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Abstract

An interpolation error is an integral of the squared error of a regression model over
a domain of interest. We consider the interpolation error for the case of misspecified
Gaussian process regression: a used covariance function differs from a true one. We derive
the interpolation error for a grid design of experiments for an arbitrary covariance function.
Then we consider particular types of covariance functions from theoretical and practical
points of view. For Matern 1

2
covariance function poor estimation of parameters only

slightly affects the quality of interpolation. For the most common covariance functions
includingMatern 3

2
and squared exponential covariance functions poor choose of parameters

of covariance functions leads to a bad quality of interpolation.

Keywords: Gaussian process regression, interpolation error estimation, model misspecifi-
cation

1. Introduction

Gaussian process regression or kriging is widely used for construction of regression models?
see Rasmussen and Williams (2006); Burnaev et al. (2016); Cressie (2015). The main
assumption of these approaches is that the target function is a realization of Gaussian
process model with a given spectral density (or equivalently a covariance function) and
mean functions.

In machine learning it is of great importance to get a measure of the quality of a
regression model. Popular choice in literature is an interpolation error, see Golubev and
Krymova (2013); Le Gratiet and Garnier (2015): an expected squared error of interpolation
integrated over a domain of interest for a given approach of a regression model construction.

There are a number of problem statements relevant to this general problem. Classical
approaches imply that the true model is known and coincides with the one used for the
construction of a regression model Stein (2012). Modern approaches more often consider
a minimax problem statement Zaytsev and Burnaev (2017) or a misspecified problem
statement Vaart and Zanten (2011). In the minimax problem statement, we assume that
the true model belongs to a certain class of models and try to find the interpolation error
in the worst case Golubev and Krymova (2013). In the misspecified problem statement, we
specify how a used model differs from the true model Panov (2016).
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Let us elaborate in more details the misspecified problem statement for Gaussian process
regression. For real problems, one doesn’t know the true Gaussian process regression model,
while the usual assumption is that the spectral density (a Fourier transform of the covariance
function) belongs to a given parametric family and the mean value is zero. After selection
of a parametric family one estimates parameters of a spectral density using approaches
similar to the maximum likelihood approach or Bayesian approach Zaytsev et al. (2014)
Quality of estimation of parameters varies Zaytsev et al. (2014); Bachoc (2018). Moreover,
smoothness of the target function is often unknown. So it is hard to select a parametric
family of spectral densities. Thus, bad estimates of spectral density and wrong choice of
a parametric family lead to a difference between the true regression model and the used
regression model.

Our goal is to obtain the exact expression for interpolation error in a misspecification
case. The assumptions are similar to those used in the state of the art: Gaussian pro-
cess is stationary, the design of experiments is an infinite grid with a given step along
each dimension. The grid designs of experiments are often used due to their low compu-
tational complexities Belyaev et al. (2015). Moreover, numerical experiments show that
these assumptions don’t significantly affect the results Zaytsev and Burnaev (2017). Us-
ing obtained expression as a tool we are able to consider widely used setups for Gaussian
process regression taking into account possible model misspecification. We consider the
squared exponential function and the Matern covariance functions with ν = 1

2 Minasny and
McBratney (2005).

The article has the following sections:

• Section 2 describes the prior results in this area in more details;

• Section 3 describes results for usage of known covariance function and minimax case;

• Section 4 describes results for the case when the true covariance function differs from
the used one and examines in more details the case of model misspecification for the
Matern covariance function;

• Section 5 contains results of numerical experiments;

2. Related work

Classical approaches imply that the true model is known and coincides with the one used for
the construction of a regression model. The first results in this area go back to Kolmogorov
(1941) and Wiener (1949). A.Kolmogorov and N.Wiener simultaneously obtained mean
squared errors at a point in an interpolation and an extrapolation problem statements with
all training points lying on a grid. An article Le Gratiet and Garnier (2015) considered the
integrated mean squared interpolation error for a Gaussian process with noise if the sample
size tends to infinity.

Modern approaches more often consider a minimax problem statement. An article Gol-
ubev and Krymova (2013) considered the minimax interpolation error for a Sobolev class
of Gaussian processes for a segment if the training sample is an infinite grid. More recent
article Zaytsev and Burnaev (2017) considered a multivariate scenario while considering
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Figure 1: A design of experiments DH for d = 2.

Gaussian processes with an upper bound only for a sum of squares of the first partial
derivatives of Gaussian process realization.

Another branch of modern results considers a misspecified problem statement. For a
review of results for a squared error at a single point see book Stein (2012) More general
papers van der Vaart and van Zanten (2008); Vaart and Zanten (2011) consider the case of
mean squared error for an area, while their results are not directly applicable in practice-
related problems due to complex assumptions. Note also that these articles as well as Suzuki
(2012); Castillo et al. (2008) provide the upper bound. An article Bachoc (2013) considered
the empirical comparison of the interpolation error for cross validation and maximum like-
lihood estimates, while theoretical properties of these approaches are investigated in more
details in Bachoc (2018). There the focus is not on the interpolation error itself, but on the
quality of parameter estimation.

3. Interpolation error and minimax interpolation error

Let us introduce interpolation for the case with no misspecification and the minimax case.
All results in this section are provided in a way similar to Zaytsev and Burnaev (2017).

For Rd there is a stationary Gaussian process f(·) with the covariance function R(x).
The spectral density Stein (2012) is defined as

F (ω) =
1

2π

∫
Rd

e−iωxR(x)dx.

We observe the random process at the infinite grid DH = {xk = Hk,k ∈ Zd}. H
is a diagonal matrix with elements at the diagonal diag{h1, . . . , hd}. An example of such
two-dimensional design of experiments is given at Figure 1.

We investigate interpolation error of f(x) using the best regression model f̃(x). In
Gaussian case this model depends linearly on observations

f̃(x) = H
∑
k∈Zd

K(x− xk)f(xk),

where K(x) is a kernel function obtained as a solution of Kolmogorov-Wiener–Hopf equa-
tions.
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For a set ΩH =
∏d
i=1[0, hi] we are interested in evaluation of the integral of the expec-

tation of squared differences between true value of a random process and its interpolation:

σ2(f̃ , F ) =
1

ΩH

∫
ΩH

E
[
f̃(x)− f(x)

]2
dx.

The following theorem holds:

Theorem 1 For a Gaussian random process f(x) with a spectral density F (ω), observed
at DH the interpolation error for the best regression model has the form:

σ2(f̃ , F ) =

∫
ΩH

F (ω)

(1− K̂(ω)
)2

+
∑
k 6=0

K̂2
(
ω +H−1k

) dω,
where K̂(ω) is a Fourier transform of K(ω). Moreover, K̂(ω) has the form

K̂(ω) = F (ω)/
∑
k

F
(
ω +H−1k

)
.

Often the true spectral density is unknown. So, we are interested in the minimax
interpolation error:

RH(L) = inf
f̃

sup
F∈F(L)

σ2(f̃ , F ), (1)

where F(L) defines a set of spectral densities that correspond to smooth enough Gaussian
processes:

sup
F∈F(L)

E‖f (1)(x)‖2 ≤ L,

f (1)(x) is a vector of first partial derivatives of Gaussian process with a spectral density
F (ω).

The following theorem holds:

Theorem 2 The minimax interpolation error RH(L) from (1) has the form:

RH(L) =
L

2π2
max
i=1,d

h2
i .

Given the theorems above we can get the interpolation error for certain covariance
functions: exponential and squared exponential covariance functions.

Corollary 3 For Gaussian process at R with the exponential spectral density of the form
Fθ(ω) = θ

θ2+ω2 the interpolation error (5) for the best interpolation has the form:

σ2
h(f̃ , Fθ) ≈

2

3
π2θh+O((θh)2),

for θh→ 0.
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Corollary 4 For Gaussian process at R with the squared exponential spectral density of

the form Fθ(ω) = 1√
θ

exp
(
−ω2

2θ

)
the interpolation error (5) for the best interpolation has

the form:

4

3
h
√
θ exp

(
− 1

8h2θ

)
≤ σ2

h(f̃ , Fθ) ≤ 7h
√
θ exp

(
− 1

8h2θ

)
for θh2 → 0.

So, the minimax error decreases as h2 for h = maxi∈{1,d} hi, while for some covariance
functions it can decrease exponential with respect to h, or decrease linearly with h for a
non-smooth Gaussian process.

4. Interpolation error for misspecified case

In practice, we use a model of the Gaussian process. This model can be different from the
true model. Let us consider a Gaussian process with the true spectral density F (ω), while
for estimation we use a Gaussian process with the spectral density Fθ(ω). The problem is
to estimate the interpolation error for misspecified spectral density used for computation of
the final approximation.

We again consider the infinite grid design of experiments DH and sample of values
{f(xk)} at DH of a realization of a Gaussian process with the spectral density F (ω).

The best interpolation given the assumptions has the form:

f̃θ(x) = H
∑
k∈Zd

Kθ(x− xk)f(xk).

We obtain the kernel K(·) by minimization of the mean squared error assuming that the
true spectral density is F (ω). We obtain the kernel Kθ(·) in a similar way, but using the
true spectral density Fθ(ω).

Our goal is to estimate the interpolation error

σ2
H(f̃θ, F ) =

1

ΩH

∫
ΩH

E
[
f̃θ(x)− f(x)

]2
dx.

Theorem 5 The interpolation error for the true spectral density F (ω), if we used the spec-
tral density Fθ(ω) for construction of the regression model given observations at H−1k,k ∈
Zd has the form:

σ2
H(f̃θ, F ) =

∫
ΩH

F (ω)

(1− K̂θ(ω)
)2

+
∑
k 6=0

K̂2
θ

(
ω +H−1k

) dω.
So, given spectral densities F (ω) and Fθ(ω) we can get the target interpolation error

by analytical integration of (5) or numerical estimation.
Note, that we can rewrite the result of Theorem 5 in the form:

σ2
H(f̃θ, F ) =

∫
ΩH

F (ω)

{∑
k 6=0 Fθ(ω +H−1k)∑
s Fθ(ω +H−1s)

}
dω
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As a set of coefficients K(x − xk) minimizes the interpolation error, it holds that
σ2
H(f̃θ, F ) ≥ σ2

H(f̃ , F ). Now we are ready for analysis of difference of the interpolation
error in the cases of misspecified and correctly specified models.

4.1. Interpolation error for misspecified Matern spectral density ν = 1
2

We consider the interpolation error for the misspecified case for Matern with ν = 1
2 spectral

density. For R and a stationary Gaussian process with Matern ν = 1
2 covariance function

Rθ(x):

Rθ(x) =

√
π

2
exp (−θ ‖x‖) . (2)

An alternative name for this covariance function is the exponential covariance function GPy
(since 2012). The spectral density that corresponds to this covariance function is the fol-
lowing:

Fθ(ω) =
θ

θ2 + ω2
.

To construct an interpolation we use a misspecified spectral density Fθ′ , θ
′ 6= θ.

Corollary 6 We observe a realization of Gaussian process at Dh ⊂ R with the true expo-
nential spectral density of the form Fθ(ω) = θ

θ2+ω2 . Then the interpolation error (5) for f̃θ′

constructed with the assumption that the true spectral density is Fθ′(ω) has the form:

σ2
h(f̃θ′ , Fθ) ≈

2

3
π2θh+O((θh)2), θh→ 0 .

So, for small h the interpolation error doesn’t depend on the coefficient θ′. It is obvious
that generally, the misspecified case lacks this nice property.

5. Computational experiments

We obtained theoretical results in previous sections under the assumption that the real-
ization of a Gaussian process is known at an infinite grid. It is impossible to fulfill such
assumption in practice. While we expect that results will be the same for a large enough
finite sample and an infinite grid of points, we should validate theoretical for a finite sample.

For this purpose a realization of a Gaussian process with Matern covariance function
from (2) is taken as objective function. It is a special case of exponential covariance function,
so, results of section 2 are applicable to it.

5.1. Workflow of computational experiments

In this subsection, we provide technical details on computational experiments. For experi-
ments we used Gaussian process regression realization from GPy (since 2012) library. We
provide the code used to generate results in the article at A. Zaytsev, E. Romanenkova,
D. Ermilov (since 2017) github page. For the sake of clarity and faster convergence of the
empirical interpolation error to the true one, we consider one-dimensional grids of points,
while our theoretical results are valid for the multivariate case.
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There are three steps in computational experiment dedicated to obtaining of the inter-
polation error: create a realization of a Gaussian process; use a regression model with an
alternative covariance function on the base of a training sample; estimate the interpolation
error given the constructed regression model and a test sample.

We create realizations of a Gaussian process using the following steps:

1. Generate a grid of points X of size n from interval [0, 1]. The step of the grid h is
inversely proportional to the current sample size n.

2. Select the parameter of covariance function θ.

3. Evaluate the sample covariance matrix K for points X. We use Matern covariance
function with parameter θ as a covariance function and white noise with variance
10−8.

4. Evaluate the Cholesky decomposition L of the obtained covariance matrix K.

5. Generate a vector of i.i.d. random variables y0 from the standard normal distribution
of size n.

6. Obtain multivariate normal distribution by multiplying the Cholesky decomposition
L by y0 at the previous step.

As the results of this procedure we get y = Ly0 ∼ N (0,K). Few examples of generated
realizations are at Figures 2.

Next algorithm is used for the construction of the regression model and evaluation of
the interpolation error of this model:

1. Select the parameter θ′ — an assumption about the true parameter of the covariance
function.

2. Specify a regression model on the grid given the parameter θ′.

3. Estimate the interpolation error for the selected sample size as
∑ntest

i=1 (ŷi − yi)2, where
ŷi and yi are respectively the predicted and the true value at a test point xi using a
test sample with a more dense grid.

5.2. Simulations

We start with the following setup: θ = θ′ for values θ = [0.1, 0.2, 0.3]. After that the
experiment we average the result of 10 realizations. The obtained interpolation errors fit
the straight line even better. At Figure 3 we provide results for a single realization and 10
realizations: the obtained experimental errors agrees well with the theoretical results. So,
the assumption of the infinite grid does not affect the interpolation error: the theoretical
and the practical results are consistent.

We continue with the misspecified problem: for a fixed θ = 0.1, three different θ′ =
[0.1, 1, 10] are used during model construction. For each of the values at each sample size,
we run the “basic algorithm” 20 times and average the results. We see that results are
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Figure 2: Realizations of Gaussian process with the squared exponential covariance function
for different smoothness values
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Figure 3: The interpolation errors obtained in the experiment. The solid lines indicate
theoretical values: they are close to obtained in experiments even for a single run.

similar for different used values of h. While the obtained results slightly differ, Theorem 1
gives almost perfect approximation in this case.

For the exponential, Matern3/2 and RBF kernels we examine the interpolation error
for the misspecified model, that lies in the same parametric class of models. The obtained
interpolation errors are at Figure 4. We also run the Wilcoxon difference test Wilcoxon
(1945) to test if the results are different. For the exponential kernel we get p−value > 0.92,
while for Matern3/2 and the squared exponential kernel p−value < 10−2. So, for the
exponential kernel we can’t reject the hypothesis that the interpolation errors are the same,
no matter what value of the covariance function parameter is used, while for two other
covariance functions results suggest that the hypothesis that the interpolation errors are
the same seems to be wrong. Therefore, for a non-exponential kernel the interpolation error
depends on the value of the parameter used for the construction of the regression model.

In the following experiment, we investigate the interpolation error for the case when the
wrong parametric class of functions is used. In particular, the parameter of the model is
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h θ = 0.1 θ = 0.1 θ = 0.1
θ′ = 0.1 θ′ = 1 θ′ = 10

0.01 0.425 0.413 0.424
0.004 0.166 0.168 0.162
0.0025 0.102 0.105 0.104

Table 1: Obtained values of the interpolation error σ2
h(f̂θ, Fθ) · 103 for misspecified case

averaged over 20 realizations.
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Figure 4: The interpolation errors obtained in the experiment for misspecified values of
parameters for different classes of covariance functions averaged over 20 realizations. The
true parameter θ is 1.

θ = 1; when the model Matern3/2 is true, models with covariance functions Matern3/2,
Matern5/2 and exponential give the interpolation errors provided at Figure 5. We see that
the error estimation derived in Corollary 3 is not applicable in the case of using different
classes of the true and used function.

6. Conclusions

This article presents the interpolation error for misspecified regression model of Gaussian
process regression. The obtained result can be used for analysis of the effect of the model
misspecification on the quality of obtained regression model. For example, for Matern
covariance function the interpolation error doesn’t significantly depend on a used value
of the parameter. This effect holds for numerical experiments for non-grid finite training
samples. However, for other covariance functions there is a clear dependence on quality of
estimates of parameters.
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Appendix A. Proofs of the presented results

The proof of Theorem 5:
Proof The difference between this problem and the problem given in Theorem 1 is on
different set of coefficient Kθ(x − xk) identified by the spectral density. Consequently, we
are able to get the proof of Theorem 1 using the results given in Zaytsev and Burnaev
(2017).
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It is easy to see that

E[f(x)− f̃θ(x)]2 =

∫
Rd

F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

Kθ(x− xk) exp(−2πiωT (xk − x))

∣∣∣∣∣∣
2

dω =

=

∫
Rd

F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

(∫
Rd

K̂θ(u) exp(−2πiuT (x− xk))du

)
exp(−2πiωT (xk − x))

∣∣∣∣∣∣
2

dω,

where K̂θ(u) is the Fourier transform of Kθ(x). As Poisson summation formula suggests:∑
k∈Zd

exp(2πikTω) =
∑
k∈Zd

δ(ω + k),

where δ(ω) is the Dirac delta function, then

E[f(x)− f̃θ(x)]2 =

∫
Rd

F (ω)

∣∣∣∣∣∣1− |H|
∑
k∈Zd

∫
Rd

K̂θ(u) exp(2πi(ω − u)Tx)δ(u− ω +H−1k)du

∣∣∣∣∣∣
2

dω =

=

∫
Rd

F (ω)

∣∣∣∣∣∣1−
∑
k∈Rd

K̂θ(ω −H−1k) exp(2πiH−1xTk)

∣∣∣∣∣∣
2

dω.

Taking into account orthogonality of the system of functions exp(2πiH−1xTk) on x ∈
[0, h1]× . . .× [0, hd] we integrate the equality to get the interpolation error

σ2
H(f̃θ, F ) =

∫
Rd

F (ω)

∣∣∣∣∣∣[1− K̂θ(ω)]2 +
∑

k∈Zd\{0}

K̂2
θ (ω +H−1k)

∣∣∣∣∣∣
2

dω.

To get K̂θ(ω) that minimizes the interpolation error we rewrite the equation above using
Fθ instead of F :

σ2
H(f̃θ, Fθ) =

∫
Rd

∣∣∣∣∣∣[1− K̂θ(ω)]2Fθ(ω) + K̂θ(ω)2
∑

k∈Zd\{0}

F̂θ(ω +H−1k)

∣∣∣∣∣∣
2

dω.

To minimize this error we solve this quadratic optimization problem for each ω and get:

K̂θ(ω) =
F̂θ(ω)∑

k∈Zd F̂θ(ω +H−1k)
.

Then

σ2
H(f̃θ, F ) =

∫
Rd

F (ω)

∑
k∈Zd\{0} F̂θ(ω +H−1k)∑

k∈Zd F̂θ(ω +H−1k)
dω. (3)
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The proof of Corollary 6:
Proof Our goal is to evaluate

σ2
h

(
f̃θ′ , Fθ

)
=

∫ ∞
−∞

Fθ(ω)

∑
k 6=0 Fθ′(ω + k

h)∑
k Fθ′(ω + k

h)
dω.

It holds that

∞∑
k=−∞

Fθ

(
ω +

k

h

)
=

∞∑
k=−∞

θ

(ω + k
h)2 + θ2

= h
∞∑

k=−∞

hθ

(hω + k)2 + h2θ2
=

= πh coth(πθh)
1

1 + sin2(πhω)(coth2(πθh)− 1)
.

Then∫ ∞
−∞

Fθ(ω)

∑
k 6=0 Fθ′(ω + k

h)∑
k Fθ′(ω + k

h)
dω =

∫ ∞
−∞

θ

θ2 + ω2

(
1− θ′

θ′2 + ω2

1 + sin2(πhω)(coth2(πθ′h)− 1)

πh coth(πθ′h)

)
dω.

For three integrals presented above it holds that:∫ ∞
−∞

θ

θ2 + ω2
dω = π.

Moreover, ∫ ∞
−∞

θ

(θ2 + ω2)

θ′

(θ′2 + ω2)
dω =

π

θ + θ′
.

Finally,∫ ∞
−∞

θ

(θ2 + ω2)

θ′

(θ′2 + ω2)
sin2(πωh)dω =

π

2(θ + θ′)

(
1− θ exp(−2πhθ′)− θ′ exp(−2πhθ)

θ − θ′
)
.

Consequently

σ2
h

(
f̃θ′ , Fθ

)
= π − π

2π(θ + θ′)h coth(πθ′h)
+

+
π

2π(θ + θ′)h coth(πθ′h)

(
1− θ exp(−2πhθ′)− θ′ exp(−2πhθ)

θ − θ′
)

coth2(πθ′h)− 1

πh coth(πθ′h)
.

We are interesting in case h → 0. In this case, we can use Taylor decomposition to
evaluate the final result. We get it in the following form:

σ2
h

(
f̃θ′ , Fθ

)
=

2π2

3
θh+O((θh)2) +O((θ′h)2).
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