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Abstract

Transfer learning is focused on the reuse of supervised learning models in a new context.
Prominent applications can be found in robotics, image processing or web mining. In these
fields, the learning scenarios are naturally changing but often remain related to each other
motivating the reuse of existing supervised models. Current transfer learning methods are
not well suited and used for sparse and interpretable models. Sparsity is very desirable if the
methods have to be used in technically limited environments and interpretability is getting
more critical due to privacy regulations. In this work, we show how transfer learning can
be integrated into the sparse and interpretable probabilistic classification vector machine
and it is compared with different standard benchmarks in the field.

Keywords: Transfer Learning, Probabilistic Classification Vector Machine, Transfer Ker-
nel Learning

1. Introduction

Supervised learning and particular classification, is an important task in machine learning
with a broad range of applications (Bishop, 2009). The obtained models are used to predict
the target label of unlabeled test samples. In general it is assumed that the underlying
domain of interest is not changing between training and test samples. If the domain is
changing from one task to a related but different task one would like to reuse the available
learning model. Domain differences are quite common in real-world scenarios and may lead
to substantial performance drops (Weiss et al., 2016).

A practical example is the classification of web pages. In one domain the classifier
is trained on university web pages with a word distribution according to universities and
in the test scenario the domain has changed to non-university web pages where the word
distribution may not be similar to the training distribution. One aim of transfer learning
is it to solve the divergence in distribution (Pan and Yang, 2010).

Multiple transfer learning methods have been already proposed, following different
strategies and solving various problems (Weiss et al., 2016; Pan and Yang, 2010). In this
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paper we focus on sparse models which are not yet covered sufficiently by transfer learning
approaches.

The probabilistic classification vector machine (PCVM) (Chen et al., 2009) is a sparse
probabilistic kernel classifier, pruning unused basis functions during training. The PCVM
is a very successful classification algorithm (Chen et al., 2009; Schleif et al., 2015) with
competitive performance to Support Vector Machine (SVM) (Cortes and Vapnik, 1995), but
is additionally natural sparse and creates interpretable models as needed in many application
domains of transfer learning. The original PCVM is not well suited for transfer learning.

To tackle this issue, we will extend the probabilistic classification vector machine with
transfer learning through integration of a transfer kernel approach and solve the resulting
problem of parameter determination through a heuristic estimation. The proposed solution
is tested against other commonly used transfer learning approaches and data.

Subsequently we introduce the used algorithmic concepts in Sec 3 followed by an ex-
perimental part in Sec 4, addressing the classification performance and the sparsity of the
model. A summary and open issues are provided in the conclusion at the end of the paper.

2. Methods

2.1. Probabilistic Classification Vector Learning

Probabilistic Classification Vector Machine (PCVM) (Chen et al., 2009) uses a probabilistic
kernel regression model:

l(x; w, b) = Ψ

(
N∑
i=1

wiφi(x) + b

)
= Ψ

(
Φ(x)>w + b

)
(1)

With a link function Ψ(·), with wi being the weights of the basis functions φi(x) and b
as bias term. In PCVM the basis functions φi are defined explicitly as part of the model
design. In (1) the standard kernel trick can be applied. The implementation of PCVM
(Chen et al., 2009) use the probit link function, i. e.:

Ψ(x) =

∫ x

−∞
N (t|0, 1)dt (2)

Where Ψ(x) is the cumulative distribution of the normal distribution N (0, 1). Chen et al.
(2009) use the Expectation-Maximization algorithm for learning the model. The under-
lying optimization framework within EM, prunes unused basis functions and, therefore, is
a sparse probabilistic learning machine. In PCVM we will use the standard RBF-kernel
with a Gaussian width θ. In (Schleif et al., 2015) a PCVM with linear costs was suggested,
which makes use of the Nyström approximation, a technique also used in the subsequently
proposed transfer learning PCVM. Further details can be found in (Chen et al., 2009) and
(Schleif et al., 2015)

2.2. Transfer learning

Transfer learning is the task of reusing information or trained models in one domain to help
to learn a target predictive function in a different domain of interest (Pan and Yang, 2010).
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This difference in training or testing data and tasks is formalized as (Weiss et al., 2016):
Let D be a domain, composed by samples xi with xi ∈ XD, i ∈ [1, . . . , N ], where N is the
number of samples and XD ⊆ F is a D-dimensional feature space. We introduce the short
cut FX to refer to the feature space XD sampled from F . Further, we consider a marginal
probability distribution P (X), using a data matrix X sampled from XD. Formally, this
means D = {F , P (X)}. In general, if two domains X and Z are different, they either have
different feature spaces FZ 6= FX , called Heterogeneous Transfer , or different marginal dis-
tributions P (X) 6= P(Z) referred as Homogeneous Transfer. In each of these cases transfer
learning is needed to obtain optimal prediction models.
The issue of different distributions is illustrated in Figure 1. In Figure 1a a traditional
problem with similar source and target probability distributions is shown. The Figure 1b
shows the problem of transfer learning where conditional and marginal probability distri-
butions are different. The blue and green colors are representing two classes. From these
classes, training and testing sets are sampled. Moreover, Figure 1b shows the problem with
two domains.
A task T refers to a decision problem involving a given domain D, a label set Y, for example
Y = {−1,+1} (binary classification), and a parametric decision function f(·) defined on
D using Y. The number of possible classes is denoted by C. In case of the PCVM it is
given by f(x) = Φ(x)>w + b. It is formalized by T = {Y, f(·)} with y ∈ Y. The vector y
represent the (predicted) labels for all data points regarding the label set Y. The function
f(·) is a predictive function to make predictions for unseen examples, i. e. new data points
x. From a probabilistic viewpoint, we can interpret f(x) as P (y | x). In general, two tasks
TX and TZ are different if they have varying conditional probability distributions or label
spaces, which means YX 6= YZ ∨ P (y | x) 6= P (y | z), called task transfer learning.

(a) (b)

Figure 1: Comparison of distributions for two classes (indicated by blue/green or
dark/bright coloring) in the traditional (left) and the transfer learning concept (right). The
left shows one domain where the classes are similarly distributed. The right figure shows two
different domains with different marginal and conditional probability distributions. Axis
labeling is arbitrary. Best viewed in color.
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2.3. Related Work

Following the aforementioned scenarios of transfer learning, a variety of solutions have been
proposed. One may distinguish roughly five approaches, which are trying to solve the
homogeneous transfer problem: Instance-transfer, symmetric-feature transfer, asymmetric-
feature transfer, relational-knowledge transfer and parameter transfer (Weiss et al., 2016),
here we briefly discuss the first three techniques, while the remaining ones are addressed
later on in the proposed approach.

The instance transfer method tries to align the marginal distribution by re-weighting
some source data. This re-weighted data is then directly used with target data for training.
It seems that these type of algorithm works best when the conditional probability is the
same in source and the target domain and only aligns marginal distribution divergences
(Weiss et al., 2016). An example, called TrAdaBoost, is given in Dai et al. (2007b).

Approaches implementing the symmetric feature transfer are trying to find a common
latent subspace for source and target domain with the goal to reduce the marginal distribu-
tion differences, such that the underlying structure of the data is preserved in the subspace.
An example of a symmetric feature space transfer method is the Transfer Component Anal-
ysis (TCA) (Pan et al., 2011; Weiss et al., 2016). Another example is Geodesic Flow Kernel
(GFK), which finds a particular subspace by projecting original data into a Grassmannian
manifold and applying the kernel trick (Gong et al., 2012).

The asymmetric feature transfer learning approach tries to transform the source domain
data in the target (subspace) domain. This should be done in a way that the transformed
source data will match the target distribution. In comparison to the symmetric feature
transfer approaches, there will be no shared subspace, but only the target space. An
example is given by the Joint Distribution Adaptation (JDA) algorithm (Long et al., 2015;
Weiss et al., 2016).
All the considered methods have approximately a complexity of O(N2) where N is the
largest number of samples concerning test or training (Long et al., 2013; Pan et al., 2011;
Gong et al., 2012).

The algorithms GFK, JDA and TCA doing transductive transfer learning (Pan and
Yang, 2010), meaning they need unlabeled target data at training time. The TrAdaBoost
approach needs a very small amount of labeled target data and, therefore, is doing inductive
transfer learning (Pan and Yang, 2010).

The mentioned solutions do not take the label information into account in solving the
transfer learning problem, e. g. to find new feature representations. These solutions can not
be directly used as predictors, but rather are wrappers for classification algorithms. The
baseline classifier is most often the Support Vector Machine (SVM).

3. Probabilistic Classification Vector Machine with transfer learning

According to (Chen et al., 2009), the SVM has some drawbacks, mainly a rather dense
decision function (also in case of so called sparse SVM techniques) and a lack of a math-
ematically sound probabilistic formulation. The PCVM addressed this issues providing a
competitive sparse and probabilistic classification function (Chen et al., 2009). This was
the original motivation to expand PCVM by transfer learning.
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The proposed transfer learning solution is the Probabilistic Classification Transfer Ker-
nel Vector machine (PCTKVM). It combines the Transfer Kernel Learning concept (TKL)
(Long et al., 2015) and the PCVM formulation (Chen et al., 2009) or the respective Nyström
approximated version (Schleif et al., 2015).

The main idea in TKL is to approximate the kernel of the training set with the kernel
of the test set via the Nyström kernel approximation (Long et al., 2015). We will adopt
this concept in PCTKVM.

3.1. Nyström Approximation

The Nyström Method originally aims at solving eigenvalue equation and was first used
in machine learning to approximate a kernel matrix (Williams and Seeger, 2001). The
approximation is performed by sampling1 M observations (landmarks) from kernel matrix
K. This kernel is obtained by evaluating the respective kernel function for the considered
data points. An approximated kernel matrix K̃ is achieved by solving:

K̃ = KN,M (KM,M )−1KM,N (3)

With KN,M being a sub-matrix of K using all N rows and M landmark columns. The
approximation is exact if the original kernel matrix K has rank M and the samples are
linearly independent columns from the kernel matrix.

3.2. Domain Invariant Kernel Learning

TKL calculates the kernel evaluations of the training dataset using a Nyström approxima-
tion of the test data and the respective kernel expansion to new data points. It can be seen
as Relational-Knowledge-Transfer solution. The primary challenge is to find eigenvalues
such that the difference between the approximation and the ground truth kernel of the
training data is minimal. This forms a domain invariant kernel for transfer learning (Long
et al., 2015). Let Z = {z1, . . . , zN} be training data, sampled from p(Z) in the training
domain Z and X = {x1, . . . ,xM} a test dataset sampled from p(X) in the test domain
X , we obtain the associated kernel matrices KZ for training and KX for testing, using an
appropriate kernel function (e. g. the rbf-kernel). For the sake of clarity, we define the
kernel over training and testing data as:

KA =

[
KZ KZX
KXZ KX

]
(4)

With KZ for training, KX for testing and KZX = KT
XZ as cross-domain kernel between

domains. Given a kernel KX , using the eigensystem {λi, φi(x)} the kernel can be evaluated
for any new data point z and finally generating the kernel KZ using a kernel expansion as
discussed, e. g. in Williams and Seeger (2001). Again the training kernel is approximated
via the Nyström approach (Long et al., 2015):

KZ ' UZΛXUT
Z = KZXK−1X KXZ (5)

1. Advanced selection concepts are given in Kumar et al. (2012), however, this is not crucial in our approach.
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Where UZ are eigenvectors of the training kernel and ΛX as eigenvalues of the test kernel.
Revisiting, the original Nyström approximation samples some landmarks from the original
kernel to obtain KX . The Transfer Kernel Learning approach uses all target data as
landmarks and, therefore, the number of landmarks for KX is naturally M .
A remaining problem is the difference between test and training feature space probability
distributions. This means that if p(X) 6= p(Z), the error of the approximation from Eq.
(5) can be arbitrarily large (Long et al., 2015). The main improvement done by Long et
al. is to solve this problem and to learn the domain invariant approximated kernel K̄A, by
remodeling the eigenvalues based on an error minimization with the assumption that it is
sufficient that KZ ' KX instead of p(Z) ' p(X) (Long et al., 2015).
However, another potential problem could be the different number of samples in the two
domains: KZ ∈ RN×N and KX ∈ RM×M with N 6= M . Therefore the approximated (by
Long extrapolated) source kernel must be K̄Z ∈ RN×N , by using the eigensystem of the
target kernel KX . The kernel K̄Z will be compared to the actual training kernel KZ(Long
et al., 2015). To extrapolate the kernel, first, the eigenvectors have to be extrapolated :
(Long et al., 2015)

ŪZ ' KZXUXΛ−1X . (6)

In the approach of Long et al. (2015), a relaxation of the eigenvalues is done by consid-
ering the eigenvalues as learnable parameters Λ = diag[λ1, . . . , λM ]. Therefore the kernel
extrapolation can be expressed as: (Long et al., 2015) K̄Z = ŪZΛŪT

Z . Hence, some Λ does
not necessarily reduce the distribution difference and has to be well chosen. This approach
should preserve the original structure of the test domain while remaining flexible to solve
the difference in the distributions. The optimization problem with respect to Λ is given as
(Long et al., 2015):

min
Λ
||K̄Z −KZ ||2F = ||ŪZΛŪT

Z −KZ ||2F

λi ≥ ζλi+1, i = 1, . . . ,M − 1 λi ≥ 0, i = 0, . . . ,M
(7)

With ζ ≥ 1 the eigenspectrum dumping factor. The obtained kernel can be used in any
kernel machine. The complexity of the TKL algorithm can be given with O((D +R)(N +
M)2), where R denotes the number of used eigenvectors, D refers to the dimensionality of
data.(Long et al., 2015).

3.3. PCTKVM Algorithm

By using the TKL approach we obtain a new kernel usable in PCVM. In the training of the
PCVM, we are using the extrapolated training kernel: K̄Z = ŪZΛŪT

Z .
In general an rbf-kernel with in-place optimized distribution-width parameter θ is used in
PCVM. Accordingly, a simple replacement of the standard rbf-kernel by a rbf-kernel ob-
tained with TKL can be inefficient. In PCVM the kernel is recalculated in each iteration,
based on the optimized θ from the previous iteration. Consequently, we would have to
recalculate the entire transfer kernel too. The complexity of the standard PCVM is O(K3)
with K as number of basis functions and K = N at the beginning of the training and before
pruning basis functions. The complexity of TKL is O((D +R)(N +M)2). Combining the
two, we would end up with a computational complexity of O(N3(D +R)(N +M)2).
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The performance of the PCTKVM strongly depends on the quality of θ, hence some rea-
sonable θ optimization is needed. A simple optimization, e. g. every ten iterations, was
found to be insufficient. Having θ fixed could solve the problem, given a reasonable θ can
be found.
To achieve this, we use the approach given in Kitayama and Yamazaki (2011). It is a
heuristic based on a distance measure to obtain the width for the kernel. It can determine
a good width by iterating and min-max -rescaling until some criterion is reached.

The PCVM makes the assumption of zero-mean Gaussian distributed data to ensure that
the underlying sparsification approach remains valid. To ensure this, the data are typically
normalized by a z-score transformation prior learning. To keep this model assumption,
we replaced the min-max -scaling with z -score scaling in the θ estimation approach. As a
consequence, only an initial scaling is necessary and the iterative algorithm of Kitayama
and Yamazaki (2011) reduces to a simple minimum search:

θi =
di,max√

D D
√

(N +M)− 1
, i = 1, . . . , (N +M) (8)

with D as the dimensionality of the data and dj,max is the maximum (Euclidean)-distance
between the i-th data point and each other. Using this simplifications we end up with a
complexity of O(N3 + (D + R)(N + M)2). Considering D and R as constant we obtain
O(N3+M2) for the PCTKVM with a fixed theta. The PCTKVM is presented in Algorithm
1. Predictions are made using the PCVM predictive function but with the use of K̄XZ =
UXΛŪT

Z as kernel for test data, pointed out by Long et al. (2015). However, in case of the

Algorithm 1 Probabilistic Classification Transfer Kernel Vector Machine

Require: K = [Z; X] as M sized training and N sized test set; Y as N sized training label
vector; kernel(-type) ker ; eigen-spectrum dumping factor ζ; θ as kernel parameter.

Ensure: Weight Vector w; bias b, kernel parameter θ; transfer kernel K̄A.
1: D = calculate dissimilarity matrix(K);
2: θ = theta estimation(D); . According to eq. (8)
3: K̄A = transfer kernel Learning(D,ker,θ,ζ); . According to (3.2)
4: [w,b] = pcvm training(K̄Z); . According to Chen et al. (2009)

SVM as baseline classifier, the kernel with size N×M is used and restricted to the respective
support vectors. The predictive function for the SVM has the form y = K̄XZ(α · yZ) + b,
where α are the Lagrange multipliers (Long et al., 2015).
Because of the sparsity of the PCVM the number of basis functions used in the decision
function is typically small2. If we consider that our model has S non zero weight vectors
with S � N and because the PCVM uses only kernel rows/columns corresponding to the
non zero weight vector index, then our final kernel K̄SX for prediction has size (S ×M).
Therefore, the predictive function of the PCTKVM has the form: y = K̄SXw + b. The
probabilistic output is calculated with the probit link function used in the PCVM.

2. The decision function may be constructed from e. g. 10 samples only.
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4. Experiments

We follow the experimental design which is typical for transfer learning algorithms (Long
et al., 2015; Gong et al., 2012; Long et al., 2013; Pan and Yang, 2010). A crucial char-
acteristic of the datasets for transfer learning is that domains for training and testing are
different but related. This relation exists because the train and test classes have the same
top category or source. The classes itself are subcategories or subsets.

4.1. Benchmark Datasets

The study consists of 18 benchmark datasets, already preprocessed and taken from Gong
et al. (2012) and Long et al. (2015).
Three of them are text-based from Reuters-215783 and are a collection of Reuters news-
wire articles collected in 1987. The text is converted to lower case, words are stemmed and
stopwords are removed. With the Document Frequency (DF)-Threshold of 3, the numbers
of features are cut down. Finally, Term-Frequency Inverse-Document-Frequency (TFIDF)
is applied for feature generation (Dai et al., 2007a). The three top categories organization
(orgs), places and people are used in our experiment.
To create a transfer problem, a classifier is not tested with the same categories as it is trained
on, i. e. it is trained on some subcategories of organization and people and tested on others.
Therefore, six datasets are used: orgs vs. places, orgs vs. people, people vs. places, places
vs. orgs, people vs. places and places vs. people. There are two-class problems with the
top categories as positive and negative class and with subcategories as training and testing
examples. The choice of subcategories is the same as in Long et al. (2015). To reproduce
the results below one should use the linked version of the Reuters dataset.
The remaining twelve are images datasets from Caltech-2564 and Office. The first, Caltech
(C ) is the largest dataset of images and contains 30607 images within 257 categories. The
last is a collection of images drawn from three sources which are from amazon (A), dig-
ital SLR camera dslr and webcam (W). They vary regarding camera, light situation and
size, but having 31 object categories, e. g. computer or printer, in common. Duplicates
are removed, as well as images which have more than 15 similar Scale Invariant Feature
Transform (SIFT) in common.
To get an overall collection of the four image sets, which are considered as domains, cate-
gories with the same description are taken. From the 31 and 256 categories, ten similar cat-
egories are extracted: backpack, touring-bike, calculator, head-phones, computer-keyboard,
laptop-101, computer-monitor, computer-mouse, coffee-mug and projector. They are the
class labels from one to ten.
With this, a classifier should be trained on the training domain, e. g. on projector images
(Class One) from amazon (Domain A), and should be able to classify the test image to the
corresponding image category, e. g. projector (Class One) images from Caltech (Domain
C) against other image types like head-phones (Class Two). The final feature extraction
is done with Speeded Up Robust Features Extraction (SURF) and encoded with 800-bin
histograms. Finally, the twelve sets are designed to be trained and tested against each other
by the ten labels (Gong et al., 2012).

3. http://www.daviddlewis.com/resources/testcollections/reuters21578
4. http://www.vision.caltech.edu/Image Datasets/Caltech256/
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Name #Examples 1 #Examples 2 #Features # Labels

Caltech vs. Amazon
1123

958
800 10Caltech vs. DSLR 295

Caltech vs. Webcam 157

Orgs vs. People 1237 1208
4771 2Orgs vs. Places 1208 1016

People vs. Places 1016 1208

Table 1: Overview of the key figures of the Image dataset.

A summary of all datasets is shown in Table 1. Regardless of the dataset, features have
been normalized to standard mean and variance. The samples for training and testing the
classifiers are drawn with five times two-fold cross-validation suggested by Alpaydm (1999).
Furthermore, following a scheme of data sampling adapted to transfer learning as suggested
in Gong et al. (2012).

4.2. Details of Implementation

Most of the algorithms used in the comparisons employ the SVM algorithm and the rbf-
kernel as mentioned before. The GFK algorithm is an exception and is using the k nearest
neighbor classifier. The LibSVM implementation is used for TCA, GFK, JDA and TKL,
employing the respective pre-calculated kernel, with C = 10. For PCVM the maximal num-
ber of iterations is set to 600 as a common choice. PCTKVM5 and TKL have the eigenvalue
dumping factor ξ as a crucial parameter, which was set to 2 for the text datasets and 1.1
for the image datasets. C and ξ are not optimized via grid search and taken from Long
et al. (2015).
The remaining parameters are optimized on the training data sets with respect to best per-
formance on it: JDA has two model parameters. First the number of subspace bases
k, which is set to 100 and found via grid-search from k = {1, 2, 5, 10, 20, ..., 100, 200}.
The regularization parameter λ is set to 1 for both sets, determined by a grid search
(λ = {0.1, 0.2, 1, 2, 5, ..., 10}) (Long et al., 2015).
For the GFK solution the parameter, number of subspace dimensions, is evaluated by a
grid-search from k = {1, 2, 5, 10, 20, ..., 100, 200} within the training data and finally set for
the text sets to 40 and to 50 for the image sets.
The TCA has also one parameter which gives the subspace dimensions and is determined
from µ = {1, 2, 5, 10, 20, ..., 100, 200} and finally set to µ = 50 for both datasets.

4.3. Comparison of Performance

Experimental results are shown in Table 2 as mean errors from a 10-fold cross-validation
over 18 datasets, which are in total 180 test runs. The standard deviation is shown in brack-

5. Matlab code of PCTKVM and datasets can be obtained from https://github.com/ChristophRaab/

pctkvm.git
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Error Image
2 Domains - 10 Classes

SVM PCVM PCTKVM TCA JDA GFK TKL

C vs A 52.38 (2.30) 61.77 (2.04) 57.35 (2.88) 53.11 (3.28) 53.32 (3.00) 63.68 (3.49) 53.70 (1.72)
C vs D 57.45 (5.03) 64.33 (5.19) 56.69 (5.05) 63.44 (4.45) 58.72 (4.31) 65.21 (4.94) 57.71 (4.21)
C vs W 66.70 (4.25) 71.46 (4.21) 63.72 (6.57) 70.30 (5.11) 64.76 (6.34) 73.22 (2.27) 63.52(2.35)
A vs C 59.54 (2.61) 65.24 (2.14) 61.91 (2.27) 58.66 (2.12) 58.90 (1.33) 66.20 (1.44) 58.70(2.21)
A vs D 66.90 (4.86) 70.86 (5.71) 63.82 (4.09) 64.33 (4.34) 62.33 (6.85) 72.25 (4.08) 60.90 (5.10)
A vs W 69.51 (1.91) 70.91 (2.59) 66.67 (5.05) 69.44 (4.25) 67.34 (2.42) 76.01 (2.07) 64.29 (2.94)
D vs C 75.41 (1.13) 78.15 (2.05) 74.07 (3.09) 71.83 (1.78) 72.38 (2.04) 72.47 (2.38) 70.94 (2.52)
D vs A 73.63 (1.61) 77.06 (2.52) 74.03 (2.47) 68.93 (2.97) 66.99 (2.68) 71.25 (2.34) 70.39 (2.73)
D vs W 45.77 (2.97) 64.54 (5.35) 47.46 (4.74) 32.81 (3.87) 36.07 (2.84) 36.34 (4.83) 32.47(4.55)
W vs C 73.86 (1.52) 76.49 (1.76) 74.14 (2.79) 68.44 (1.63) 74.07 (1.63) 74.64 (1.39) 68.51 (1.81)
W vs A 71.84 (1.24) 73.07 (1.69) 71.07 (2.92) 66.28 (1.53) 72.13 (1.55) 71.27 (2.24) 68.08 (1.45)
W vs D 25.10 (3.60) 43.69 (4.96) 40.76 (3.04) 27.13 (4.61) 25.61 (3.83) 28.29 (4.01) 29.81 (5.20)

RMSE 63.11 (3.06) 68.72 (3.68) 63.47(3.96) 61.23 (3.55) 61.06 (3.67) 65.92 (3.19) 59.72 (3.32)

Error Image
2 Domains - 2 Classes

SVM PCVM PCTKVM TCA JDA GFK TKL

Orgs vs People 23.01 (1.58) 26.77 (3.18) 20.45 (1.95) 22.78 (3.14) 24.88 (2.61) 26.95 (2.65) 19.29 (1.73)
People vs Orgs 21.07 (1.72) 27.77 (2.19) 14.05 (8.68) 19.68 (2.00) 23.23 (1.93) 28.23 (2.46) 12.76 (1.16)
Orgs vs Places 30.62 (2.22) 33.42 (6.10) 23.78 (2.26) 28.38 (3.00) 28.30 (1.51) 33.46 (1.83) 22.84 (1.62)
Places vs Orgs 35.45 (2.24) 35.49 (8.19) 27.62 (2.66) 32.42 (3.91) 35.37 (4.39) 35.73 (2.69) 18.33 (3.75)

Places vs People 39.68 (2.35) 41.01 (6.98) 29.71 (5.03) 40.58 (4.11) 42.41 (2.59) 40.24 (4.37) 29.55 (1.46)
People vs Places 41.08 (1.98) 40.69 (5.52) 41.08 (1.33) 41.39 (3.26) 43.51 (2.23) 42.56 (2.46) 33.42 (3.28)

RMSE 32.74 (2.03) 34.65 (4.44) 27.43 (3.47) 31.94 (3.31) 33.92 (2.70) 35.00 (2.85) 23.74 (2.38)

Table 2: Cross-validation comparison of the tested algorithms on 18 domain adaptation
datasets by the error and RMSE metrics. Twelve image sets with ten classes each and six
text sets with two classes each. Each dataset has two domains. It demonstrates mean of ten
runs of cross-validation per dataset with the standard deviation in brackets. The winner is
marked with a bold performance value.

ets. The results are shown for Image and Reuters individually. The proposed PCTKVM
classifiers is shown in the fourth column. The performance of the best classifier is indicated
in bold. In Figure 2, a graph of mean performance and the standard deviation is plotted.
In general, and according to the definition of negative transfer from Weiss et al. (2016),
it can be seen that negative transfer happens between the baseline SVM and the transfer
solution GFK.

We can see that PCTKVM achieves an overall better performance result than PCVM
in this test. Furthermore, PCTKVM can achieve better performance at text sets than the
remaining transfer learning solutions, except TKL, and SVM. The performance of the new
PCVM’s at image datasets is comparable with the result of SVM, which is also observable in
Figure 2b. Nevertheless the other transfer learning solutions are not remarkably better than
SVM. Additionally, we can see that the SVM baseliner has an overall better performance
than the PCVM baseliner.
It seems that the SVM can handle very small datasets better than the PCVM in this
setup. But, again referring to the detailed test results, it states that the PCTKVM is often
the second best classifier. The PCTKVM is very competitive to other transfer learning
classifiers. The fact that all PCVM’s are randomly initialized is not critical because we
can observe that the standard deviation is not much higher in comparison with the other
classifiers form Table 2.
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(a) (b)

Figure 2: Plot of mean error with standard deviation of the cross-validation test. The left
shows the result on Reuters and the right shows the result on images. A graph shows the
error and a vertical bar shows the standard deviation. The number (No.) of datasets are
the order of datasets in Table 2. Best viewed in color.

4.4. Comparison of Model Complexity

We measured the model complexity by means of the number of model vectors, e. g. support
vectors. The result of our experiment is shown in Table 3. We see that the transfer learning
models of the PCTKVM provide very sparse models, while having similar good performance
as shown in Table 2. The difference in the number of model vectors is significant. The dif-
ference in model complexity is exemplary shown in Figure 3. It shows a sample result of
classification of PCTKVM and SVM on the text dataset orgs vs people with the settings
from above, but without bootstrapping. The error value of the first is 22% with two model
vectors and for SVM 21% with 626 support vectors.
This clearly demonstrates the strength of the PCTKVM in comparison with SVM based
transfer learning solutions. PCTKVM achieves sustain performance by a small model com-
plexity and provides a way to interpret the model. Note that the algorithms are trained
in the original feature space and the models are plotted in a reduced space, using the t-
distributed stochastic neighbor embedding algorithm (van der Maaten and Hinton, 2008).
In summary, the PCTKVM is a preferable choice, because it is similar to other transfer
approaches in terms of prediction performance, but is natural sparse, creates interpretable
models and produces reliable probabilistic output. Additionally, the improvement in perfor-
mance from PCVM to PCTKVM is great, which reaffirms the quality of PCVM as baseline
classifier and TKL as transfer-learning wrapper.
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N. SV. SVM PCVM PCTKVM TCA JDA TKL

Reuters(1153.66) 482.35 46.93 3.02 182.70 220.28 190.73
Image(633.25) 309.90 68.40 54.88 253.30 287.433 382.53

Table 3: Average mean of model vectors of a classifier for Reuters and Image datasets. The
average number of examples in the datasets are shown on the right side of the title.

(a) (b)

Figure 3: Sample run on Orgs vs People (Text dataset). Red colors for the class orgs and
blue for the class people. This plot includes training and testing data. Model complexity of
PCTKVM on the left and SVM on the right. The PCTKVM uses two vectors and achieves
an error of 22%. The SVM need 626 vectors and has an error of 21%. The black circled
points are used model vectors. Reduced with t-SNE (van der Maaten and Hinton, 2008).
Best viewed in color.
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5. Conclusions

We successfully integrated a proposed transfer learning algorithm in the PCVM, which forms
the PCTKVM. We do so by separating the transfer learning as unsupervised wrapper algo-
rithm and using the PCVM as supervised classification algorithm. In the experiments it is
shown that this strategy is efficient within the PCVM framework and the sparsity proper-
ties are kept. Furthermore, we solved the problem that the algorithm will be slow through
the θ optimization by adopting a simple theta estimation and adjusted it to the needs of
the PCVM. Because it uses unlabeled target data, the algorithm is transductive. The pro-
posed solution solves the homogeneous transfer problem, by providing sparse, probabilistic
models. Summarizing, we showed the efficiency of PCTKVM in an experiment with 18
datasets. Furthermore, our approach can compete with current transfer learning solutions
and is only beaten by one method. To our best knowledge and according to Weiss et al.
(2016), PCTKVM is the only sparse and general probabilistic transfer learning method
proposed so far. The above facts make the prediction quality of the PCTKVM charming.
In future work, it would be of interesting to apply this method in practical applications like
robotics and to derive a better θ-estimation.
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