated
sequences.

For example, suppose we are to obtain minimal possible regret bound with respect to
the subset of sequences (N T )∗ ⊂ N T . In this case it is reasonable to set p(NT ) = 1

|(NT )∗|
for all NT ∈ (N T )∗ and p(NT ) = 0 for all other NT .

Nevertheless, the most popular approach is to compete with the best (fixed) expert.
This approach is simple and, at the same time, serves as the basis for our research.

3.2. Case of Hidden Markov Process: Classical Vovk’s Algorithm

Consider the simplified dependence of active experts shown on Figure 3. For all t expert
nt+1 depends only on the previous expert nt, that is, p(nt+1|NT ) = p(nt+1|nt).

Figure 3: Hidden Markov Model model for data generation process.

The classic Vovk’s aggregating algorithm V1 is obtained from G1 by applying it to the
simple distribution p. We put p(n1) = 1

N (for all n1 ∈ N ) and p(nt|nt−1) = [nt = nt−1] (for
all t > 1 and nt, nt−1 ∈ N ). We denote the algorithm G1 for the described p by V1.

According to Corollary 2, algorithm V1 has the following regret bound with respect to
the best constant expert N ∗T = (n∗, . . . , n∗):

RT (N ∗T ) = HT −
T∑
t=1

ln
∗
t ≤ −

1

η
ln p(N ∗T ) =

lnN

η
. (10)

At the same time, it is easy to recurrently compute the weights wt step by step, that
is, w1 → w2 → . . . . We get

w
nt+1

t+1 = p(nt|Ξt) =
e−ηL

nt
t∑N

n=1 e
−ηLnT

=
wntt e

−ηlntt∑N
n=1w

n
t e
−ηlnt

.

Thus, algorithm V1 is a powerful and computationally efficient tool to aggregate experts
in the game of the 1-step-ahead forecasting.
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4. Aggregating Algorithm for Long-Term Forecasting

The Section is devoted to aggregating algorithms for the long-term forecasting. In
Subsection 4.1 we provide a natural long-term forecasting generalization GD of algorithm
G1 by Vovk (1999). We provide the general regret bound and discuss the difficulties that
prevent us from obtaining general bound in a simple form. In Subsection 4.2 we show how
the replicated version VD for the long-term forecasting of V1 fits into the general model,
and prove its regret bound. In Subsection 4.3 we describe non-replicated version V FC

D for
the long-term forecasting of V1 and prove its O(

√
T ) regret bound.

4.1. General Model

We describe the natural algorithm obtained by enhancing G1 for the problem of the
D-th-step-ahead forecasting below and denote it by GD. Note that weights wt in GD differ
for different D (for the same probability model p).

Algorithm GD(p) (Aggregating algorithm for distribution p of active experts)

Set initial prediction weights wnt
t = p(nt) for all t = 1, . . . , D and nt ∈ N .

Get the predictions ξnt ∈ Γ of experts n ∈ N for steps t = 1, . . . , D.
Compute the aggregated predictions γt = 〈wt, ξt〉 for steps t = 1, . . . , D.

FOR t = 1, . . . , T

1. Observe the true outcome ωt ∈ Ω.

2. Update the weights

(a) Calculate the prediction weights wt+D = (w1
t , . . . , w

N
t ), where

w
nt+D

t = p(nt+D|Ξt)

for all nt+D ∈ N .

3. Make forecast for the next step (if t ≤ T − 1)

(a) Get the predictions ξnt+D ∈ Γ of experts n ∈ N for the step t+D.

(b) Combine the aggregated prediction γt+D = 〈wt+D, ξt+D〉 ∈ Γ of the algorithm.

ENDFOR

Despite the fact that algorithm GD (for D > 1) is the direct modification of G1, it seems
hard to obtain the adequate general bound of the loss of the form (6). Indeed, let us try to
apply the ideas of Theorem 1 proof to algorithm GD.

Denote by mt the mixloss from (7). Recall that the weights wntt here are equal to the
probabilities p(nt|Ξt−D) but not p(nt|Ξt−1). Again, for η-exponentially concave function
we have ht ≤ mt. Similar to the proof of Theorem 1, we compute for all t

mt = −1

η
lnZt −

1

η
ln p(ξt|Ξt−D),

where we assume Ξt−D = ∅ for t ≤ D. The cumulative mixloss is equal to

12
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Ht ≤Mt =
T∑
t=1

mt =
1

η
ln

T∏
t=1

Zt −
1

η
ln

T∏
t=1

p(ξt|Ξt−D). (11)

Unfortunately, for D > 1 in the general case this expression can not be simplified in the
same way as in Theorem 1 for G1.

However, there exist some simple theoretical cases when this bound can be simplified.
For a fixed D, the obvious one is when

p(NT ) =
T∏

t=T−D+1

p(N̂t), (12)

where we use N̂t = (. . . , nt−2D, nt−D, nt) for all t = 1, . . . , T . Note that (12) means that
probability distributions on separate grids GRd (for d = 1, . . . , D) are independent. In this
case, the learning process separates into D disjoint one-step ahead forecasting games on
grids GRd. We have p(ξt|Ξt−D) = p(ξt|Ξ̂t−D) and (11) is simplified to

Ht ≤Mt =
1

η
ln

T∏
t=1

Zt −
1

η
ln

T∏
t=T−D+1

p(Ξ̂t) =

1

η
ln

T∏
t=1

Zt −
1

η
ln

T∏
t=T−D+1

p(Ξ̂t) = −1

η
ln

[
Ep(NT )

[
e−ηL

NT
T
]]
,

where Ξ̂t = {ξt, ξt−D, ξt−2D, . . . } for all t.
In Appendix A we prove that the approach (12) may be considered as optimal when

the goal is to compete with the best expert. Nevertheless, there are no guaranties that this
approach is optimal in the general case.

4.2. Optimal Approach: Replicated Vovk’s Algorithm

Algorithm V1 can be considered as close to optimal (for the 1-step-ahead forecasting
and competing with the best expert in the pool) because of its low constant regret bound
RT ≤ lnN

η . One can obtain the aggregating algorithm VD for the long-term forecasting
whose regret is close to optimal when competing with the best constant active expert.
The idea is to run D independent one-step-ahead forecasting algorithms V1 on D disjoint
subgrids GRd (for d ∈ {1, . . . , D}). This idea is motivated by Theorem 4 from Appendix
A.

To show how this method fits into the general model GD, we define p(ND) ≡ ( 1
N )D for

all ND ∈ ND. Next, for all t > D we set p(nt+1|Nt) = p(nt+1|nt+1−D) = [nt+1 = nt+1−D],
that is, active expert nt+1 depends only on expert nt+1−D that was active D steps ago. The
described model is shown in Figure 4.

For simplicity, we assume that T is a multiple of D. Since VD runs D independent copies
of V1, it is easy to estimate its regret with respect to the best expert:

RT (N ∗T ) = HT −
T∑
t=1

ln
∗
t ≤ −

1

η
ln p(N ∗T ) = D

lnN

η
.

13
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Figure 4: The probabilistic model for algorithm VD.

At the same time, the weights’ updating process is simple (it can be separated into
grids). We have

wntt = p(nt|Ξt−D) =
e−ηL̂

nt
t−D∑N

n=1 e
−ηL̂nt−D

=
wntt−De

−ηlntt−D∑N
n=1w

n
t−De

−ηlnt−D
,

where L̂ntt =
∑t

τ=1 l
nt
t for all t. This formula allows efficient recurrent computation

· · · → wt−D → wt → wt+D → . . . .

4.3. Practical Approach: Non-Replicated Vovk’s Algorithm

Despite the fact that algorithm VD is theoretically close to optimal for competing with
the best expert, it has several practically obvious disadvantages. With the increase of
D the overall length of subgames decreases (∼ T

D ) and subgrids become more infrequent.
Moreover, to set the forecasting weightwt+D at step t we use only≈ t

D previous observations
and forecasts.

One may wonder why not use all the observed losses to set the weight wt+D. We apply
the algorithm GD to the probability distribution p from Subsection 3.2 which is a case of
model from Figure 3. We denote the obtained algorithm by V FC

D .
The weights are efficiently recomputed · · · → wt−1 → wt → wt+1 → . . . according to

the formula

wntt = p(nt|Ξt−D) =
e−ηL

nt
t−D∑N

n=1 e
−ηLnt−D

=
wntt−1e

−ηlntt−D∑N
n=1w

n
t−1e

−ηlnt−D
.

Theorem 3 For the ηλ-exponentially concave (for some ηλ) and L-Lipshitz for all ω w.r.t.
second argument γ ∈ Γ and ‖ · ‖Γ loss function

λ : Ω× Γ→ [0, H] ⊂ R+

with maxγ∈Γ ‖γ‖Γ ≤ B there exists T0 such that for all T ≥ T0 the following holds true:
there exists ηλ > η∗ > 0 such that algorithm V FC

D = GD(p) with N experts and learning

14
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rate η∗ has regret bound
RT ≤ O(

√
N lnN ·

√
T )

with respect to the best expert in the pool.

Proof We use the superscript (. . .)D to denote the variables obtained by algorithm GD(p)
(for example, weights wD

t , predictions γDt , etc.). Our main idea is to prove that the weights
wD
t are approximately equal to the weights w1

t obtained in the one-step-ahead forecasting
game G1(p) with the same experts and same time series ωt. Thus, the forecasts γDt and γ1

t

have approximately the same losses hDt and h1
t respectively.

We compare both algorithms with the same (yet unknown) learning rate η. Note that
w1
t+1 = wD

t+D. For all t we have

(wntt )1 = (wntt+D−1)D ∼ (wntt )D · e−ηL
nt
[t−D+1,t−1] ,

where Lnt[t−D+1,t−1] =
∑t−1

τ=t−D+1 l
nt
τ . We estimate the difference between the cumulative

losses H1
T and HD

T of forecasts of aggregating algorithms G1(p) = V1 and GD(p) = V FC
D for

the given p from Subsection 3.2.

|H1
T −HD

T | = |
T∑
t=1

h1
t −

T∑
t=1

hDt | ≤
T∑
t=1

|h1
t − hDt | =

T∑
t=1

|λ(ωt, γ
1
t )− λ(ωt, γ

D
t )| ≤

L
T∑
t=1

‖γ1
t − γDt ‖Γ = L

T∑
t=1

‖〈w1
t , ξt〉 − 〈wD

t , ξt〉‖Γ = L
T∑
t=1

‖〈w1
t −wD

t , ξt〉‖Γ ≤

L
T∑
t=1

N∑
n=1

|(wnt )1 − (wnt )D| · ‖ξnt ‖Γ ≤ BL
T∑
t=1

N∑
n=1

|(wnt )1 − (wnt )D| ≤

BLTN ·max
t,n
|(wnt )1 − (wnt )D| (13)

Our goal is to estimate the maximum. In fact, we are to estimate the maximum possible
single weight change over D − 1 steps in algorithm G1(p) or GD(p).

W.l.o.g. we assume that the maximum is achieved at step t on the 1-st coordinate
(n = 1). We denote x = wD

t ∈ ∆N and a ∈ ∆N , where an ∼ e
−ηLn

[t−D+1,t−1] (so that
(wnt )1 ∼ anxn). The latter equation imposes several restrictions on a. In fact, for all
n, n′ ∈ N the following must be true: an

an′
≤ e−η(D−1)H , where H is the upper bound for

the loss λ(ω, γ). We denote the subset of such vectors a by ∆′N ( ∆N .
Note that w1

t ∼ (x1 · a1, x2 · a2, . . . , xN · aN ). We are to bound the maximum

max
x∈∆N

[
max
a∈∆′N

[
|x1 −

x1a1∑N
n=1 xnan

|
]]
.

We consider the case x1 >
x1a1∑N
n=1 xnan

(the other case is similar). In this case

max
x∈∆N

[
max
a∈∆′N

[
x1 −

x1a1∑N
n=1 xnan

]]
= max

x∈∆N

(
x1

[
max
a∈∆′N

[
1− a1∑N

n=1 xnan

]])
.
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We examine the behavior of
[
1− a1∑N

n=1 xnan

]
under the fixed x.[

1− a1∑N
n=1 xnan

→ max
a∈∆′N

]
⇐⇒

[∑N
n=2 xnan
a1

=

N∑
n=2

an
a1
xn → max

a∈∆′N

]
(14)

Since an
a1
≤ e−η(D−1)H , we have

∑N
n=1 xnan
a1

≤ (1 − x1)e−η(D−1)H , and the argument a
that maximizes (14) does not depend on x2, . . . , xN . W.l.o.g. we can assume that a =

(a, 1−a
N−1 ,

1−a
N−1 , . . . ,

1−a
N−1), where a = e−η(D−1)H

(N−1)+e−η(D−1)H < 1
N . At the same time, we can assume

that x = (x, 1−x
N−1 ,

1−x
N−1 , . . . ,

1−x
N−1). Thus,

max
x∈∆N

[
max
a∈∆′N

[
x1 −

x1a1∑N
n=1 xnan

]]
= max

x∈(0,1)

[
x− xa

xa+ (1−x)(1−a)
N−1

]
.

The derivative is equal to zero at x∗ =
1−a−

√
a(1−a)(N−1)

1−aN . Substituting x = x∗ and a =
e−η(D−1)H

(N−1)+e−η(D−1)H we obtain the N -independent expression:(
1−
√
e−η(D−1)H

)2
1− e−η(D−1)H

. (15)

We are interested in the behavior near η = 0. A closer look at the Maclaurin series of
numerator and denominator give us the decomposition

0 + 0η + η2 (D−1)2H2

4 + . . .

0 + η(D − 1)H + . . .
.

At η → 0 the function is equal to 0. There exist some η0 > 0, such that for all 0 ≤ η < η0

expression (15) can be bounded by some η-linear function U(D,H) · η =
[ (D−1)H

4 + ε
]
η.

Thus, expression (13) is bounded by

TN ·
[
B · L ·N · U(D,H)

]
· η = FNTη

We set F = B · L · U(D,H). Next,

HD
T ≤ H1

T + |H1
T −HD

T | ≤
[
L∗T +

lnN

η

]
+ FNTη,

where L∗T = minn∈N L
n
T = minn∈N

[∑T
t=1 l

n
t

]
is the loss of the best constant expert.

Choosing η∗ = arg minη>0

[
lnN
η + FNTη

]
=
√

lnN
FNT , we obtain

RT ≤ 2
√
FN lnN ·

√
T = O(

√
N lnN

√
T )

regret bound with respect to the best expert in the pool.
Note that in order to use linear approximation of maximum we need η ≤ η0. More-

over, to bound the loss H1
T we need η∗-exponentially concave function λ. This means that

η∗ ≤ min{η0, ηλ}. Since η∗ =
√

lnN
FNT ∼

1√
T

, there exists some huge T0 such that for T ≥ T0

the required conditions are met.
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5. Conclusion

The problem of long-term forecasting is of high importance. In the article we developed
general algorithm GD(p) for the D-th-step ahead forecasting with experts’ advice (where
p is the distribution over active experts). The algorithm uses the ideas of the general
aggregating algorithm G1 by Vovk (1999). We also provided the expression for the upper
bound for the loss of algorithm GD(p) for any probability distribution p over active experts.

For its important special case V FC
D we proved the O(

√
T ) regret bound w.r.t. the best

expert in the pool. Algorithm V FC
D is a practical long-term forecasting modification of

algorithm V1 by Vovk (1998).
It seems possible to apply the approach from the proof of Theorem 3 in order to ob-

tain simpler and more understandable loss bound for algorithm GD(p) for any probability
distribution p. This statement serves as the challenge for our further research.
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Appendix A. Optimal Approach to Delayed Feedback Forecasting with
Experts’ Advice

The appendix is devoted to obtaining the minimax regret bound for the problem of
the D-th-step-ahead forecasting as a function of the minimax bound for the 1-step-ahead
forecasting. We consider the general protocol of the D-th-step-ahead forecasting game with
experts’ advice from Subsection 2.1. Within the framework of the task, we desire to compete
with the best expert in the pool.

We use Ωt to denote the sequence (ω1, ..., ωt) of time series values at first t steps. Pair
It = (Ωt,Ξt+D) is the information that an online algorithm knows on the step t of the game.
Let SD,t be the set of all possible online randomized prediction aggregation algorithms with
the forecasting horizon D and game length t. Each online algorithm s ∈ SD,t for given time
series Ωt and experts answers Ξt provides a sequence of distributions

(
πs1(γ), ..., πst (γ)

)
,

where each distribution πsτ (γ) is a function of Iτ−D for τ = 1, . . . , t. We write πsτ (γ) =
πs(γ|Iτ−D).
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The expected cumulative loss of the algorithm s ∈ SD,t on a given IT is

HD
t (s, It) =

t∑
τ=1

[
Eπsτλ(ωτ , γ)

]
and the cumulative loss of expert n:

Lnt (It) =
t∑

τ=1

λ(ωτ , ξ
n
τ )

The online performance of the algorithm s ∈ SD,t for the given It is measured by the
expected cumulative regret over t rounds:

RDt (s, It) = HD
t (s, It)− min

n∈N
Lnt (It)

with respect to the best expert. Here λ(ω, γ) : Ω × Γ → R+ is some loss function, not
necessary convex, Lipshitz or exponentially concave. The performance of the strategy s is

RDt (s) = max
It

RDt (s, It),

that is the maximal expected regret over all possible games It. The strategy s∗D,t that
achieves the minimal regret

s∗D,t = arg min
sD∈SD,t

RDt (s)

is called optimal (may not be unique).

Theorem 4 For the given ΩT ,ΞT , forecasting horizon D and game length T (such that T
is a multiple of D) we have

RDT (sD,T ) ≥ D ·R1
T/D(s1,T/D).

Proof Let s = s∗D,T ∈ SD,T be the optimal strategy. We define new one-step ahead
forecasting strategy s′′ ∈ S1,T based on s. Let

πs
′′
t =

1

D

[ t
D

]D+D∑
τ=[ t

D
]D+1

πsτ =
1

D

[ t
D

]D+D∑
τ=[ t

D
]D+1

πs(γ|Iτ−D).

For every one-step ahead forecasting game I ′T/D = (Ω′T/D,Ξ
′
T/D) we create a new D-step

ahead forecasting game I ′′T = (Ω′′T ,Ξ
′′
T ). We set ω′′t = ω′[t/D]+1 and (ξnt )′′ = (ξn[t/D]+1)′ for all

t = 1, 2, . . . , T and n ∈ N .
The last step is to define one-step ahead forecasting strategy s′ for one-step ahead

forecasting game I ′T/D. We set πs
′
t = πs

′′

(t−1)D+1.

We compute the loss of the algorithm s on I ′′T/D.
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HD
T (s, I ′′t ) =

T∑
t=1

Eπst
[
λ(ω′′t , γ)

]
=

T∑
t=1

Eπst
[
λ(ω′[t/D]+1, γ)

]
=

T/D∑
t=1

[ D∑
τ=1

Eπs
(t−1)D+τ

[
λ(ω′′t , γ)

]]
= (16)

T/D∑
t=1

[
D · E

πs
′′

(t−1)D+1

[
λ(ω′′t , γ)

]]
= D

T/D∑
t=1

[
E
πs
′′

(t−1)D+1

[
λ(ω′′t , γ)

]]
= (17)

= D

T/D∑
t=1

[
E
πs
′
t

[
λ(ω′t, γ)

]]
= D ·H1

T/D(s′, I ′T/D). (18)

In line (16) we split the sum into T/D sequential groups of losses of length D. In transition
from (16) to (17) we note that the strategy πs

′′
provides the same loss within each group.

In transition from (17) to (18) we use the definition of πs
′′
. Also we note that

LnT (I ′′T ) = D · LnT/D(I ′T/D). (19)

Thus, for every I ′T/D we have

RDT (s, I ′′t ) = D ·R1
T/D(s′, I ′T/D).

According to the definition of the minimax regret, for the one-step forecasting game of
length T/D there exists such I ′T/D that

R1
T/D(s′, I ′T/D) ≥ R1

T/D(s1,T/D)

.
For I ′T/D and the corresponding sequence we obtain

RDT (s) ≥ RDT (s, I ′′t ) = D ·R1
T/D(s′, I ′T/D) ≥ D ·R1

T/D(s1,T/D)

This ends the proof.

In fact, from Theorem 4 we can conclude that an optimal aggregating algorithm A∗D for
the long-term forecasting with experts’ advice and competing with the best expert can be
obtained by a simple replicating technique from the optimal algorithm A∗1 for the 1-step
ahead forecasting and competing with the best expert.

However, if the goal is not to compete with the best expert (but, for example, to compete
with the best alternating sequence of experts with no more than K switches or some other
limited sequence), this theorem may also work. All the computations still remain true in the
general case, except for (19). This equality should be replaced (if possible) by the analogue.
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