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Abstract

This note explains how conformal predictive distributions can be used for the purpose of
decision-making. Namely, a major limitation of conformal predictive distributions is that,
at this time, they are only applicable to regression problems, where the label is a real
number; however, this does not prevent them from being used in a general problem of
decision making. The resulting methodology of conformal predictive decision making is
illustrated on a small benchmark data set. Our main theoretical observation is that there
exists an asymptotically efficient predictive decision-making system which can be obtained
by using our methodology (and therefore, satisfying the standard property of validity).
Keywords: Conformal prediction, decision making, predictive distributions, regression.

1. Introduction

Conformal predictive distributions were introduced in Vovk et al. (2017) as result of com-
bining the notion of predictive distributions (Schweder and Hjort, 2016, Chapter 12, and
Shen et al., 2018) with the method of conformal prediction (Vovk et al., 2005). This note
shows how they can be applied in decision making. Since conformal prediction satisfies the
standard property of validity, our methods will lead to efficient decisions when applied to
prediction algorithms with good resolution (even if they are miscalibrated).

Let X and Y be fixed non-empty measurable spaces; we will call them the object and
label spaces, respectively. The Cartesian product Z := X x Y is the observation space.
Suppose we are given a training sequence zi,...,z, of observations z; = (x;,y;) € Z. In
this note we discuss the following decision problem: given an object x € X and a set D of
available decisions, choose the best decision d € D for that object. A major limitation of
conformal predictive distributions, defined in Section 2, is that at this time they only solve
the problem of probabilistic regression, where labels are real numbers. The purpose of this
note is to explain that they are still applicable to our decision problem.

2. Conformal predictive distributions

In this section we define conformal predictive distributions following Vovk et al. (2017).
We let Uy stand for the uniform probability measure on the interval [0,1] and consider
the real line R as the label space. A function @ : (X x R)"*! x [0,1] — [0,1], where
n € N:={1,2,...} is a natural number, is called a randomized predictive system if:
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Rla For each training sequence (z1,...,2,) € (X x R)” and each test object x € X, the
function Q(z1,. .., 2zn, (x,y),T) is monotonically increasing both in y and in 7.

R1b For each training sequence (z1,...,2,) € (X x R)"™ and each test object x € X,
lim Q(z1,...,2n,(z,y),0) =0,
y——00

lim Q(z1,...,2n, (x,y),1) = 1.

Y—00

(1)

R2 For any probability measure P on X x R, the distribution of @) (as function of random
training observations z; ~ P,..., 2, ~ P, a random test observation z ~ P, and a
random number 7 ~ U 1, all assumed independent) is uniform:

Va € [0,1] : P{Q(z1,...,2n,2,7) < a} = a.

A conformity measure is a measurable function A : (X x R)"*! — R that is invariant with
respect to permutations of the first n observations: for any sequence (z1, ..., 2,) € (XxR)",
any z € X X R, and any permutation 7 of {1,...,n},

A(z1y .. y2n,2) = A (zw(l), .. .,zﬂ(n),z) )

The conformal transducer determined by a conformity measure A is defined as

1
Q(Zla"'azna(x’y)vT) = T—HHZ: ]-a--'vn | O[;V'J <ay}’

T T
b =1,... Y=a¥ 2

togHi=1l.onfaf = a4+ =, (2)

where (21,...,2,) € (X x R)" is a training sequence, 2 € X is a test object, and for each

y € R the corresponding conformity scores o and o¥ are defined by

af = Az1, .-, zim1, (T,Y), Zigk1s - - - 20 20),s i=1,...,n,

o¥ = A(z1, ..., 20, (2,9)).

A function is a conformal transducer if it is the conformal transducer determined by some
conformity measure. A conformal predictive system is a function which is both a conformal
transducer and a randomized predictive system. We will also use the same terminology
(randomized and conformal predictive systems, etc.) in the situation where n ranges over
the natural numbers N; e.g., a family (Q)neny of randomized predictive systems @, :
(X x R)™ 1 x [0,1] — [0,1] will also be referred to as a randomized predictive system.

A conformal predictive distribution (CPD) is (2) considered as a function of y, for a
conformal predictive system (). Property Rla ensures that this function is increasing, which
is one of the defining properties of distribution functions. Property R1b says that it changes
essentially from 0 to 1 as y increases from —oo to oo, which is another defining property.
Property R2 is the main property of validity for conformal predictive systems, which is
satisfied automatically (Vovk et al., 2005). The last argument 7 in Q(z1,. .., 2n, (z,¥),T)
does not affect the value of () much but still makes the property of validity R2 possible. In
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the terminology of Vovk et al. (2017), the thickness of (2) is typically 1/(n + 1), meaning
that (2) does not change by more than 1/(n + 1) when 7 ranges over [0, 1] unless y is one
of a finite number of points.

The following lemma gives a simple property of CPDs allowing us to integrate over them
efficiently.

Lemma 1 Any CPD
Q" (y) == Q(z1,...,zn, (,¥),7) 3)

s a piecewise constant function that has at most 2n points of discontinuity.

Proof Since Q(z1,...,2n,(z,y),7) is a convex mixture of Q(z1,...,2n,(z,y),0) and
Q(Zl, ) (1’, y)7 1)7 namelya

Q(Zb <y Rmy (l‘,y),’f) = (1 - T)Q(Zh <y Rmy (.ﬁ,y),())
+TQ(21,...,Z7L,(33,Q),1),

it suffices to prove that Q(z1,...,zn, (x,-),0) and Q(z1,..., 2z, (x,-),1) are piecewise con-
stant functions that have at most n points of discontinuity. Let us consider, for concreteness,
Q(z1,...,2n, (x,-),0). By definition (cf. (2)), this function is monotonically increasing and
takes values in the set {0,1/(n+1),...,n/(n + 1)}; therefore, it is piecewise constant and
has at most n jumps. |

For any function f: R — R, we define the integral

/ FW)Qs s 2y (,dy), 7) = / fAQ = Y f)AQ W), (4)
y:AQ* (y)#0

where AQ*(y) := Q*(y+) — Q*(y—) is the jump of the CPD Q*, as defined by (3), at y; by
Lemma 1, the sum in (4) is finite.

3. The standard problem of decision making

In the rest of this note, with each label y € Y and each decision d € D we associate
a von Neumann—Morgenstern utility U(y,d). Formally, we are given a utility function
U:Y xD — R, which will always be assumed measurable. We will assume that the
decision space is finite, |D| < oco.

Remark 2 This note’s definitions and results can be extended to the case where U depends,
additionally, on the object z, so that U becomes a function of three variables, x € X, y € Y,
and d € D. However, this would require an extension of a result (Vovk, 2017, Theorem 3)
that we will need in the proof of Theorem 3 below. Moreover, in applications, U = U(y, d)
does not usually depend on the object x.

We will need a stronger version of condition R1b: namely, in addition to (1), we will
assume

. 1
ygglooQ(Zh” . 7Zna($7y)71) - n—+ 17 (5)

. n
yll{:goQ(zlv" . 7zn7(m>y)70) = n 4+ 1
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Algorithm 1: Conformal predictive decision making

Data: a training sequence (x;,y;) € Z, i =1,...,n, and a test object = € X.
for d € D do
create a new training sequence (z;,U(y;,d)), i =1,...,n;
find the CPD @} by (8) from this training sequence;
compute the utility of d as [ uQ%(du)
end
return a d € D with the largest utility

This condition is usually satisfied: consider, e.g., the standard definition

A(Zla"'azna(xvy)) ::yigv (6)
where ¢ is the prediction for y computed from zi,...,z, and (x,y) by a method that is
invariant with respect to permutations of z1,..., z,, or its variation

A(z1,y ..y 20, (T,y)) = y_y,

Oy
where 6, > 0 is an estimate of the variability or difficulty of y computed from z1,..., 2,
and (x,y) by a method that is invariant with respect to permutations of z1, ..., z,. (Both

methods may ignore y, of course.) Condition (5) ensures that different integrals (4) are
comparable; even though they are not expected values (the total mass of Q* is less than 1),
they are nearly expected values (the total mass of @Q* is n/(n + 1)) with the same shortfall
of the total mass.

Informally, our task is, given a training sequence z1, ..., z,, where z; = (x;,¥;), and a
test object x € X, to choose a suitable decision d € D in view of the utility function U;
the problem is that the utility U(y, d) depends on the unknown label y of z. A predictive
decision-making system (PDMS) is a measurable function F' : Z" x X — D, or a family
of such functions for all n = 1,2,...; the intuition is that F'(z1,...,z2,,2) is the decision
recommended for the new object x based on the training set z1,...,2,. It is randomized
when it depends, additionally, on a random number 7 € [0, 1] (representing internal coin
tossing). The regret of a PDMS F' (perhaps randomized) on an object z and training set
z1,...,2n under a probability measure P on Z is defined to be

Rp(z1,...,2p,x) i= glez%(/U(y,d)P(dy | ) — /U(y,F(zl, coyzmyx))P(dy | ),  (7)

where P(dy | z) is a regular conditional distribution (assumed to exist) for y given x under
P. The F in the last integral in (7) may depend on the internal coin tossing (i.e., on
7 ~ Up1), in which case we write Rp(z1, ..., zn, 2, 7) for the left-hand side of (7). We are
interested in PDMSs with small regret.

Our randomized algorithm is given as Algorithm 1. The CPD Q7 in Algorithm 1 is
defined as

QZ(U) = Q((xla U(yl; d))? B (‘TTM U(yn7 d))? (‘Ta u)7 T)a (8)
where @ is defined by (2) and assumed to satisfy (5).
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In statistical decision theory, it is customary to use the loss function L(y,d) := —U(y,d).
(According to Berger 1993, “Statisticians seem to be pessimistic creatures who think in
terms of losses.”) Algorithm 1 in terms of losses is obtained by replacing U with L, replacing
“utility” with “loss”, and replacing “largest” with “smallest”.

3.1. Basic classification

A basic special case is where Y is a finite set, D = Y, and the loss function is

L(y,d) := {0 ify=d (9)

1 otherwise.

In this and next subsections we will be applying Algorithm 1 in terms of losses.

Let us check that, in the case of basic classification, Algorithm 1 becomes a version
of the standard one-against-the-rest procedure (Vovk et al., 2005). For a fixed d € D,
we create a new training set replacing label d by 0 and replacing all other labels by 1.
The resulting CPD @7 is not necessarily concentrated, or nearly concentrated, at one point
(intuitively, such a point would represent the probability that the test label is different from
d); however, we can still interpret [ uQ%(du) as the probability that the test label will be
different from d. Now we predict the label d with the highest probability (by choosing the
smallest [ uQ%(du)).

3.2. Asymmetric classification

There are many cases where, unlike (9), different types of classification errors lead to dif-
ferent losses (for example, classifying an ill person as healthy is usually regarded a graver
mistake than classifying a healthy person as ill). This corresponds to replacing 1 in (9)
(which can now be interpreted as a square matrix of size |Y| x |Y]) by different positive
numbers.

3.3. Matrix games against nature

More generally, we can consider arbitrary finite sets Y and D; then the utility function U
(or loss function L) can be identified with a [Y| x |D| matrix.

4. An example application

To illustrate the application of Algorithm 1 in practice we use the Mushroom data set
from the UCI repository (Dheeru and Karra Taniskidou, 2017). This data set contains
observations on whether a mushroom is edible or not based on 22 observed attributes. We
use an asymmetric utility function which penalizes eating a poisonous mushroom severely,
as identified by the following matrix of utilities:

eat don’t eat
edible 1 0
not edible —10 1
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We use the standard conformity measure (6), where ¢ is the 1 Nearest Neighbour prediction
for the label of x based on the Hamming distance. In Figure 1 we contrast the observed
mean utility versus training set size for Algorithm 1 and simply eating only mushrooms
predicted to be edible. We draw 1000 random balanced training sets for each of a range of
sizes ({4,6,...,20}), evaluating the performance of the two procedures on each training set
using random balanced test sets of size 10.

One clearly observes that Algorithm 1 appropriately offsets the decision not to eat
potentially poisonous mushrooms but that this benefit reduces with increasing training size
as predictivity improves overall.
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Figure 1: Average utility vs training set size for Algorithm 1 (A) and simply eating only
mushrooms predicted to be edible (o). Shaded areas indicate 95% confidence
intervals on the mean.

5. Asymptotically efficient decision making

In this section we state a simple corollary of a result in Vovk (2017) showing that asymptot-
ically we can choose the best possible decisions under weak assumptions about the object
space X and the label space Y.

Let us say that a randomized predictive system @ is consistent for a probability measure
P on X x R if, for any bounded continuous function f: R — R,

/ FAQn — / F@P@y | 2np1) >0 (n— o) (10)

in probability, where:

e (), is the predictive distribution @, : y — Q(z1,...,2n, (Tn+1,y), ™) (for a given
Tp) output by @ as its forecast for the label y,41 of z,4+1 based on the training set
(21, .., 2n), where z; = (z;,y;) € X x R;

e P(dy | xp+1) is aregular conditional distribution of y given = x,,+1 under (z,y) ~ P;

® 2z, ~PandrT, ~Uyi,n=1,2,..., are assumed independent.
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It is clear that this notion of consistency does not depend on the choice of the version of the
regular conditional distribution P(dy | z) in (10). Notice that the observations z1, 22, . .. are
assumed to be generated from P in the IID fashion, and the internal coin tosses 71, 7o, ...
in @ are assumed to be independent of them. The randomized predictive system @ is
universally consistent if it is consistent for any probability measure P on X x R.

A randomized PDMS is asymptotically efficient if, for any probability measure P on
Z =X xY, its regret Rp(z1,...,2n, Tni1,Tn) ON Tptq and 21, ..., 2, under P tends to 0
in probability when z; = (z;,v;) € Z, i = 1,2,..., are produced from P and the random
numbers 7; are produced from Up 1, all independently.

Theorem 3 Suppose, in addition to the decision space D being finite, that X is a standard
Borel space and the utility function U : Y x D — R is bounded. Asymptotically efficient
PDMSs exist; in particular, Algorithm 1 is an asymptotically efficient randomized PDMS
whenever it is based on a universally consistent randomized predictive system (which exists
under these assumptions).

Proof It suffices to prove that, for each d € D,

/U(y,d)P(dy | Tpy1) — /uQZ(du) —0 (n — o0) (11)

in probability, where Q% is computed as in Algorithm 1 for the training set z1,..., 2, test
object x,,+1, and random number 7,,; indeed, under (11) and by (7), the requirement

Rp(z1,. ..\ Zny Tng1, Tn) — 0

can be rewritten as

gl&)){/qul(du) - /UQ}(ZI7._.7ZM%+I7T”)(du) — 0,
which is true (even with “—” replaced by “=") by definition for F' computed by Algorithm 1.
Fix any d € D and let P’ be the image of the probability distribution P under the mapping
(z,y) € Z— (x,U(y,d)) € X x R. Then (11) can be rewritten as

[uru s - [uQian) 50 (-0,

and so the conclusion follows from the universal consistency of the randomized predictive
system used in Algorithm 1, since the identity function u — wu is continuous and, under
P'(du | ®p+1), bounded with probability one; the assumption that X is a standard Borel
space is used in the statement of universal consistency (Vovk, 2017, Theorem 3). |

A universally consistent randomized predictive system is constructed in Vovk (2017)
explicitly, and it is, of course, a conformal predictive system. Theorem 3 does not use its
property of validity (R2) but this property is likely to improve the quality of predictions as
measured by the utility function U.
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6. Connections with existing literature and dangers of overfitting

In the first two subsections of this section we will briefly discuss classical statistical decision
theory and its predictive counterpart, and the classical theory of confidence distributions
and its predictive counterpart. Both classical theories are concerned with the value of a
statistical parameter and, therefore, are rarely useful in the nonparametric framework of
mainstream machine learning (since the parameter space, the set of all probability measures
on the observation space Z, then becomes too large). Their predictive versions replace the
parameter by a future random variable. In the final two subsections we briefly compare
conformal predictive decision theory with statistical learning theory and discuss the dangers
of overfitting in both theories.

6.1. Statistical decision theory

Statistical decision theory was introduced by Wald (1950), who was in part inspired by
developments in game theory (von Neumann and Morgenstern, 1953). The latter book
introduced utilities (von Neumann and Morgenstern, 1953, Appendix, added in the second
edition). The main difference between game-theoretic decision theory and statistical deci-
sion theory is that in the former the opponent is intelligent whereas in the latter it is of a
neutral nature. A minor difference is that the former prefers the language of utilities, and
the latter that of losses (which can be defined as minus utilities; we will ignore the difference
in this appendix). The existing literature on statistical decision theory is massive, often
combines ideas of decision theory with Bayesian ideas, and contains such well-known books
as Berger (1993), Schervish (1995, Chapter 3), and Bernardo and Smith (2000). In the
classical version the utility function U = U(#, d) depends on a statistical parameter 6 and
decision d (see, e.g., Berger 1993, Section 1.2). In the predictive version (see, e.g., Berger
1993, Section 2.4.4) the utility function U = U(y,d) depends on a future random variable
y and decision d. It is often argued (in, e.g., Berger 1993, Section 2.4.4) that the predictive
version can be reduced to the classical version, but the usefulness of such a reduction is
limited in the nonparametric context of this note.

6.2. Confidence and predictive distributions

As we mentioned in Section 1, predictive distributions were introduced by Schweder and
Hjort (2016, Chapter 12) and Shen et al. (2018). Both groups of authors were motivated by
confidence distributions for a parameter value; moreover, whereas the latter group used the
term “predictive distributions”, the former used the longer “prediction confidence distribu-
tions”. The term “confidence distribution” was introduced by Cox (1958), but the notions
of both confidence and predictive distributions had been widely used by Fisher under the
rubric of “fiducial distributions”. The formal definition of confidence distributions is due
to Schweder and Hjort (2002, Definition 1) and Singh et al. (2005, Definition 1.1) (see also
the influential review by Xie and Singh 2013); the key element of the definition is property
R2 (see Section 2 above). In the nonparametric context of this note we only use predictive
distributions.
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6.3. Statistical learning theory

The standard problem of supervised learning (see, e.g., Vapnik 2000, Section 1.2) can be
stated in terms of decision making. We still have an object space X, a label space Y,
a decision space D, and a loss function L : Y x D — R. We are also given a learning
machine F : X x A — D, where A is a parameter space; for each parameter o € A, the
function F(z,a) of x € X can be considered as a decision rule giving a recommended
decision d := F(x,«) in view of the observed object x € X. The goal is to minimize the
risk functional

R(a) = / L(y, F(z, ) P(dz, dy),

where P is the unknown data-generating distribution. One way of solving this problem is the
empirical risk minimization principle, which recommends minimizing R(«) after replacing
P by the empirical probability distribution. One way of controlling overfitting uses the
notion of VC dimension (overfitting is a much more serious problem in the case of statistical
learning theory: e.g., the assumption of a finite A would be extremely restrictive, whereas
our assumption of a finite D still allows, e.g., any classification problems, and the example
given in the next subsection is rather exotic).

Conformal predictive decision making is different from statistical learning theory in that
it does not need a learning machine and that it is based on predictive distributions that
satisfy a small-sample property of validity (namely, R2). In this note we do not state directly
any small-sample properties of validity of conformal predictive decision making and only
state a result about its asymptotic efficiency.

6.4. Dangers of overfitting in our theory

In the main part of this note we only discussed the case of a finite decision space D. One
problem for an infinite, or finite but very large, D is the possibility of “overfitting”, where
one of the decisions d € D can lead to a small loss simply by chance. As a simple example,
consider a probability measure P on an observation space Z = X x Y = X x R such that
the conditional distribution of the label y € Y given the object z € X is always continuous
(for some version of the conditional distribution). The decision space is infinite, namely the
set of all finite subsets of the label space Y = R. The utility function is

1 ifd=90
Uy,d):=<¢2 ifyed

0 otherwise.

Given a training sequence (21,¥1),- .., (Zn,Yn), Algorithm 1 will return (for a reasonable
conformity measure) a decision d 2 {y1,...,¥yn}, which is clearly suboptimal; the optimal
decision would be d := ().

The danger of overfitting increases when the underlying algorithm used in the method of
conformal prediction is randomized and is very substantially affected by randomness (the
random choice of 7 in (2) typically does not affect the chosen decision and so does not
contribute to overfitting). This effect is akin to the possibility of violating the property of
validity by aggregated conformal predictors, as reported in Linusson et al. (2017).
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In principle, the methods of this note are applicable to complicated decision spaces
D, such as the set of all probability measures on a finite label space Y (the problem of
probabilistic classification), or even the set of all probability measures on Y := R¢ for
d € {2,3,...} (the problem of multi-dimensional probabilistic regression; the case d = 1
is covered already by the basic method of Section 2). Apart from dangers of overfitting,
computational problems can be expected to be severe, and finding efficient implementations
for specific underlying algorithms is an interesting direction of further research.

7. Conclusion

We extend the method of conformal prediction to make it applicable to decision making.
Our hope is that this extension will prove to be useful in practice, and this is perhaps the
most important direction of further research. We have limited ourselves to analysing a given
batch of data, without attempting active learning, and this limitation has made it possible
to develop a fairly systematic theory.
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