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Abstract

In this paper we propose a new method of conformal feature-selection wrappers for instance
transfer (CFSWIT). Given target and source data, the method optimally selects features
and source data that are relevant for a classification model. The CFSWIT method is model-
independent. It was tested experimentally for several types of classifiers. The experiments
show that the CFSWIT method is capable of outperforming standard instance transfer
methods.
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1. Introduction

Instance transfer was proposed to improve classification models for a target domain of interest
by making use of the data borrowed from an auxiliary source domain (Pan and Yang, 2010;
Weiss et al., 2016). The target and source domains share the same input feature space
and the same class-label set but differ in the underlying probability distributions. If the
source domain is relevant to the target domain; i.e., the source distribution is close to the
target distribution, instance transfer can significantly improve the classification models for
the target domain (Torrey and Shavlik, 2009), especially for small target data (Dai et al.,
2007b).

Estimating the closeness of the source distribution to the target distribution is a difficult
problem. This is due to the fact that the target and source probability distributions are usu-
ally unknown. There exist two main approaches to this problem that are both data-driven.
The first approach measures the closeness of the source distribution to the target distribution
by first estimating the parameters of the distribution functions from the target and source
data (Dai et al., 2007a,b; Zhou et al., 2015; Tan et al., 2015). Then, it computes the dis-
tances between estimated distribution functions to approximate the distribution closeness.
The second approach measures the closeness of the source distribution to the target distri-

© 2018 S. Zhou, E. Smirnov, G. Schoenmakers, R. Peeters & T. Jiang.



ZHOU SMIRNOV SCHOENMAKERS PEETERS JIANG

bution by estimating how probable is that the target data and source data are generated
from the same distribution (Zhou et al., 2017a).

Following the results of both approaches, if we find that the source distribution is close
to the target distribution, we add the source data to the target data and then train the
target classification model. However, if we find that the source distribution is not close to
the target distribution, we can follow one of the three scenarios given below:

e no instance transfer: we cancel the instance transfer and train the target classifi-
cation model on the target data only.

e source-instance selection: we select a subset of the source instances that corre-
sponds to a component of the source distribution estimated to be close to the target
distribution . If the subset is nonempty, we add it to the target data and then train
the target classification model.

e feature selection: we select a subset of features for which the source distribution is
estimated to be close to the target distribution. If the subset is nonempty, the target
and source data are represented by the selected features only. The source data is added
the target data, and, then, the target classification model is trained.

When the last two scenarios fail, we can follow a forth scenario of combining feature
selection and source-instance selection. In this scenario we select a subset of features and a
subset of source data that corresponds to a component of the source distribution estimated
to be close the target distribution on the selected features. This task assumes that selecting
features and selecting source data are mutually dependent, and thus cannot be realized by
a mechanical combination of the instance-transfer methods based on feature selection and
instance-transfer methods based on source-instance selection. So far, Zhou et al. (2017b)
proposed the only method available for mutually dependent feature and source-instance
selection. The method realizes this property using decision trees (Quinlan, 1993) in an uni-
variate manner by imposing an additional restriction that the final features have a good pre-
dictive power. The experiments showed that this method outperforms the existing instance
transfer methods based on either source-instance selection or feature selection. However,
this method is tailored to decision trees; i.e., it is model-dependent.

In this paper we propose a model-independent method for the task of combining feature
selection and source-instance selection. The method is essentially a wrapper method for
feature selection (Kohavi and John, 1997). Given a classification model that needs feature
selection, our method examines the space of feature subsets according to a chosen search
strategy. When it evaluates a set of features, it considers both target and source data
represented by these features only. Under this constraint, our method first finds the largest
relevant set of source instances that can be selected using a conformal source-subset selection
procedure proposed by (Zhou et al., 2017¢). Then, it estimates the generalization perfor-
mance of the classification model on the target data and selected source instances. Once our

1. The source-instance selection implicitly assumes that the source distribution is a mixture distribution.
The selected instances are expected to be those that are generated by a component of the source distri-
bution that is close to the target distribution.
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method has visited and evaluated all the feature subsets according the search strategy cho-
sen, it determines a subset of features with the maximal generalization performance. This
subset is outputted together with the corresponding largest relevant set of source instances.

We note that our method assumes that the process of examining the space of feature
subsets starts from the set of all the features. That is why, the final subset of features is
relatively large. Thus, our method outputs a large subset of features and the largest subset
of source data that corresponds to a component of the source distribution estimated to be
close the target distribution on the selected features.

The remainder of this article is structured as follows. Section 2 provides an overview
of the related work. The classification task in context of instance transfer is formulated in
Section 3. Section 4 explains the conformal test and its corresponding source-subset selection
procedure. The wrapper method is given in Section 5. Section 6 introduces the main
contribution of this article, namely the conformal feature-selection wrappers for instance
transfer. The experiments are provided in Section 7. Section 8 concludes the article.

2. Related Works

As it was stated in the previous section there exist two types of methods for instance transfer
when the relevance of the source domain is not sufficient for the target domain: methods
based on source-instance selection and methods based on feature selection. In this section
we provide an overview of these two types of methods as well as the only combined method.

2.1. Methods based on Source-Instance Selection

Methods based on source-instance selection transfer relevant source instances to improve
classification models for the target domain (Zhou et al., 2017c). Source-instance selection
can be done in two ways: soft selection and hard selection. The soft selection picks the
source instances implicitly. It assigns weights to source instances proportionally to their
relevance to the target data. In this way the influence of the less relevant source instances
is restricted compared with that of most relevant ones when the final classification model
is being trained. The hard selection picks the source instances explicitly. It directly selects
source instances depending on their relevance to the target data. In this way only the most
relevant source instances influence training of the final classification model.

The soft selection was implemented in several boosting-based methods, e.g., TrAdaBoost
(Dai et al., 2007a) and Dynamic-TrAdaBoost (Al-Stouhi and Reddy, 2011). These methods
are similar to the AdaBoost algorithm (Freund and Schapire, 1996) but employ two opposite
weight-update schemes depending on the type of the instances: (1) the weights of misclassi-
fied target instances are increased, and (2) the weights of misclassified source instances are
decreased. In theory the average weighted training loss of boosting-based algorithms on the
source data is guaranteed to converge to 0 as the number of iterations approaches infinity
(Dai et al., 2007a). This implies that in this case the relevant source instances will be clas-
sified correctly and the irrelevant source instances will receive a weight of 0; i.e., there will
be a perfect selection of the source instances. However, in practice when most of the source
instances are irrelevant, these algorithms are likely to stop at very first iterations because
the training error on target data exceeds 0.5 in early iterations. In this case, the irrelevant
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source instances are not filtered out and cause a negative effect on the final classification
model.

The hard selection is implemented in several bagging-based methods. There are two
types of implementations: direct and indirect. Double-Bootstrap (Lin et al., 2013) is an
example of direct implementation. It first constructs an ensemble of classification models
trained on bootstrap samples from the target data. Then the ensemble classifies the source
instances and those of them that are correctly classified are selected. Thus, when most of
the source instances are irrelevant, this method tends not to select source instances; i.e., the
instance transfer process stops.

TrBagg (Kamishima et al., 2009) is an example of an indirect implementation of the
hard instance selection. It first randomly generates a set of bootstrap samples from the
combined target and source data, and then trains several base classification models on those
samples. Finally, a subset of the base classification models are selected by minimizing the
empirical error on the target data. The latter means that source subsets that are contained
in the bootstrap samples are indirectly selected through selecting the base models. Although
TraBagg is simple, it has similar problem as the boosting methods when the source data
is rather irrelevant. In this case TrBagg requires a large number of bootstrap iterations to
filter out irrelevant source instances which makes it computationally inefficient.

2.2. Methods based on Feature Selection

Methods based on feature selection aim at finding relevant features for which the source
distribution becomes closer to the target distribution. Historically, in instance transfer these
methods were preceded by feature transformation methods (Pan et al., 2008, 2011). That is
why, for the sake of completeness of the presentation we first consider feature transformation
methods and then feature selection methods.

The feature transformation methods operate as follows. First they search for a low-
dimensional feature space where the target data and source data are relevant. Then, they
train classification models on the target data and source data in that space. The Maximum
Mean Discrepancy Embedding (MMDE) is of one of the first representative of the feature
transformation methods (Pan et al., 2008). It first learns a kernel matrix corresponding to a
nonlinear transformation that projects the target data and source data to a latent space in
which the distance between the two data sets is minimized. The distance between the data
sets is measured by Maximum Mean Discrepancy (MMD) score (Borgwardt et al., 2006).
Then, MMDE applies Principal Component Analysis (PCA) (Jolliffe, 2011) on the learned
kernel matrix to obtain a low-dimensional feature space for the target data and source
data. The new space allows any classification algorithm to be trained on the target and
source data. Recently the computational inefficiency of MMDE was addressed in (Pan et al.,
2011). As a result a new feature transformation method was proposed, namely Transfer
Component Analysis (TCA). TCA has proven itself as effective as MMDE but much more
computationally efficient.

Maximum Mean Discrepancy (f-MMD) is a feature selection methods that was proposed
in (Uguroglu, 2011). It is based on the MMD score as well. However, instead of finding a
low-dimensional representation for the target data and source data jointly, -MMD identifies
a subset of features (called variant features) which contribute the most to the MMD score
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and excludes them. The problem of finding variant features is formulated as a convex
optimization problem. More precisely, a weight matrix, the diagonal of which corresponds
to the weights of all the features, is incorporated in the MMD calculation. The variant
features are expected to receive higher weights after optimization, since they minimize the
negative MMD score in the objective function. That is to say the variant features are defined
as those that contribute most to maximizing the MMD between data sets.

Analyzing the methods considered in this subsection we note mainly two drawbacks.
First, these methods may impair geometric or statistical properties of the original target
and source data due to the dimensionality reduction. Second, these methods learn the low-
dimensional space in an unsupervised manner and dismiss the relevance of the input features
for the class labels. Some of the removed features may have a strong class relevance and
influence the performance of resulting classification models.

2.3. Conformal Decision Trees for Instance Transfer

Conformal decision trees for instance transfer (CDTIT) were proposed in (Zhou et al.,
2017b). They represent an instance-transfer method that combines feature selection and
source-instance selection. The method employs the standard decision-tree algorithm (Quinlan,
1993) to construct trees. Univariate instance transfer is performed on the level of feature
selection for test nodes of decision trees. More precisely, at each test node the method first
selects for every feature the largest source subset which is relevant to the target data when
only considering this feature. The relevance of source instances is decided by a statistical
test, namely conformal test (Zhou et al., 2017a). Then, the method estimates the predictive
power of this feature on the target data and the selected source subset using some measures.
Once the predictive power of all features were estimated, the method selects the feature with
the highest predictive power for this test node (i.e. the best feature is determined based on
the target data and most relevant source instances and its predictive power). We note that
constructing a decision tree consists of a series of such steps of univariate instance transfer
and feature selection. Thus, the conformal decision trees are essentially an embedded multi-
variate feature selection method for instance transfer based on univariate source instance
selection and feature selection.

The conformal decision trees demonstrated the power of combining feature selection and
source-instance selection for instance transfer. However, the results are restricted to decision
trees only. In this paper we address this issue by developing a model independent method.

3. Classification Tasks and Solutions

Let X be a instance space defined by K input features X* k € {1,2,...,K} and Y be a
finite class set. A domain is defined as a tuple consisting of a labeled space (X x Y) and
a probability distribution P over (X x Y'). We consider first a domain ((X x Y'), Pr) that
we call a target domain (domain of interest). The target data set 7" is a multi set of mp
instances (z4,y:) € X xY drawn from the target distribution Pr under the i.i.d assumption.
Given a test instance z,,,4+1 € X, the target classification task is to find an estimate y € Y
for the true class of z,,,4+1 according to Pr.

Let us consider a second domain ((X xY'), Ps) that we call a source domain. The source
data S is a multi set of mg instances (z5,ys) € X x Y drawn from the source distribution
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Ps under the i.i.d assumption. Assuming that the source domain is relevant to the target
domain (i.e. Py is close to Pr), the instance-transfer classification task is to find an estimate
9y € Y for the true class of x,,,41 according to Pr using source data S as an auxiliary
training data.

To solve the classification tasks defined above we train a classifier h(z) in a hypothesis
space H of classifiers h (h : X — 2¥). We note that for the target classification task h(z) is
based on T'. For the the instance-transfer classification task the classifier h(x) is based on
T and selected source instances from S. Once the classifier is available, it outputs for any
test instance x,,,+1 a posterior distribution of scores {s,},cy. The class y with the highest
posterior score s, is the estimated class ¢ for the instance x.

4. Conformal test for source relevance

The conformal feature-selection wrappers for instance transfer that we propose in this paper
are based on the conformal test (CT) introduced in (Zhou et al., 2017a). The test is used
to estimate the relevance of the source data to the target data. In the following, we first
describe the CT and the p-value function it employs. Then, we explain and compare two
different ways to use the CT for source relevance estimation. Finally, we introduce the
algorithm we used for selecting the largest source subset based on the CT.

4.1. Conformal Test

The CT is proposed under the exchangeablity assumption of data generation (Aldous, 1985)
2. It works with data sequences. Given a target data sequence T and a source data sequence
S, it decides the relevance of S to T' by testing the null hypothesis that the concatenated
data sequence T'S was generated by the target distribution Pr under the exchangeability
assumption.

To test the null hypothesis, CT makes use of the conformal prediction framework that
was introduced in (Shafer and Vovk, 2008; Vovk, 2014). The test employs the nonconformity
scores of subsequences of T'S' as statistics for the null hypothesis. The nonconformity score of
a subsequence can be computed based on the nonconformity scores of the instances contained
in the subsequence. Given the concatenated sequence TS, the nonconformity score a of an
instance (z,y) € T'S is a positive real number that indicates how strange the instance (z,y)
is for the sequence T'. To compute the instance nonconformity scores we need an instance
nonconformity function A. If (X x Y)® represent the set of all sequences defined over
(X xY), the instance nonconformity function A is a mapping from (X x Y)® x (X xY) to
RT U{+o00} that measures the degree of strangeness of an instance in relation to a sequence.

To compute the sequence nonconformity scores we need a sequence nonconformity func-
tion. Given the concatenated sequence T'S and a subsequence U of some elements of T'U S,
the sum sequence nonconformity function returns a score «p indicating how strange the
subsequence U is with respect to all subsequences with size |U| of the data sequence T'S.

2. The exchangeability assumption is a weaker assumption than the randomness assumption. It holds for
a sequence of random variables if and only if the joint probability distributions of any two permutations
of those variables coincide.
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Definition 1 (Sum Sequence Nonconformity Function) Given an instance noncon-
formity function A, data sequences T and S, and a subsequence U of some elements of TU.S,
the sum sequence nonconformity function A* : (X x Y)*) x (X x Y)®) — Rt U {+o0} is
defined as

ANTU) = ) oy,

(z,y)eU
_ JAT\{(@.9)}, (z.y), for (z,y)eT
where Q.y) = { AT, (x,y)), otherwise.

The CT employs sequence nonconformity scores as test statistics. The p-value function
of the CT is defined as follows.

Definition 2 (p-Value Function) The p-value function is a function t : (X x Y)®) x N —
[0,1] defined as:
KT, S) = H{U € P(T'S,mg) : ay > ozs}|7
[P(T'S, ms)|
where P(T'S, mg) is the set of all subsequences of T'S with length |S| = mg, ay and ag are
sequence nonconformity scores returned by A*(T,U) and A*(T,s), respectively.

The validity of the p-value function ¢ was proven in (Zhou et al., 2017a). The p-value
returned by the function ¢ indicates the likelihood that the sequence T'S was generated by
the target distribution Pr under the exchangeability assumption. The higher the p-value is,
the more relevant the source sequence is to the target sequence. Therefore, this p-value can
be viewed as a non-symmetrical measure of relevance of the source data to the target data.

The CT employs the p-value function ¢ for testing the exchangeability of the concatenated
data sequence T'S. The source data sequence is relevant to the target data sequence at the
significance level ¢, € [0, 1] if and only if the returned p-value is greater than or equal to €.

The CT was extended for data sets (since the sum sequence nonconformity function
A*(T,U) is independent of the ordering of the sequence U) (Zhou et al., 2017a). The p-
value function ¢ is redefined as follows:

UeC(TUuS : >
(r.g) - W ECTUSms) 0y > as)]
IC(T U S, mg)|
where T and S are the target and source data sets, respectively, and C(T'U S, mg) is the set

of all subsets of T'U S with size mg = |S].

4.2. Measure individual relevance and set relevance by the p-value function

As it was mentioned in the previous subsection, the p-value returned by the function ¢ can
be viewed as a non-symmetrical measure of relevance of the source data to the target data.
Since the p-value function ¢ can be applied to source data with arbitrary size, it allows
for measuring the relevance of source data in two different ways. When the size of the
source data S equals 1 (mg = 1), function ¢ estimates the individual relevance of a source
instance (zs,ys) with value (T, {(zs,ys)}). When the size of the source data is greater than
1 (mg > 1), function ¢ estimates the relevance of the source set as a whole with value ¢(7, 5).
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Comparing to individual relevance, set relevance is more precise in terms of source rel-
evance estimation. According to function ¢, if S = {(xs,ys)} then mg = 1, and |C(T U
S,mg)| = mp + 1, whereas the numerator is a positive integer. Consequently, the number
of possible individual p-value is bounded by mp + 1. If mg > 1, the number of possible
set p-value is bounded by |C(T U S, mg)|, which quickly grows much larger than mz + 1.
Therefore, the set p-value can better distinguish sets with different nonconformity scores.

Source-subset selection based on individual relevance is computationally more efficient
than that based on set relevance. Assume that all instances in the source data S are sorted
in increasing order of nonconformity scores. According to Definition 2, we have that the
individual relevance of the source instance with index s(s > 1) is always less than or equal
to that of the source instance with index s — 1, i.e., t(T,{(zs,ys)}) < (T, {(zs—1,Ys—1)})-
That is to say the individual relevance is a decreasing function of the index s, and through
the index s, it is also a decreasing function of the nonconformity score. When individual
relevance is employed to select the largest subset of source instances that passes the CT at
a significance level ¢;, we can simply apply binary search on the sorted source set to quickly
find the last instance that has p-value no less than ¢;. The largest source subset is then
formed by adding all the instances before this instance and the instance itself.

The set relevance in general is not a monotonic function of the index s, and is not a
monotonic function of the nonconformity scores as well. Let S5 be a subset consisting of first
s(s > 1) instances of the sorted data S. For each s we may have either ¢(T,Ss) < t(T, Ss—1)
or t(T,Ss) > t(T,Ss—1). To better illustrate this claim, we provide the following example.
Assume that T'S consists of target instance ty, to9, t3 associated with nonconformity scores
1,4,5, and source instances $1, sz, s3 associated with nonconformity scores 2,3,6 (note that
the source instances are sorted by increasing order of the nonconformity scores). In this case,
we have ¢(7,51) = 0.75, t(T,S2) = 0.8 and ¢(7,S3) = 0.5. Due to the non-monotonicity,
source-subset selection based on set relevance is computationally inefficient.

4.3. Pre-training Approximate Selection for the Relevant Source Subset

If a source subset is generated by the target distribution, the expected p-value of this subset is
1

equal to % We call such a subset as relevant source subset S2. Due to the non-monotonicity

1
of the source relevance finding the largest relevant source subset S2 may involve repeated
application of the function ¢. To reduce the computational overhead, a pre-training approx-
imate selection algorithm for the relevant source subset (denoted as PASS) was proposed in

A1
(Zhou et al., 2017c). The algorithm finds a close approximation S2 of the largest relevant
1

subset S2 at a small computational cost.

To illustrate the key idea behind the PASS algorithm assume that the source data S is
sorted in increasing order of the nonconformity scores a,, ,,) and Sy, is a subset consisting
of the first n instances of the ordered source data S. By Theorem 3 from (Zhou et al.,
2017c¢), if the average of individual p-values of all instances in the source subset S, equals

L__ then the set p-value of S, is approximately equal to % For large target data

1
2t 2(mr+1)
the term can be ignored. Therefore, the PASS algorithm finds the largest subset .S,

1
2(mT+1)
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with the average individual p-value equals %, which in this case is the approximate subset

S3.

N[

The PASS algorithm is presented in Algorithm 1. Given a target data set 7', a source
data set .S, and an instance nonconformity function A, it first computes the nonconformity
SCores (g, 4,) for the source instances (zs,ys) € S using the instance nonconformity function
A. Then, the source data set S is sorted in increasing order of the nonconformity scores
Q(z,,y,); 1-6. 1t becomes sorted in decreasing order of the individual p-values. This implies
that the average p, of individual p-values of the instances in S, is decreasing with the index
n. Therefore, the PASS algorithm employs the binary-search method on the sorted source
data S to generate the largest source subset S,, with the average individual p-value greater
than or equal to %

Algorithm 1 PASS: Pre-training selection algorithm based on individual relevance

Input: Target data T', Source data S, Instance nonconformity function A.
Output: Largest source subset S,, with the mean individual p-value p, equal to %

1: for each source instance (zs,ys) € S do

2:  Set the nonconformity score ay,, ) equal to A(T, (zs,ys));

3: end for

4: Sort the source data S in increasing order of the nonconformity scores o, y.);
5: Set the left counter L equal to 1 and the right counter R equal to mg — 1;
6: while L < R do

7:  Set the middle index n equal to LL%J,

8  Set p, as the mean of the individual p-values of the instances in S,,;

9:  Set pnp41 as the mean of the individual p-values of the instances in Sj,41;
10:  if p, > % and Pyi1 < § then
11: break;
12:  elseif p, > ¢ then
13: Set L equal to n + 1;
14:  else
15: Set R equal to n — 1;
16:  end if

17: end while
18: output S,.

5. Feature Selection Wrappers

The wrapper method is a standard method for feature selection proposed in (Kohavi and John,
1997). The method examines the space of all possible combinations of the input features
X* according to a chosen search algorithm. The goal is to find that feature combination for
which generalization performance of a given classifier is maximized.

To formally introduce the wrapper method we observe that any possible combination of
the input features X* is given by a index set K C {1,2,..., K}, where K is the number
of the features. Hence, the space of all possible combinations of the input features X*
can be uniquely represented by the power set P({1,2,...,K}). We note that the power set
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P({1,2,...,K}) is a partially-ordered set and, thus, it can be systematically examined using
any search algorithm. When the search algorithm visits any index set £ € P({1,2,...,K}),
the wrapper method estimates the generalization power of a classifier on the input features
XF* for k € K. Once the search algorithm stops, the wrapper method outputs that index set
K that specifies a set {X*}rcx of features for which the generalization power of the classifier
is maximized (see Algorithm 2).

Algorithm 2 FSW: Feature Selection Wrapper

Input: K input features X*, Target data T, Classifier h, Search algorithm SA4,
Initial index set Z C {1,2,...,K}.
Output: index set K C {1,2,..., K} so that the generalization performance of h is
maximized for {X*} ek
1: Set the set V' of the visited index sets equal to {Z};
2: repeat
3:  Determine the set C' of the candidate index sets from the members of V' according to
the search algorithm SA4;
4:  Determine the set R of the index sets that are directly reachable from the index sets
in C according to the search algorithm SA;
5:  Evaluate the generalization performance of h on the feature subset {X*},cx defined
by any index set K in R;
6: Retain in R those index sets that result in a better generalization performance of h
compared with that for any index set in C;
7. Set V equal to V U R,
8: until R # ()
9: Output index set K in V that results in a maximal generalization performance of h.

6. Conformal Feature-Selection Wrappers for Instance Transfer

In this section we describe the proposed method, namely conformal feature-selection wrap-
pers for instance transfer (CFSWIT). Given the target data, the source data, and a clas-
sification model, the method selects a large subset of features and the largest subset of
source data that corresponds to the selected features. The distinctive characteristic of the
CFSWIT method is that the selection of features and source instances is realized with re-
spect to the classification model. Thus, the CFSWIT method is indeed a wrapper and its
pseudo-code is similar to that given in Algorithm 2. The main difference is the way how the
generalization performance of the classifier h is estimated for a set features {X*}pcx with
K C{1,2,...,K} (see line 5 in Algorithm 2).

The pseudocode for conformal instance-transfer estimation of the classifier’s generaliza-
tion performance (CITCGP) for a set features is given in Algorithm 3. Given a classifier h,
all the input features X*, a particular index set K, target data T and source data S, the
algorithm estimates the generalization performance of h for the input features {X*}rcx as
follows. First, it represents the target data 7" and the sourceAcllata S with the features X* for
k € K only. Then, the algorithm selects the largest subset S2 of the source data S with set
p-value close to % For that purpose it employs the PASS algorithm. The PASS algorithm

10
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uses the general non-conformity function based on the classifier & (Shafer and Vovk, 2008).
Formally, given the target training data 7" and a source instance (z,y), the function outputs
a score « equal to:

Z Syi>
Yi€EY,yi#Y
where s,, is the score of the i-th class in the class set Y produced by h trained on target
training data T'.

Algorithm 3 CITCGP: Conformal Instance-Transfer Estimation of Classifier Generaliza-
tion Performance
Input: Classifier h, K input features X*, Index set K C {1,2,...,K},
Target data T', Source data S.
Output: an estimate of the generalization performance of h for {X*}cx.

1: Represent the target data ? and the source data S with the features X* for k € K;
2: Select the largest subset Sz of the source data S with set p-value close to % (using the
PASS algorithm with the general non-conformity function based on h);

3: Estimate the generalization performance of the classifier h on T U $3 using a repeated
cross validation;
4: Output estimate of the generalization performance of h.

The general non-conformity function based on the classifier h is used in order to tailor
selecting relevant source instances (S %) to the specific set of features {X*}icx through
the classifier h. Once the the largest source subset $2 was selected, the generalization
performance of the classifier h is estimated on the union of 7' and S 3. The estimation process
is implemented using a repeated cross-validation procedure. When it stops, the estimated
generalization performance of the classifier h is outputted for the features {X*}ex.

Depending on the application (target) domain any useful evaluation criterion can be
used to measure the generalization performance of the classifier h. In our experiments we
employed area under ROC curve (AUC) (Bradley, 1997).

As it is suggested above our CFSWIT method is represented by Algorithm 2 where
the evaluation of the classifier generalization performance is realized by Algorithm 3. The
method outputs a feature subset and the largest relevant source-subset for the selected
features. In this context, we note that the CEFSWIT output is sensitive to the initialization
procedure (see Algorithm 2, line 1). If we start with the initial index set Z equal to the
set {1,2,..., K} (backward elimination mode), the wrappers usually produce relatively large
index sets K (i.e feature sets {X*}rexc). If we start with the initial index set Z equal to the
empty set () (forward selection mode), the wrappers usually result in relatively small feature
sets {X*}rcx. In instance transfer is advisable to be more conservative, i.e. to have larger
feature sets { X*}ex to represent the data. In this way we preserve more information from
the target data and use hopefully more relevant information from the source data. That is
why, our CFSWIT method is initialized in the backward elimination mode with the initial
index set Z equal to the set {1,2,..., K}. This means that the method aims at finding the
largest feature sets {X*},cx which however depends on the search algorithm used.
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From the above we may conclude that the CFSWIT method aims at selecting a large
subset of features and the largest relevant subset of source data that corresponds to a com-
ponent of the source distribution estimated to be close the target distribution on the selected
features. The distinctive characteristic of the method is that all the estimation procedures
are implemented using a given classification model. This means that the final results are
tailored to the classification model and aim at boosting its generalization performance. The
CFSWIT method can be applied for any type of classification models. Thus, as a wrapper
it is a model-independent method.

7. Experiments and Results

This section presents our experimental set-up, results, and analysis. The instance-transfer
tasks under study are described in Subsection 7.1. The experimental set-up is provided in
Subsection 7.2. In Subsection 7.3, the generalization performance of the CFSWIT method
and other standard instance-transfer methods is evaluated and compared.

7.1. Instance-transfer Classification Tasks

In the experiments, we considered five instance-transfer classification tasks defined on real-
world data sets that are commonly used in transfer learning research. FEach task is given
with a target data set and a source data set, described in Table 1. The instance-transfer
tasks are defined below.

e The first instance-transfer classification task is the landmine detection task (Xue et al.,
2007). The landmine detection data is a collection of data sets related to detecting
landmine in different geographical locations. It consists of 29 data sets from 29 land-
mine fields. The 29 data sets have different distributions due to various ground surface
conditions. For example, the data sets “Mine 1" to “Mine 15" correspond to regions
that are relatively foliated while the data sets “Mine 16" to “Mine 29" correspond to
regions that have bare earth. We used the data set “Mine 29" as the target data, and
use the data set “Mine 1" as the source data. To guarantee that the target data and the
source data are distributed differently for some features, we manipulated the marginal
distribution of the feature with the highest information-gain ratio for the source data
by adding random noise generated from the standard uniform distribution.

e The second instance-transfer classification task is the wine quality task (Cortez et al.,
2009). The wine quality data consists of 1599 red-wine and 4898 white-wine instances.
Each instance is represented by 11 physiochemical features (e.g. PH values) and a
grade given by experts. We used a random sample from the red wine data as the
target data and used a random sample of the white wine data as the source data. To
guarantee that the target data and the source data are distributed differently for some
features, random noise generated from the standard uniform distribution was added
to two features with the highest information-gain ratios for the source data.

e The third instance-transfer classification task is the survival prediction task from the
Trial of Intensified versus Standard Medical Therapy in Elderly Patients With Conges-
tive Heart Failure (TIME-CHF ) (Brunner-La Rocca et al., 2006; Pfisterer et al., 2009).

12
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Each patient instance is described by 18 bio-markers, and a class label indicating the
survival or death of a patient within 5.5 years follow-up. The patient bio-markers and
class labels are collected from five different medical centers after the first follow-up
period. We used the data from Center 14 as the target data set and data from the
other four centers were combined together in a source data set.

e The fourth and fifth instance-transfer classification tasks are defined on the exam
records of students from two Portuguese schools: Gabriel Pereira and Mousinho da
Silveira (Cortez and Silva, 2008). Each exam record is considered as an instance that
is represented by a series of demographic, social, and school related features and a
binary grade (pass or no pass). In the experiments, we defined a binary classification
task on the grades. The two instance-transfer tasks are defined as follows: the fourth
task (referred to as Student 1) use the students’ Mathematics exam records of school
Mousinho da Silveira as the target data, and use the Portuguese exam records of the
same group of students as the source data; the fifth task (referred to as Student 2)
employ the same target data as the first task, but use the students’ Mathematics exam
records of school Gabriel Pereira as the source data.

Table 1: Descriptions of the data sets for instance-transfer classification tasks

Task Number of | Data set size
Classes T | |S|
Landmine 2 449 | 690
Wine Quality | 3 159 | 1499
TIME-CHF 2 81 | 453
Student 1 2 46 | 46
Student 2 2 46 | 349

7.2. Experimental Set-up

The CFSWIT method was initialized as follows. The search method employed was the
best-first search method. The algorithm for selecting the largest relevant source subset
was the algorithm PASS (described in Section 4.3). The algorithm employed the general
nonconformity function based on the classifier used. The predictive power of the feature
subsets was evaluated using the Area Under the ROC Curve (AUC) (Bradley, 1997). The
internal procedure for classifier evaluation in the CFSWIT method was 5-times repeated
5-fold cross validation.

The CFSWIT method was compared with the seven instance-transfer methods presented
in Section 2. The methods based on feature selection were represented by the MMDE method
and the -MMD method. The methods were initialized as follows: (1) the dimension size
of the reduced feature space for the MMDE method was set equal to 10; (2) the features
for the -MMD method with weights higher than 0.1 were excluded. The methods based
on source-instance selection were represented by the TrAdaBoost method, the Dynamic-
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TrAdaBoost method, the TraBagg method, and the DoubleBootStrap method. The methods
were initialized for iteration number equal to 100.

The CFSWIT method, the methods based on feature selection , and the methods based
on source-instance selection were applied for three types of base classifiers: C4.5 decision
trees (DT) (Quinlan, 1993), support vector machines (SVM) (Boser et al., 1992) with RBF
kernel, and Naive Bayes classifiers (Mitchell, 1997). When the base classifiers were C4.5
decision tree, all the methods were compared with conformal decision trees for instance
transfer (CDTIT), since this a method that combines both feature selection and source-
subset selection. The implementation of CDTIT was that based on the C4.5 decision trees.

The external procedure of evaluation for all the methods was 10-times repeated 10-fold
cross validation on the target data; i.e., the source data was used as auxiliary training data
only. The generalization performance of all the methods was evaluated using AUC. The
performance of C4.5, SVM and NaiveBayes for the case of no instance transfer was used as
baseline. A paired t-test is performed with significance level 0.05 to find significantly better
(or worse) results with respect to the corresponding baseline classifier.

7.3. Results

The results when the C4.5 trees were used as baseline classifiers are presented in Table 2.
From the table we see that the CDTIT method achieves the best generalization performance
for all the instance-transfer classification tasks. It gains a margin of 0.08 over the AUC of the
baseline classifier in the best case (the TIME-CHF task). The proposed CFSWIT method
has the second best generalization performance (achieves 3 wins out of 5). It achieves
significant better results than the baseline classifier over all the tasks, but a bit worse
than CDTIT. This is due to the fact that CDTIT is more flexible than CFSWIT: CDTIT
performs a multivariate instance transfer as a series of several univariate instance transfers
while CFSWIT performs a non-decomposable multivariate instance transfer.

Dynamic

Tasks Baseline | CFSWIT| CDTIT | MMDE | £MMD | 492 | miada | TraBagg | DOUPI
Boost Bootstrap
Boost
Landmine 0.55 0.58* 0.59* 0.56 0.527 | 0.57 0.56 0.56 0.57

Wine Quality | 0.60 0.64* | 0.66* | 0.58 0.59 0.62 0.63 0.64* | 0.66"
TIME-CHF 0.58 0.64* | 0.66* | 0.55~ | 0.61* | 0.60 0.60 0.64* | 0.64*
Student 1 0.71 0.74* | 0.77* | 0.67~ | 0.68~ | 0.65~ | 0.74 0.617 | 0.68™
Student 2 0.71 0.74* | 0.78* | 0.70 0.71 0.71 0.74* | 0.85* | 0.71

Table 2: AUCs of CFSWIT, CDTIT, MMDE, {-MMD, TrAdaBoost, Dynamic-TrAdaBoost,
TraBagg and DoubleBootStrap employing C 4.5 as the base classifier. *(—) denotes
significantly better (worse) results w.r.t the baseline classifier.

The results when SVMs and Naive Bayes were used as baseline classifiers are presented in
Tables 3 and 4, respectively. From the tables we see that the CEFSWIT method has the best
generalization performance compared with the other instance transfer methods: it achieves
3 wins out of 5 for both SVMs and Naive Bayes. The second best is the Double-BootStrap
method with 2 wins out of 5 for SVMs only. The CFSWIT method does not result in
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negative transfer while any other instance transfer method has at least one experiment with
negative transfer.

If we analyze Tables 3 and 4 we observe that the CEFSWIT method does not fail because
the component of the source distribution on the final subset of features that corresponds to
the selected source instances is indeed close to the target distribution for all the experiments.
This does not always happen for other methods because they either select features or source
instances; i.e. they are much less flexible.

Dynamic
Tasks Baseline | CFSWIT| MMDE | £MmD | LrAda iy qa | TraBagg | DOUPle-
Boost Bootstrap
Boost
Landmine 0.59 0.62* 0.62* 0.58 0.55 0.56 0.64* 0.59

Wine Quality | 0.72 0.74 0.67~ | 0.72 0.67~ | 0.66— | 0.70 0.74
TIME-CHF 0.68 0.70* | 0.62~ | 0.70* | 0.64= | 0.64~ | 0.67 0.69
Student 1 0.63 0.70* | 0.64 0.65 0.63 0.65 0.67 0.71*
Student 2 0.63 0.80* | 0.72* | 0.74* | 0.63 0.64 0.78* | 0.72*

Table 3: AUCs of CFSWIT, EmbedSR-DT, MMDE, {-MMD, TrAdaBoost, Dynamic-
TrAdaBoost, TraBagg and DoubleBootStrap employing SVM as the base classifier.
*(—) denotes significantly better (worse) results w.r.t the baseline classifier.

Dynamic

Tasks Baseline | CFSWIT| MMDE | £MMD | A2 | piadar | TraBagg | DOUPIe-
Boost Bootstrap
Boost
Landmine 0.56 0.58* 0.63* 0.59* 0.47— | 047~ | 0.56 0.56

Wine Quality | 0.72 0.75 0.66~ | 0.73 0.69~ | 0.69 | 0.74 0.75
TIME-CHF 0.71 0.74* | 0.59~ | 0.74* | 0.76* | 0.76* | 0.72 0.74*
Student 1 0.68 0.79* | 0.69 0.70 0.63 0.61— | 0.73* | 0.71
Student 2 0.68 0.77* | 0.66 0.71* | 0.62 0.62 0.75* | 0.73*

Table 4: AUCs of CFSWIT, EmbedSR-DT, MMDE, f-MMD, TrAdaBoost, Dynamic-
TrAdaBoost, TraBagg and DoubleBootStrap employing NaiveBayes as the base
classifier. %(—) denotes significantly better (worse) results w.r.t the baseline clas-
sifier.

If we compare the results for the methods in Tables 2-4, we observe that the generalization
performance is lowest when the base classifiers are the C4.5 decision trees and highest when
base classifiers are the Naive Bayes classifiers. This shows the importance of the option of
choosing the base classifiers. This option is provided by the model-independent methods
such as the CFSWIT method.

8. Conclusion

In this paper we proposed the new method of conformal feature-selection wrappers for
instance transfer (CFSWIT). Given a classification model in the presence of target data and
source data, the method performs feature selection and source-subset selection for this model.
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For that purpose the CFSWIT method examines the space of feature subsets according to
a search algorithm chosen. When it evaluates a set of features, it considers both target and
source data represented only by these features. Under this constraint, the method first finds
the largest relevant set of source instances that can be selected using a conformal source-
subset selection procedure from (Zhou et al., 2017¢). Then, it estimates the generalization
performance of the classification model on the target data and selected source instances.
Once the search algorithm completes the examination of the space of feature subsets, the
CFSWIT method outputs a large subset of features and the largest relevant subset of source
data for these features for which the generalization performance of the classification model
is maximized. In this respect the CFSWIT method is similar to the conformal decision trees
for instance transfer (Zhou et al., 2017b) and is different from any mechanical combination
of instance-transfer methods based on either feature selection or source-instance selection.

The experiments showed that the CFSWIT method is capable of outperforming several
instance-transfer methods. This means that practically combining feature selection and
source-instance selection is a powerful approach to instance transfer which the CFSWIT
method exemplifies as a model-independent method.
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