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Abstract

In this paper we propose to apply the stacking method to aggregating multi-output predic-
tions from different weather-forecasting domains (websites). Depending on the aggregating
procedure (non-conformal/conformal), the results can be bare multi-output predictions or
multi-output prediction regions. The experiments show the applicability of the stacking
method on real data related to eight weather-forecasting domains.
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1. Introduction

Among the many services offered on the Internet, there are hundreds of websites that
provide online predictions in different areas. This includes for example weather forecasting,
predicting sport results, stock forecasting etc. While the quality of predictions may vary
between different websites, an intriguing question is whether they can be aggregated into
more accurate predictions, and if so, whether prediction regions can be built.

In this paper we provide an answer to the question imposed above in the context of
weather forecasting. Given a set of weather-forecasting domains (websites), we propose a
method that aggregates the multi-output predictions from these domains into a new multi-
output prediction. Our method is essentially a stacking method (Wolpert, 1992), hence the
name stacked weather forecasting (SWF). The method first collects meta data that consists
of the multi-output predictions from the weather-forecasting domains and the true weather
measurements for a certain period of time. It then trains a meta multi-output predictor on
the meta data, mapping the multi-output predictions from the weather-forecasting domains
to new aggregated multi-output predictions. The experiments show that the aggregated
predictions are more accurate than any of the individual predictions; i.e. we can successfully
combine weather-forecasting domains.

To compute regions over the aggregated multi-output predictions we introduce conformal
stacked weather forecasting (CSWF) which is essentially SWF employing conformal multi-
output regression models (Shafer and Vovk, 2008). The experiments show that CSWF
provides (almost) valid prediction regions for each weather variable, although it is difficult
to evaluate their quality. To judge the latter precisely we would need to compare them to
the prediction regions of the weather-forecasting websites which are not (publicly) available.

The methods of SWF and CSWF are related to research in weather forecasting modeling
(Bauer et al., 2015). To reduce the generalization complexity and the error of the weather-
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forecasting models different types of ensemble methods have been proposed (Zhang and Pu,
2010). In essence, these methods are averaging methods, i.e. they average the outputs of
the weather forecasting models. To ensure model diversity, the ensemble methods either use
different types of weather forecasting models or use randomization injection when weather
forecasting models are of the same type (analogously to Bagging (Breiman, 1996)). The
weather-forecasting ensembles differ from the methods of SWF and CSWF proposed in this
paper in terms of:

e aggregation procedure: the weather-forecasting ensembles employ averaging while
SWF and CSWF can employ any type of multi-output regression models (including
averaging);

e model access: the weather-forecasting ensembles do have access to the models they
aggregate while SWF and CSWF do not. This is an important distinction, as it allows
SWEF and CSWF to be applied (in theory) to any set of variables for which multiple
predictions are available (e.g. through online services).

The rest of the paper is organized as follows. The task of weather forecasting is for-
malized in Section 2. Section 3 and 4 introduce the SWF method and CSWF method,
respectively. The process of data gathering is given in Section 5, and the experiments are
described in Section 6. Section 7 concludes the paper.

2. Task of Weather Forecasting

Let X be an input space and Y C RM be an output space defined by M output weather
variables Y;, C R,m € {1,2,...,M}. A weather forecast domain W is defined as a tuple
consisting of a labeled space X x Y and a probability distribution P over X x Y. Any
training instance is a tuple (z4,y4+1) € X X Y where x4 represents measurements on day
d and yg4; represents the true values of the weather variables for day d + [ for positive
integers d and [. The training data set 1" for I[th day predictions is a multi set of instances
(x4, Ya+1) € X XY drawn from the distribution P. Given an unlabeled test instance x4 € X,
the weather forecasting task for the domain W is to find a lth-day prediction g44; € Y for
zq according to P.

To solve the weather forecasting task, we identify a multi-output regression model A
from a hypothesis space H of models h (h : X — Y). We identify h as that model in
H that best fits the training data T according the search strategy employed. Given an
unlabeled test instance x4y € X, the multi-output regression model h provides a [th-day
prediction § € Y for xg.

3. Stacked Weather Forecasting

We assume the existence of S weather forecast domains Wy for s € {1,2,...,S}. Any
two domains Wy, and W, (s; # s2) can have different input spaces X, and X, but do
share the same output space Y. This implies that the multi-output regression models hg
for different weather forecast domains Wy can be different but they do provide predictions
in the same output space Y.
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We assume that for any weather forecast domain W, we do not have access to its multi-
output regression model hs. However, we do assume that for any weather forecast domain
W, we have access to the predictions of W; for all the weather variables. Formally, this
means that there is a validation data set Vs C (X5 x Y') generated from the probability
distribution P, related to W,. For all the weather forecast domains W, the validation
data sets V; are indexed sets with the same index set D of days; i.e. the validation sets
have the same size and for each day d € D there exists instance (zqs,ya11,s) € Vs for all
se{l,2,...,S}.

The weather forecast domains Wy handle the validation data sets V. For any domain
Wy an instance (245, Ya+1,s) € Vs is tested by the multi-output regression model hs. This
means that the model hs provides a [th-day prediction §44; s € Y for the unlabeled instance
zq,s. For any day d € D we create a meta instance {:l)d+lys}se{1727m,s} with true output yg444
for day d + 1 '. The new meta instances connect the estimations Jd+1,s € Y and the true
outputs yq4; for all the days in D and they form a meta training data set 7. We train a
meta multi-output regression model f from a hypothesis space F of models f (f : Y —Y)
using the meta data T'. The meta model f provides a prediction gg4+; € Y for any unlabeled
test instance {Jayis}tseq1,2,.,5y for d ¢ D. This means that if we know the predictions
Ja+1,s € Y from all the models hs using the meta model f we can aggregate them into the
Ith-day prediction ggq4; € Y.

The pseudocode for our proposed stacked weather forecasting method is provided in
Algorithm 1.

Algorithm 1 SWF': Stacked Weather Forecasting

Input: Index set D of days,
Number [ for the days to be predicted,
Number S of weather forecast domains,
Predictions ¢4, for day d + [ from any day d € D and
any domain Wy with s € {1,2,..., 5},
True outputs yg4; for day d + 1 for any d € D.
Output: Meta multi-output regression model f.

1: Set the meta training data set T equal to ();

2: for alld € D do

3:  Add meta instance ({Jai,s}sef1,2,....5}> Ya+1) to the meta training data set T';
4: end for

5: Train meta multi-output regression model f on the meta training data set T
6: return f.

The method of stacked weather forecasting is a model-independent method; any type
of multi-output regression model can be used for the final meta model. In our experi-
ments we have used a multi-output k-nearest neighbor regression model (MkNNR). Given
a test instance, MEKNNR first finds the k nearest neighbors of the test instance in the input
space. Then, it provides a value for each output variable Y,, (m € {1,..., M}) estimated

1. We note that the true output yq+; is the same for all s € {1,...,S5}; i.e. for all s € {1,...,5} we have
Yd+1 = Yd+l1,s-
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as the weighted average of the values for Y;, among the k nearest neighbors. By construc-
tion, MKNNR can be viewed as a set of M single-output k-nearest neighbor regressions
(SKNNR,,,) that share the search for the k nearest neighbors. This property is used when
we discuss how to implement a conformal extension of MANNR in the next Subsection.

4. Conformal Stacked Weather Forecasting

Conformal stacked weather forecasting (CSWF) is the SWF method that trains a conformal
multi-output regression model f on the meta training data set T'. Since conformal multi-
output regression models are not available, in this paper we propose a straightforward multi-
output extension of the conformal single-output k-nearest neighbor regression (CSANNR)
(Papadopoulos et al., 2011). The extension, which we call conformal multi-output k-nearest
neighbor regression (CMiNNR), is a set of M CSkNNR,, models, one for each weather
variable Y,,. The CSkNNR,, models share the search for the k£ nearest neighbors to reduce
the computational complexity of CMENNR. In this way, given a test instance, each CSkNNR
provides a predictive region I',, for its corresponding weather variable Y;, and the set of all
the prediction regions I'y, forms the final output of the CMANNR, model.

We note that both the MANNR model and CMENNR model do not explicitly handle
the dependencies that might exist between the output variables which can definitely reduce
the generalization performance of these models. However, due to the lack of conformal
multi-output regression models, we do not have currently an alternative.

5. Data Gathering and Preprocessing

To test our method of stacked weather forecasting we have selected eight weather forecast
websites. These are domains that are listed on Google when searching for “weather forecast”
and provide weather predictions in a way that can easily be scraped. The weather forecasting
models used by these domains are not public; i.e. the only information we have are the
weather predictions provided by these models. The selected domains and the abbreviations
used in the sections hereafter are as follows:

e BB: bbc.com

e TD: timeanddate.com

e WO: weatheronline.co.uk
e WT: weather.com

e AW: accuweather.com

e HW: holiday-weather.com
e 7ZV: zoover.nl

e WF': weather-forecast.com


bbc.com
timeanddate.com
weatheronline.co.uk
weather.com
accuweather.com
holiday-weather.com
zoover.nl
weather-forecast.com
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As these websites provide forecasts for many locations, a manual selection of 24 locations
has been made (see Table 1), aimed to be roughly evenly spread? across the United States.
The chosen locations have been limited to the United States because of the difficulty of
accessing ground-truth weather records. The latter have been provided by the National
Climatic Data Center (NCDC) and National Oceanic and Atmospheric Administration
(NOAA), both American organizations (Menne et al., 2012).

Table 1: Locations for weather forecast

Los Angeles (CA)
Yuma (AZ)
Tucson (AZ)

San Antonio (TX)

Pensacola (FL)
Miami (FL)
Atlanta (GA)
Albuquerque (NM)

Flagstaff (AZ)
Las Vegas (NV)
Fresno (CA)
Sacramento (CA)
Salt Lake City (UT)
Kansas City (MO)
Nashville (TN)
Knoxville (TN)

Raleigh (NC)
Cleveland (OH)
Rochester (NY)

Bangor (ME)

Chicago (IL)

Minneapolis (MN)
Boise (ID)
Portland (OR)

Due to the limited information provided by the NCDC records, only five continuous
weather variables have been selected: maximum temperature (°C), minimum temperature
(°C), average temperature (°C), wind speed (km/h), and precipitation (mm). Therefore,
for any day and any location we have a training instance of which:

e the output consists of the true values for the five variables provided by NCDC, and

e the input consists of the estimated values for the five variables provided by each
domain; i.e. 5 x 8 number of values in total (see line 3, Algorithm 1).

The data has been collected for next-day weather forecasting (I = 1) and seven-day
weather forecasting (I = 7). That is, if an instance output contains true values for a
day d + I, then its inputs contain predictions provided by the weather forecasting domains
around 12 : 00 on day d. In total, data has been gathered for 24 locations over 97 consecutive
days, resulting in 2240 instances for the next-day forecasts and 2097 instances for seven-day
forecasts. Both the scraped predictions and ground truth values (obtained through the
NOAA API) have been made publicly available to facilitate use in future research®. After
collection, this data has been preprocessed. Where necessary, values have been converted
to the metric system, and missing values have been processed as follows:

e If the average temperature is missing, it is replaced by the average of the minimum
and maximum temperature.

2. Originally, 53 locations had been selected with a distance 150km to 450km in between. However, this
selection was then reduced to the 24 listed locations, as only those are covered by all of the selected
forecast websites. The distances between locations in this subset has not been evaluated separately, so
they may no longer be evenly spread.

3. https://github.com/jneeven/Weather-Forecasting-Data
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e As five of the eight websites do not provide any predictions for precipitation, these
five features have been removed from the input data (i.e. each input instance contains
35 values).

As the predicted variables have different ranges, the input values have been normalized
using min-max normalization (described in (Al Shalabi et al., 2006)) such that they are
in range [0,1]. The latter is important for estimating plausible distances on the input
space, especially when we use k-nearest neighbor regression models. Since the precipitation
data contains many outliers, these values have been replaced by their square root before
applying normalization. This has helped decrease the width of the prediction regions of
CSWF somewhat, although they are still quite large as can be seen in Section 6.3.2.

6. Experiments

This section presents our experimental set-up (Subsection 6.1), validation procedures (Sub-
section 6.2), results, and analysis (both in Subsection 6.3).

6.1. Experiment Setup
6.1.1. SETUP FOR STACKED WEATHER FORECASTING

The multi-output k-nearest neighbor regression model for stacked weather forecasting has
been implemented in Python using the scikit-learn library. The model uses the Euclidean
distance metric and calculates its estimations of the output variables by weighted interpo-
lation of the values associated with the nearest neighbors. The model has been optimized
with an internal validation process and values of 8 and 13 have been found optimal for the
parameter k in the case of next-day and seven-day forecasting, respectively.

6.1.2. SETUP FOR CONFORMAL STACKED WEATHER FORECASTING

The conformal multi-output k-nearest neighbor regression model for conformal stacked
weather forecasting has been coded in Matlab using the conformal single-output k-nearest
neighbor regression implementation from (Papadopoulos et al., 2011). The model has been
initialized analogously to the multi-output k-nearest neighbor regression model (see previous
subsection).

6.2. Validation
6.2.1. MEASURES FOR GENERALIZATION PERFORMANCE

The generalization performance of stacked weather forecasting has been estimated using
normalized root mean squared error (NRMSE) which is obtained by normalizing predictions
and target values of each output weather variable over the total range of that variable in all
target values, again using min-max normalization to range [0, 1]. As the models predict five
output weather variables simultaneously, this results in five error values per test instance.
To simplify the comparison of errors, only the mean of the five (normalized) error values is
reported.
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The generalization performance of conformal stacked weather forecasting has been esti-
mated using two measures for each output weather variable given a significance level €. The
first measure is the error e estimated as the proportion of the instances of which the true
value is outside of the predictive region for the variable. The second measure is the width
w of the predictive region for that variable.

6.2.2. VALIDATION PROCEDURES

Two types of validation procedures have been employed: k-fold cross validation and sliding
window. The k-fold cross-validation procedure has been set with k& equal to 10. It has been
employed under the assumption that the data has been i.i.d. generated. We note that this
assumption does not always hold due to the similarity of weather forecast predictions in a
series of consecutive days with a relatively stable weather.

The second validation procedure, sliding window, has been employed, since it is more
natural for the types of applications considered in the paper. In this procedure, a model
is trained on the data from day d; till day d; (referred to as the window for d; < d; ) and
then predicts the output weather variables for day d; + [ with [ > 0. When predicting for
the following day, d; + 1 + [, the model is retrained from scratch using a new window from
day d; + 1 till day d; + 1 (i.e. the window “slides” over the available data with one day).
Hence, the window always consists of n instances where n = d; — d;. In our experiments
n has been set to 65 days, resulting in 32 testing days. The sliding-window procedure has
been employed under the assumption that the data has been under the exchangeability
assumption (Shafer and Vovk, 2008). We note that this assumption does not always hold
for weather data, for example for days that belong to different seasons.

For both validation procedures, we have naively assumed that the weather forecasting
models of the websites presented in Section 5 had also been trained and tested according to
those procedures 4. In this way we can compare the generalization performance of stacked
weather forecasting with that of these models.

6.3. Results

This section provides experimental results and conclusions which are first given for stacked
weather forecasting and then for conformal stacked weather forecasting.

6.3.1. RESULTS FOR STACKED WEATHER FORECASTING

Table 2 shows the results for all the weather forecasting domains (websites) and stacked
weather forecasting (SWF) based on multi-output k-nearest neighbor regression. The results
are given in terms of the averaged normalized root mean squared errors for the five output
weather variables: maximum temperature, minimum temperature, average temperature,
wind speed, and precipitation. The errors have been estimated using the cross-validation
procedure and sliding window procedure described in Subsection 6.2.

The table shows that SWF has the best generalization performance: its averaged
NMRSE is significantly lower than those of all eight weather forecasting domains in all

4. For example in case of the 10-fold cross-validation procedure, when we test the first fold of predictions
made by a model, we assume that this model has been trained on the data of the next 9 folds.
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Table 2: Average and standard deviation of normalized root mean squared errors for the
weather forecasting domains and stacked weather forecasting (SWF) based on
multi-output k-nearest neighbor regression. Numbers in bold indicate statistically
better results than any other domain obtained with paired t-tests on a significance
level of 0.05.

BB TD WO WT AW HW A% WF SWF
0.048 0.035 0.063 0.045 0.036 0.055 0.054 0.053 | 0.026
£0.027 | £0.020 | £0.050 | £0.027 | £0.022 | £0.035 | £0.029 | +0.028 | £0.016
0.049 0.037 0.062 0.045 0.038 0.057 0.052 0.054 | 0.031
+0.028 | £0.020 | £0.051 | £0.026 | +0.024 | £0.034 | £0.028 | +0.030 | £0.022
0.061 0.063 0.085 0.065 0.056 0.075 0.069 0.071 0.046
+0.034 | £0.039 | £0.054 | +0.036 | £0.031 | £0.040 | £0.035 | £0.040 | +0.028
0.066 0.069 0.090 0.070 0.059 0.081 0.071 0.076 | 0.053
+0.037 | £0.044 | £0.059 | £0.039 | £0.035 | £0.042 | £0.037 | £0.046 | +0.034

Cross-validation (next day)

Sliding window (next day)

Cross-validation (seven days)

Sliding window (seven days)

experiments. The obtained results allow us to conclude that the SWF method is a good
method for combining weather forecasts from different domains. The method is capable of
significantly reducing the weather forecasting error.

Analyzing the reasons for the success of the SWF method is a difficult problem (Wolpert,
1992). Here we just illustrate one of the main reasons, namely the diversity of the weather
forecasting domains that the method combines. For that purpose we have first calculated
the normalized Euclidean distance between the predictions of the domains and SWF, and
then applied the multidimensional scaling (MDS) technique (Kruskal, 1964). The result
is a two-dimensional map with stress of 0.036 and mean distance of 0.121 presented in
Figure 1. The map shows that the weather forecasting domains are rather diverse in terms
of the weather forecasts which can be one of the explanations why SWF reduces significantly
the forecast error. Analyzing the position of the SWF method, we observe that SWF is
a border method on the MDS map; i.e. it is different from others. However, two of its
closest neighbors are the best two weather forecasting domains which suggests that we can
get similar results by combining only those two domains. A similar situation is shown for
the seven-day predictions in Figure 2 which has a stress of 0.048 and a mean distance of
0.137, although the position of SWF has moved slightly towards the center.

6.3.2. RESULTS FOR CONFORMAL STACKED WEATHER FORECASTING

Figure 3 and Tables 3 and 4 show the results for conformal stacked weather forecasting
(CSWF) using the cross-validation and sliding window procedures when making next-day
predictions. The results are given in terms of the error e and the width w of the predicted
regions for each of the five output weather variables: maximum temperature, minimum
temperature, average temperature, wind speed, and precipitation, at significance level € €
[0.0,1.0].

These results clearly show that the regions predicted in the case of cross validation are
(conservatively) valid. The width of the predicted regions varies; as expected, the widths of
the maximum temperature and minimum temperature are bigger than that of the averaged
temperature. In the case of sliding window, the predicted regions are almost valid. This
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Figure 1: MDS plot of weather forecasting diversity for next-day predictions.
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Figure 2: MDS plot of weather forecasting diversity for seven-day predictions.
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Figure 3: Error and width plots of CSWF predicting the next day based on cross validation
(left) and sliding window (right).

is eventually due to the fact that the exchangeability assumption does not always for the
data. The width of the predicted regions varies analogously to the case of cross validation.
Figure 4 and Tables 5 and 6 present the results of CSWF for seven-days prediction
based on the cross-validation and sliding window procedures. Similarly to the next-day
predictions, the regions are valid in the case of cross validation and almost valid in the case
of sliding window. For all output variables the predicted regions are larger than those of
next-day predictions which correspond to the larger error values observed in Table 2.

10
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Table 3: Errors and widths of the prediction regions of CSWF predicting the next day based
on cross validation.

e=0.01 e=0.05 e=0.1 €e=02 €e=0.3 e=04 e=05 e=0.6 e=0.7 e=08 e=09 e=1
e w e w e w e w | e | w elwl|lelw]|]e|lw|]e|lw|e|]w]|]el|w]|el|lw
Max. Temp. | 0.0 | 10.5 00| 7.3 | 01| 6.0 |02|45|03|35|04]28 22106 |1.7|07]13]08)|08|0.9]|04]10]0.0
Min. Temp. | 0.0 |125]0.0| 81 |01 ] 6.7 |02 |51]03|40]04|33|05|27|06]|21]07|16|08|1.0][09]05|1.0]|0.0
s
B

Av. Temp. | 00| 87 |0.1| 6.1 |01 | 50 |[02|38|03|30|04]24 5119(06|15]07|11]08|07{0.9|04]|1.0]|0.0
Wind speed | 0.0 | 22.8 | 0.0 | 13.7 | 0.1 | 106 | 02| 7.7 |03 | 6.1 |04|48|05(39|06|3.0|07]22[08|14|09|0.7]|10]0.0
Precipitation | 0.0 | 98.1 | 0.0 | 28.3 | 0.1 | 13.3 0.2 |3.8]03|09|04|02|0.5|0.0]05|00]05|00]|05|00]|05]0.0]10]|0.0

Table 4: Errors and widths of the prediction regions of CSWF predicting the next day based
on sliding window.

e=0.01 e=0.05 e=0.1 €e=0.2 e=03 e=04 e=0.5 €e=0.6 e=0.7 e=08 e=09 e=1

Max. Temp. | 0.0 | 10.7 01| 73 | 01| 6.1 |03 |45|04|35|05|27[06|22|07|17]08|12]08|08|09]|04]|10]0.0
Min. Temp. | 0.0 | 122 0.1 | 81 | 02| 6.7 | 0.3 |50|04|40|04|33|06|26|07]20]07|15|08|1.0]09]05|1.0]|0.0
Av. Temp. | 00| 89 |0.1| 6.1 |02] 50 |03]38]04]30[05|24]05|19]06|15|07|11]08]0.7[09|04]|10]0.0
‘Wind speed | 0.0 | 23.5 0.0 1390110702 78|03 |61|04|48]05|39]06|30|07|22[08|14|09|0.7]10]|0.0
Precipitation | 0.0 | 87.3 | 0.1 | 25.1 | 0.1 | 12.1 | 0.2 | 3.1 04| 0.7]0.5|0.1 0.5 |0.0]05|0.0]05|0.0|05]|00]05]0.0|1.0/|0.0

Table 5: Errors and widths of the prediction regions of CSWF predicting seven days ahead
based on cross validation.

e=10.01 e=0.05 e=0.1 e=0.2 e=0.3 e=04 e=0.5 €e=0.6 e=0.7 e=0.8 e=0.9 e=1
e w e w e w e w e w e | w e w e ) e w 2 w e w e w
Max. Temp. | 0.0 | 20.5 | 0.0 | 144|0.1|11.9 02| 91 | 03] 72 |[04|58]0.5|47|06]|36|0.7]27|08|18]09]09]10]|0.0
Min. Temp. | 0.0 | 19.7 | 0.0 | 13.7]0.1 | 11.1 02| 81 | 03| 64 |04 ]51]05|40|06|31|07(22]08]|14]09]0.7]|10]0.0
Av. Temp. [0.0]| 17.7 | 0.0 |120|0.1| 94 (02| 7.0 |03 | 54 [04|44]05|35|06|27]07]20|08|13[09]06]|1.0]0.0
‘Wind speed | 0.0 | 339 | 0.0 |21.3]0.1|172]02|129|03]103|04|83]05]|66]|06]|51|07]|36][08|24|09]|12]|10]0.0
Precipitation | 0.0 | 107.9 | 0.1 | 424 | 0.1 [21.2|0.2| 96 | 03| 59 | 04]39]05|21|06]|10]07]03]|08]|00]|08]|00]|10]0.0

Table 6: Errors and widths of the prediction regions of CSWF predicting seven days ahead
based on sliding window.

e=0.01 e=10.05 e=0.1 e=0.2 e=03 =04 e=0.5 e=0.6 e=0.7 e=0.8 e=0.9 e=1

e w e w e w e w e w e | w e w e w e | w e | w e w e | w
Max. Temp. | 0.0 | 19.8 | 0.1 | 13.7]0.2| 11403 | 88 |04 | 7.0 [0.5|56 |06 |45 |07 |35]07]26|08|1.7]09]09]|1.0]0.0
Min. Temp. | 0.0 | 18.6 | 0.1 | 13.1 |02 |105[03| 79 | 04| 63 |05 |51]06|40]06|31|07|22]08|14|09]0.7]|1.0]0.0
Av. Temp. |0.0| 17.0 | 0.1 |11.1]0.2| 9.1 | 03| 6.7 |04 | 53 |05 |43|06|34|07(26]07]19|08|13]09]06]1.0]0.0
‘Wind speed | 0.0 | 33.8 | 0.0 20.9]0.1|16.8|0.2|127|03|10.1|04|81]05|64|06]|49|07|35|08]|24|09]|12]|1.0]0.0
Precipitation | 0.0 | 102.3 | 0.1 | 36.5 | 0.2 | 179 ] 03| 84 |04 | 51 | 053106 |16]0.7|07|08]01]09]00|09]0.0]1.0]0.0

6.4. Discussion

The experiments clearly show that SWF significantly outperforms the weather forecast
domains it combines. As expected, the accuracy of both SWF and the forecasting domains
alike is lower for seven-day predictions than it is for next-day predictions. For CSWF the
results are less conclusive; although the prediction regions are valid or almost valid, their
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Figure 4: Error and width plots of CSWF predicting seven days ahead based on cross
validation (left) and sliding window (right).

width seems relatively high. Since we do not have access to the prediction confidence of
the chosen weather forecast domains, we cannot compare the region-width performance
and thus cannot derive any conclusions. A potential solution to this problem would be to
predict the error of the weather forecast domains based on the gathered data, and using
this information to build prediction intervals for these domains. While we would of course
have to assume some error, that would allow us to get an indication of the performance of
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CSWF compared to the chosen weather forecast domains. As this is not a trivial solution,
its potential remains to be explored in future research.

7. Conclusion

In this paper we have introduced the SWF method and CSWF method. They allow us to
aggregate the predictions from weather-forecasting domains into more accurate multi-output
predictions and to build prediction regions. The methods extend the aggregating procedures
of the ensemble methods for weather forecasting beyond averaging by allowing applicability
of any type of multi-output regression model. The SWF method and CSWF method do not
assume access to the prediction models they aggregate and, thus, demonstrate a general
stacking-based approach to boosting the generalization performance of any set of online-
prediction services, not limited to weather forecasting.

The experiments with the SWF method and CSWF method have shown the importance
of the multi-output predictors. While for the SWF method there is an impressive reper-
toire of predictors available such as deep neural networks (LeCun et al., 2015), elastic nets
(Zou and Hastie, 2005), etc., for the CSWF method there are no conformal multi-output
predictors that take into account the output-variable dependencies. This indicates a new
research direction in conformal prediction that definitely has to be pursued (in addition to
conformal multi-label classification (Papadopoulos, 2014)).
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