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tIn this paper we propose a new method of 
onformal feature-sele
tion wrappers for instan
etransfer (CFSWIT). Given target and sour
e data, the method optimally sele
ts featuresand sour
e data that are relevant for a 
lassi�
ation model. The CFSWIT method is model-independent. It was tested experimentally for several types of 
lassi�ers. The experimentsshow that the CFSWIT method is 
apable of outperforming standard instan
e transfermethods.Keywords: Instan
e Transfer, Conformal Predi
tion, Feature Sele
tion, Wrappers1. Introdu
tionInstan
e transfer was proposed to improve 
lassi�
ation models for a target domain of interestby making use of the data borrowed from an auxiliary sour
e domain (Pan and Yang, 2010;Weiss et al., 2016). The target and sour
e domains share the same input feature spa
eand the same 
lass-label set but di�er in the underlying probability distributions. If thesour
e domain is relevant to the target domain; i.e., the sour
e distribution is 
lose to thetarget distribution, instan
e transfer 
an signi�
antly improve the 
lassi�
ation models forthe target domain (Torrey and Shavlik, 2009), espe
ially for small target data (Dai et al.,2007b).Estimating the 
loseness of the sour
e distribution to the target distribution is a di�
ultproblem. This is due to the fa
t that the target and sour
e probability distributions are usu-ally unknown. There exist two main approa
hes to this problem that are both data-driven.The �rst approa
h measures the 
loseness of the sour
e distribution to the target distributionby �rst estimating the parameters of the distribution fun
tions from the target and sour
edata (Dai et al., 2007a,b; Zhou et al., 2015; Tan et al., 2015). Then, it 
omputes the dis-tan
es between estimated distribution fun
tions to approximate the distribution 
loseness.The se
ond approa
h measures the 
loseness of the sour
e distribution to the target distri-
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e data are generatedfrom the same distribution (Zhou et al., 2017a).Following the results of both approa
hes, if we �nd that the sour
e distribution is 
loseto the target distribution, we add the sour
e data to the target data and then train thetarget 
lassi�
ation model. However, if we �nd that the sour
e distribution is not 
lose tothe target distribution, we 
an follow one of the three s
enarios given below:
• no instan
e transfer: we 
an
el the instan
e transfer and train the target 
lassi�-
ation model on the target data only.
• sour
e-instan
e sele
tion: we sele
t a subset of the sour
e instan
es that 
orre-sponds to a 
omponent of the sour
e distribution estimated to be 
lose to the targetdistribution 1. If the subset is nonempty, we add it to the target data and then trainthe target 
lassi�
ation model.
• feature sele
tion: we sele
t a subset of features for whi
h the sour
e distribution isestimated to be 
lose to the target distribution. If the subset is nonempty, the targetand sour
e data are represented by the sele
ted features only. The sour
e data is addedthe target data, and, then, the target 
lassi�
ation model is trained.When the last two s
enarios fail, we 
an follow a forth s
enario of 
ombining featuresele
tion and sour
e-instan
e sele
tion. In this s
enario we sele
t a subset of features and asubset of sour
e data that 
orresponds to a 
omponent of the sour
e distribution estimatedto be 
lose the target distribution on the sele
ted features. This task assumes that sele
tingfeatures and sele
ting sour
e data are mutually dependent, and thus 
annot be realized bya me
hani
al 
ombination of the instan
e-transfer methods based on feature sele
tion andinstan
e-transfer methods based on sour
e-instan
e sele
tion. So far, Zhou et al. (2017b)proposed the only method available for mutually dependent feature and sour
e-instan
esele
tion. The method realizes this property using de
ision trees (Quinlan, 1993) in an uni-variate manner by imposing an additional restri
tion that the �nal features have a good pre-di
tive power. The experiments showed that this method outperforms the existing instan
etransfer methods based on either sour
e-instan
e sele
tion or feature sele
tion. However,this method is tailored to de
ision trees; i.e., it is model-dependent.In this paper we propose a model-independent method for the task of 
ombining featuresele
tion and sour
e-instan
e sele
tion. The method is essentially a wrapper method forfeature sele
tion (Kohavi and John, 1997). Given a 
lassi�
ation model that needs featuresele
tion, our method examines the spa
e of feature subsets a

ording to a 
hosen sear
hstrategy. When it evaluates a set of features, it 
onsiders both target and sour
e datarepresented by these features only. Under this 
onstraint, our method �rst �nds the largestrelevant set of sour
e instan
es that 
an be sele
ted using a 
onformal sour
e-subset sele
tionpro
edure proposed by (Zhou et al., 2017
). Then, it estimates the generalization perfor-man
e of the 
lassi�
ation model on the target data and sele
ted sour
e instan
es. On
e our1. The sour
e-instan
e sele
tion impli
itly assumes that the sour
e distribution is a mixture distribution.The sele
ted instan
es are expe
ted to be those that are generated by a 
omponent of the sour
e distri-bution that is 
lose to the target distribution. 2



Conformal Feature-Sele
tion Wrappers for Instan
e Transfermethod has visited and evaluated all the feature subsets a

ording the sear
h strategy 
ho-sen, it determines a subset of features with the maximal generalization performan
e. Thissubset is outputted together with the 
orresponding largest relevant set of sour
e instan
es.We note that our method assumes that the pro
ess of examining the spa
e of featuresubsets starts from the set of all the features. That is why, the �nal subset of features isrelatively large. Thus, our method outputs a large subset of features and the largest subsetof sour
e data that 
orresponds to a 
omponent of the sour
e distribution estimated to be
lose the target distribution on the sele
ted features.The remainder of this arti
le is stru
tured as follows. Se
tion 2 provides an overviewof the related work. The 
lassi�
ation task in 
ontext of instan
e transfer is formulated inSe
tion 3. Se
tion 4 explains the 
onformal test and its 
orresponding sour
e-subset sele
tionpro
edure. The wrapper method is given in Se
tion 5. Se
tion 6 introdu
es the main
ontribution of this arti
le, namely the 
onformal feature-sele
tion wrappers for instan
etransfer. The experiments are provided in Se
tion 7. Se
tion 8 
on
ludes the arti
le.2. Related WorksAs it was stated in the previous se
tion there exist two types of methods for instan
e transferwhen the relevan
e of the sour
e domain is not su�
ient for the target domain: methodsbased on sour
e-instan
e sele
tion and methods based on feature sele
tion. In this se
tionwe provide an overview of these two types of methods as well as the only 
ombined method.2.1. Methods based on Sour
e-Instan
e Sele
tionMethods based on sour
e-instan
e sele
tion transfer relevant sour
e instan
es to improve
lassi�
ation models for the target domain (Zhou et al., 2017
). Sour
e-instan
e sele
tion
an be done in two ways: soft sele
tion and hard sele
tion. The soft sele
tion pi
ks thesour
e instan
es impli
itly. It assigns weights to sour
e instan
es proportionally to theirrelevan
e to the target data. In this way the in�uen
e of the less relevant sour
e instan
esis restri
ted 
ompared with that of most relevant ones when the �nal 
lassi�
ation modelis being trained. The hard sele
tion pi
ks the sour
e instan
es expli
itly. It dire
tly sele
tssour
e instan
es depending on their relevan
e to the target data. In this way only the mostrelevant sour
e instan
es in�uen
e training of the �nal 
lassi�
ation model.The soft sele
tion was implemented in several boosting-based methods, e.g., TrAdaBoost(Dai et al., 2007a) and Dynami
-TrAdaBoost (Al-Stouhi and Reddy, 2011). These methodsare similar to the AdaBoost algorithm (Freund and S
hapire, 1996) but employ two oppositeweight-update s
hemes depending on the type of the instan
es: (1) the weights of mis
lassi-�ed target instan
es are in
reased, and (2) the weights of mis
lassi�ed sour
e instan
es arede
reased. In theory the average weighted training loss of boosting-based algorithms on thesour
e data is guaranteed to 
onverge to 0 as the number of iterations approa
hes in�nity(Dai et al., 2007a). This implies that in this 
ase the relevant sour
e instan
es will be 
las-si�ed 
orre
tly and the irrelevant sour
e instan
es will re
eive a weight of 0; i.e., there willbe a perfe
t sele
tion of the sour
e instan
es. However, in pra
ti
e when most of the sour
einstan
es are irrelevant, these algorithms are likely to stop at very �rst iterations be
ausethe training error on target data ex
eeds 0.5 in early iterations. In this 
ase, the irrelevant3
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e instan
es are not �ltered out and 
ause a negative e�e
t on the �nal 
lassi�
ationmodel.The hard sele
tion is implemented in several bagging-based methods. There are twotypes of implementations: dire
t and indire
t. Double-Bootstrap (Lin et al., 2013) is anexample of dire
t implementation. It �rst 
onstru
ts an ensemble of 
lassi�
ation modelstrained on bootstrap samples from the target data. Then the ensemble 
lassi�es the sour
einstan
es and those of them that are 
orre
tly 
lassi�ed are sele
ted. Thus, when most ofthe sour
e instan
es are irrelevant, this method tends not to sele
t sour
e instan
es; i.e., theinstan
e transfer pro
ess stops.TrBagg (Kamishima et al., 2009) is an example of an indire
t implementation of thehard instan
e sele
tion. It �rst randomly generates a set of bootstrap samples from the
ombined target and sour
e data, and then trains several base 
lassi�
ation models on thosesamples. Finally, a subset of the base 
lassi�
ation models are sele
ted by minimizing theempiri
al error on the target data. The latter means that sour
e subsets that are 
ontainedin the bootstrap samples are indire
tly sele
ted through sele
ting the base models. AlthoughTraBagg is simple, it has similar problem as the boosting methods when the sour
e datais rather irrelevant. In this 
ase TrBagg requires a large number of bootstrap iterations to�lter out irrelevant sour
e instan
es whi
h makes it 
omputationally ine�
ient.2.2. Methods based on Feature Sele
tionMethods based on feature sele
tion aim at �nding relevant features for whi
h the sour
edistribution be
omes 
loser to the target distribution. Histori
ally, in instan
e transfer thesemethods were pre
eded by feature transformation methods (Pan et al., 2008, 2011). That iswhy, for the sake of 
ompleteness of the presentation we �rst 
onsider feature transformationmethods and then feature sele
tion methods.The feature transformation methods operate as follows. First they sear
h for a low-dimensional feature spa
e where the target data and sour
e data are relevant. Then, theytrain 
lassi�
ation models on the target data and sour
e data in that spa
e. The MaximumMean Dis
repan
y Embedding (MMDE) is of one of the �rst representative of the featuretransformation methods (Pan et al., 2008). It �rst learns a kernel matrix 
orresponding to anonlinear transformation that proje
ts the target data and sour
e data to a latent spa
e inwhi
h the distan
e between the two data sets is minimized. The distan
e between the datasets is measured by Maximum Mean Dis
repan
y (MMD) s
ore (Borgwardt et al., 2006).Then, MMDE applies Prin
ipal Component Analysis (PCA) (Jolli�e, 2011) on the learnedkernel matrix to obtain a low-dimensional feature spa
e for the target data and sour
edata. The new spa
e allows any 
lassi�
ation algorithm to be trained on the target andsour
e data. Re
ently the 
omputational ine�
ien
y of MMDE was addressed in (Pan et al.,2011). As a result a new feature transformation method was proposed, namely TransferComponent Analysis (TCA). TCA has proven itself as e�e
tive as MMDE but mu
h more
omputationally e�
ient.Maximum Mean Dis
repan
y (f-MMD) is a feature sele
tion methods that was proposedin (Uguroglu, 2011). It is based on the MMD s
ore as well. However, instead of �nding alow-dimensional representation for the target data and sour
e data jointly, f-MMD identi�esa subset of features (
alled variant features) whi
h 
ontribute the most to the MMD s
ore4



Conformal Feature-Sele
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e Transferand ex
ludes them. The problem of �nding variant features is formulated as a 
onvexoptimization problem. More pre
isely, a weight matrix, the diagonal of whi
h 
orrespondsto the weights of all the features, is in
orporated in the MMD 
al
ulation. The variantfeatures are expe
ted to re
eive higher weights after optimization, sin
e they minimize thenegative MMD s
ore in the obje
tive fun
tion. That is to say the variant features are de�nedas those that 
ontribute most to maximizing the MMD between data sets.Analyzing the methods 
onsidered in this subse
tion we note mainly two drawba
ks.First, these methods may impair geometri
 or statisti
al properties of the original targetand sour
e data due to the dimensionality redu
tion. Se
ond, these methods learn the low-dimensional spa
e in an unsupervised manner and dismiss the relevan
e of the input featuresfor the 
lass labels. Some of the removed features may have a strong 
lass relevan
e andin�uen
e the performan
e of resulting 
lassi�
ation models.2.3. Conformal De
ision Trees for Instan
e TransferConformal de
ision trees for instan
e transfer (CDTIT) were proposed in (Zhou et al.,2017b). They represent an instan
e-transfer method that 
ombines feature sele
tion andsour
e-instan
e sele
tion. The method employs the standard de
ision-tree algorithm (Quinlan,1993) to 
onstru
t trees. Univariate instan
e transfer is performed on the level of featuresele
tion for test nodes of de
ision trees. More pre
isely, at ea
h test node the method �rstsele
ts for every feature the largest sour
e subset whi
h is relevant to the target data whenonly 
onsidering this feature. The relevan
e of sour
e instan
es is de
ided by a statisti
altest, namely 
onformal test (Zhou et al., 2017a). Then, the method estimates the predi
tivepower of this feature on the target data and the sele
ted sour
e subset using some measures.On
e the predi
tive power of all features were estimated, the method sele
ts the feature withthe highest predi
tive power for this test node (i.e. the best feature is determined based onthe target data and most relevant sour
e instan
es and its predi
tive power). We note that
onstru
ting a de
ision tree 
onsists of a series of su
h steps of univariate instan
e transferand feature sele
tion. Thus, the 
onformal de
ision trees are essentially an embedded multi-variate feature sele
tion method for instan
e transfer based on univariate sour
e instan
esele
tion and feature sele
tion.The 
onformal de
ision trees demonstrated the power of 
ombining feature sele
tion andsour
e-instan
e sele
tion for instan
e transfer. However, the results are restri
ted to de
isiontrees only. In this paper we address this issue by developing a model independent method.3. Classi�
ation Tasks and SolutionsLet X be a instan
e spa
e de�ned by K input features Xk, k ∈ {1, 2, . . . ,K} and Y be a�nite 
lass set. A domain is de�ned as a tuple 
onsisting of a labeled spa
e (X × Y ) anda probability distribution P over (X × Y ). We 
onsider �rst a domain 〈(X × Y ), PT 〉 thatwe 
all a target domain (domain of interest). The target data set T is a multi set of mTinstan
es (xt, yt) ∈ X×Y drawn from the target distribution PT under the i.i.d assumption.Given a test instan
e xmT+1 ∈ X, the target 
lassi�
ation task is to �nd an estimate ŷ ∈ Yfor the true 
lass of xmT+1 a

ording to PT .Let us 
onsider a se
ond domain 〈(X×Y ), PS〉 that we 
all a sour
e domain. The sour
edata S is a multi set of mS instan
es (xs, ys) ∈ X × Y drawn from the sour
e distribution5
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PS under the i.i.d assumption. Assuming that the sour
e domain is relevant to the targetdomain (i.e. PS is 
lose to PT ), the instan
e-transfer 
lassi�
ation task is to �nd an estimate
ŷ ∈ Y for the true 
lass of xmT+1 a

ording to PT using sour
e data S as an auxiliarytraining data.To solve the 
lassi�
ation tasks de�ned above we train a 
lassi�er h(x) in a hypothesisspa
e H of 
lassi�ers h (h : X → 2Y). We note that for the target 
lassi�
ation task h(x) isbased on T . For the the instan
e-transfer 
lassi�
ation task the 
lassi�er h(x) is based on
T and sele
ted sour
e instan
es from S. On
e the 
lassi�er is available, it outputs for anytest instan
e xmT+1 a posterior distribution of s
ores {sy}y∈Y . The 
lass y with the highestposterior s
ore sy is the estimated 
lass ŷ for the instan
e x.4. Conformal test for sour
e relevan
eThe 
onformal feature-sele
tion wrappers for instan
e transfer that we propose in this paperare based on the 
onformal test (CT) introdu
ed in (Zhou et al., 2017a). The test is usedto estimate the relevan
e of the sour
e data to the target data. In the following, we �rstdes
ribe the CT and the p-value fun
tion it employs. Then, we explain and 
ompare twodi�erent ways to use the CT for sour
e relevan
e estimation. Finally, we introdu
e thealgorithm we used for sele
ting the largest sour
e subset based on the CT.4.1. Conformal TestThe CT is proposed under the ex
hangeablity assumption of data generation (Aldous, 1985)2. It works with data sequen
es. Given a target data sequen
e T and a sour
e data sequen
e
S , it de
ides the relevan
e of S to T by testing the null hypothesis that the 
on
atenateddata sequen
e TS was generated by the target distribution PT under the ex
hangeabilityassumption.To test the null hypothesis, CT makes use of the 
onformal predi
tion framework thatwas introdu
ed in (Shafer and Vovk, 2008; Vovk, 2014). The test employs the non
onformitys
ores of subsequen
es of TS as statisti
s for the null hypothesis. The non
onformity s
ore ofa subsequen
e 
an be 
omputed based on the non
onformity s
ores of the instan
es 
ontainedin the subsequen
e. Given the 
on
atenated sequen
e TS, the non
onformity s
ore α of aninstan
e (x, y) ∈ TS is a positive real number that indi
ates how strange the instan
e (x, y)is for the sequen
e T . To 
ompute the instan
e non
onformity s
ores we need an instan
enon
onformity fun
tion A. If (X × Y )(∗) represent the set of all sequen
es de�ned over
(X×Y ), the instan
e non
onformity fun
tion A is a mapping from (X×Y )(∗)× (X×Y ) to
R
+∪{+∞} that measures the degree of strangeness of an instan
e in relation to a sequen
e.To 
ompute the sequen
e non
onformity s
ores we need a sequen
e non
onformity fun
-tion. Given the 
on
atenated sequen
e TS and a subsequen
e U of some elements of T ∪S,the sum sequen
e non
onformity fun
tion returns a s
ore αU indi
ating how strange thesubsequen
e U is with respe
t to all subsequen
es with size |U | of the data sequen
e TS.2. The ex
hangeability assumption is a weaker assumption than the randomness assumption. It holds fora sequen
e of random variables if and only if the joint probability distributions of any two permutationsof those variables 
oin
ide. 6



Conformal Feature-Sele
tion Wrappers for Instan
e TransferDe�nition 1 (Sum Sequen
e Non
onformity Fun
tion) Given an instan
e non
on-formity fun
tion A, data sequen
es T and S, and a subsequen
e U of some elements of T ∪S,the sum sequen
e non
onformity fun
tion A∗ : (X × Y )(∗) × (X × Y )(∗) → R
+ ∪ {+∞} isde�ned as

A∗(T,U) =
∑

(x,y)∈U

α(x,y),where α(x,y) =

{

A(T \ {(x, y)}, (x, y)), for (x, y) ∈ T

A(T, (x, y)), otherwise.The CT employs sequen
e non
onformity s
ores as test statisti
s. The p-value fun
tionof the CT is de�ned as follows.De�nition 2 (p-Value Fun
tion)The p-value fun
tion is a fun
tion t : (X ×Y )(∗)×N →
[0, 1] de�ned as:

t(T, S) =
|{U ∈ P(TS,mS) : αU ≥ αS}|

|P(TS,mS)|
,where P(TS,mS) is the set of all subsequen
es of TS with length |S| = mS, αU and αS aresequen
e non
onformity s
ores returned by A∗(T,U) and A∗(T, s), respe
tively.The validity of the p-value fun
tion t was proven in (Zhou et al., 2017a). The p-valuereturned by the fun
tion t indi
ates the likelihood that the sequen
e TS was generated bythe target distribution PT under the ex
hangeability assumption. The higher the p-value is,the more relevant the sour
e sequen
e is to the target sequen
e. Therefore, this p-value 
anbe viewed as a non-symmetri
al measure of relevan
e of the sour
e data to the target data.The CT employs the p-value fun
tion t for testing the ex
hangeability of the 
on
atenateddata sequen
e TS. The sour
e data sequen
e is relevant to the target data sequen
e at thesigni�
an
e level ǫt ∈ [0, 1] if and only if the returned p-value is greater than or equal to ǫt.The CT was extended for data sets (sin
e the sum sequen
e non
onformity fun
tion

A∗(T,U) is independent of the ordering of the sequen
e U) (Zhou et al., 2017a). The p-value fun
tion t is rede�ned as follows:
t(T, S) =

|{U ∈ C(T ∪ S,mS) : αU ≥ αS}|

|C(T ∪ S,mS)|
,where T and S are the target and sour
e data sets, respe
tively, and C(T ∪S,mS) is the setof all subsets of T ∪ S with size mS = |S|.4.2. Measure individual relevan
e and set relevan
e by the p-value fun
tionAs it was mentioned in the previous subse
tion, the p-value returned by the fun
tion t 
anbe viewed as a non-symmetri
al measure of relevan
e of the sour
e data to the target data.Sin
e the p-value fun
tion t 
an be applied to sour
e data with arbitrary size, it allowsfor measuring the relevan
e of sour
e data in two di�erent ways. When the size of thesour
e data S equals 1 (mS = 1), fun
tion t estimates the individual relevan
e of a sour
einstan
e (xs, ys) with value t(T, {(xs, ys)}). When the size of the sour
e data is greater than1 (mS > 1), fun
tion t estimates the relevan
e of the sour
e set as a whole with value t(T, S).7
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e, set relevan
e is more pre
ise in terms of sour
e rel-evan
e estimation. A

ording to fun
tion t, if S = {(xs, ys)} then mS = 1, and |C(T ∪
S,mS)| = mT + 1, whereas the numerator is a positive integer. Consequently, the numberof possible individual p-value is bounded by mT + 1. If mS > 1, the number of possibleset p-value is bounded by |C(T ∪ S,mS)|, whi
h qui
kly grows mu
h larger than mT + 1.Therefore, the set p-value 
an better distinguish sets with di�erent non
onformity s
ores.Sour
e-subset sele
tion based on individual relevan
e is 
omputationally more e�
ientthan that based on set relevan
e. Assume that all instan
es in the sour
e data S are sortedin in
reasing order of non
onformity s
ores. A

ording to De�nition 2, we have that theindividual relevan
e of the sour
e instan
e with index s(s > 1) is always less than or equalto that of the sour
e instan
e with index s − 1, i.e., t(T, {(xs, ys)}) ≤ t(T, {(xs−1, ys−1)}).That is to say the individual relevan
e is a de
reasing fun
tion of the index s, and throughthe index s, it is also a de
reasing fun
tion of the non
onformity s
ore. When individualrelevan
e is employed to sele
t the largest subset of sour
e instan
es that passes the CT ata signi�
an
e level ǫt, we 
an simply apply binary sear
h on the sorted sour
e set to qui
kly�nd the last instan
e that has p-value no less than ǫt. The largest sour
e subset is thenformed by adding all the instan
es before this instan
e and the instan
e itself.The set relevan
e in general is not a monotoni
 fun
tion of the index s, and is not amonotoni
 fun
tion of the non
onformity s
ores as well. Let Ss be a subset 
onsisting of �rst
s(s > 1) instan
es of the sorted data S. For ea
h s we may have either t(T, Ss) ≤ t(T, Ss−1)or t(T, Ss) ≥ t(T, Ss−1). To better illustrate this 
laim, we provide the following example.Assume that TS 
onsists of target instan
e t1, t2, t3 asso
iated with non
onformity s
ores1,4,5, and sour
e instan
es s1, s2, s3 asso
iated with non
onformity s
ores 2,3,6 (note thatthe sour
e instan
es are sorted by in
reasing order of the non
onformity s
ores). In this 
ase,we have t(T, S1) = 0.75, t(T, S2) = 0.8 and t(T, S3) = 0.5. Due to the non-monotoni
ity,sour
e-subset sele
tion based on set relevan
e is 
omputationally ine�
ient.4.3. Pre-training Approximate Sele
tion for the Relevant Sour
e SubsetIf a sour
e subset is generated by the target distribution, the expe
ted p-value of this subset isequal to 1

2 . We 
all su
h a subset as relevant sour
e subset S 1
2 . Due to the non-monotoni
ityof the sour
e relevan
e �nding the largest relevant sour
e subset S 1

2 may involve repeatedappli
ation of the fun
tion t. To redu
e the 
omputational overhead, a pre-training approx-imate sele
tion algorithm for the relevant sour
e subset (denoted as PASS) was proposed in(Zhou et al., 2017
). The algorithm �nds a 
lose approximation Ŝ
1
2 of the largest relevantsubset S 1

2 at a small 
omputational 
ost.To illustrate the key idea behind the PASS algorithm assume that the sour
e data S issorted in in
reasing order of the non
onformity s
ores α(xs,ys) and Sn is a subset 
onsistingof the �rst n instan
es of the ordered sour
e data S. By Theorem 3 from (Zhou et al.,2017
), if the average of individual p-values of all instan
es in the sour
e subset Sn equals
1
2 + 1

2(mT+1) , then the set p-value of Sn is approximately equal to 1
2 . For large target datathe term 1

2(mT+1) 
an be ignored. Therefore, the PASS algorithm �nds the largest subset Sn8



Conformal Feature-Sele
tion Wrappers for Instan
e Transferwith the average individual p-value equals 1
2 , whi
h in this 
ase is the approximate subset

Ŝ
1
2 .The PASS algorithm is presented in Algorithm 1. Given a target data set T , a sour
edata set S, and an instan
e non
onformity fun
tion A, it �rst 
omputes the non
onformitys
ores α(xs,ys) for the sour
e instan
es (xs, ys) ∈ S using the instan
e non
onformity fun
tion

A. Then, the sour
e data set S is sorted in in
reasing order of the non
onformity s
ores
α(xs,ys); i.e. it be
omes sorted in de
reasing order of the individual p-values. This impliesthat the average p̄n of individual p-values of the instan
es in Sn is de
reasing with the index
n. Therefore, the PASS algorithm employs the binary-sear
h method on the sorted sour
edata S to generate the largest sour
e subset Sn with the average individual p-value greaterthan or equal to 1

2 .Algorithm 1 PASS: Pre-training sele
tion algorithm based on individual relevan
eInput: Target data T , Sour
e data S, Instan
e non
onformity fun
tion A.Output: Largest sour
e subset Sn with the mean individual p-value p̄n equal to 1
2 .1: for ea
h sour
e instan
e (xs, ys) ∈ S do2: Set the non
onformity s
ore α(xs,ys) equal to A(T, (xs, ys));3: end for4: Sort the sour
e data S in in
reasing order of the non
onformity s
ores α(xs,ys);5: Set the left 
ounter L equal to 1 and the right 
ounter R equal to mS − 1;6: while L ≤ R do7: Set the middle index n equal to ⌊

L+R
2

⌋;8: Set p̄n as the mean of the individual p-values of the instan
es in Sn;9: Set p̄n+1 as the mean of the individual p-values of the instan
es in Sn+1;10: if p̄n ≥ 1
2 and p̄n+1 <

1
2 then11: break;12: else if p̄n > ǫ then13: Set L equal to n+ 1;14: else15: Set R equal to n− 1;16: end if17: end while18: output Sn.5. Feature Sele
tion WrappersThe wrapper method is a standard method for feature sele
tion proposed in (Kohavi and John,1997). The method examines the spa
e of all possible 
ombinations of the input features

Xk a

ording to a 
hosen sear
h algorithm. The goal is to �nd that feature 
ombination forwhi
h generalization performan
e of a given 
lassi�er is maximized.To formally introdu
e the wrapper method we observe that any possible 
ombination ofthe input features Xk is given by a index set K ⊆ {1, 2, . . . ,K}, where K is the numberof the features. Hen
e, the spa
e of all possible 
ombinations of the input features Xk
an be uniquely represented by the power set P({1, 2, . . . ,K}). We note that the power set9
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P({1, 2, . . . ,K}) is a partially-ordered set and, thus, it 
an be systemati
ally examined usingany sear
h algorithm. When the sear
h algorithm visits any index set K ∈ P({1, 2, . . . ,K}),the wrapper method estimates the generalization power of a 
lassi�er on the input features
Xk for k ∈ K. On
e the sear
h algorithm stops, the wrapper method outputs that index set
K that spe
i�es a set {Xk}k∈K of features for whi
h the generalization power of the 
lassi�eris maximized (see Algorithm 2).Algorithm 2 FSW: Feature Sele
tion WrapperInput: K input features Xk, Target data T , Classi�er h, Sear
h algorithm SA,Initial index set I ⊆ {1, 2, . . . ,K}.Output: index set K ⊆ {1, 2, . . . ,K} so that the generalization performan
e of h ismaximized for {Xk}k∈K.1: Set the set V of the visited index sets equal to {I};2: repeat3: Determine the set C of the 
andidate index sets from the members of V a

ording tothe sear
h algorithm SA;4: Determine the set R of the index sets that are dire
tly rea
hable from the index setsin C a

ording to the sear
h algorithm SA;5: Evaluate the generalization performan
e of h on the feature subset {Xk}k∈K de�nedby any index set K in R;6: Retain in R those index sets that result in a better generalization performan
e of h
ompared with that for any index set in C;7: Set V equal to V ∪R;8: until R 6= ∅9: Output index set K in V that results in a maximal generalization performan
e of h.6. Conformal Feature-Sele
tion Wrappers for Instan
e TransferIn this se
tion we des
ribe the proposed method, namely 
onformal feature-sele
tion wrap-pers for instan
e transfer (CFSWIT). Given the target data, the sour
e data, and a 
las-si�
ation model, the method sele
ts a large subset of features and the largest subset ofsour
e data that 
orresponds to the sele
ted features. The distin
tive 
hara
teristi
 of theCFSWIT method is that the sele
tion of features and sour
e instan
es is realized with re-spe
t to the 
lassi�
ation model. Thus, the CFSWIT method is indeed a wrapper and itspseudo-
ode is similar to that given in Algorithm 2. The main di�eren
e is the way how thegeneralization performan
e of the 
lassi�er h is estimated for a set features {Xk}k∈K with
K ⊆ {1, 2, . . . ,K} (see line 5 in Algorithm 2).The pseudo
ode for 
onformal instan
e-transfer estimation of the 
lassi�er's generaliza-tion performan
e (CITCGP) for a set features is given in Algorithm 3. Given a 
lassi�er h,all the input features Xk, a parti
ular index set K, target data T and sour
e data S, thealgorithm estimates the generalization performan
e of h for the input features {Xk}k∈K asfollows. First, it represents the target data T and the sour
e data S with the features Xk for
k ∈ K only. Then, the algorithm sele
ts the largest subset Ŝ 1

2 of the sour
e data S with set
p-value 
lose to 1

2 . For that purpose it employs the PASS algorithm. The PASS algorithm10



Conformal Feature-Sele
tion Wrappers for Instan
e Transferuses the general non-
onformity fun
tion based on the 
lassi�er h (Shafer and Vovk, 2008).Formally, given the target training data T and a sour
e instan
e (x, y), the fun
tion outputsa s
ore α equal to:
∑

yi∈Y,yi 6=y

syi ,where syi is the s
ore of the i-th 
lass in the 
lass set Y produ
ed by h trained on targettraining data T .Algorithm 3 CITCGP: Conformal Instan
e-Transfer Estimation of Classi�er Generaliza-tion Performan
eInput: Classi�er h, K input features Xk, Index set K ⊆ {1, 2, . . . ,K},Target data T , Sour
e data S.Output: an estimate of the generalization performan
e of h for {Xk}k∈K.1: Represent the target data T and the sour
e data S with the features Xk for k ∈ K;2: Sele
t the largest subset Ŝ 1

2 of the sour
e data S with set p-value 
lose to 1
2 (using thePASS algorithm with the general non-
onformity fun
tion based on h);3: Estimate the generalization performan
e of the 
lassi�er h on T ∪ Ŝ

1

2 using a repeated
ross validation;4: Output estimate of the generalization performan
e of h.The general non-
onformity fun
tion based on the 
lassi�er h is used in order to tailorsele
ting relevant sour
e instan
es (Ŝ 1

2 ) to the spe
i�
 set of features {Xk}k∈K throughthe 
lassi�er h. On
e the the largest sour
e subset Ŝ
1

2 was sele
ted, the generalizationperforman
e of the 
lassi�er h is estimated on the union of T and Ŝ
1

2 . The estimation pro
essis implemented using a repeated 
ross-validation pro
edure. When it stops, the estimatedgeneralization performan
e of the 
lassi�er h is outputted for the features {Xk}k∈K.Depending on the appli
ation (target) domain any useful evaluation 
riterion 
an beused to measure the generalization performan
e of the 
lassi�er h. In our experiments weemployed area under ROC 
urve (AUC) (Bradley, 1997).As it is suggested above our CFSWIT method is represented by Algorithm 2 wherethe evaluation of the 
lassi�er generalization performan
e is realized by Algorithm 3. Themethod outputs a feature subset and the largest relevant sour
e-subset for the sele
tedfeatures. In this 
ontext, we note that the CFSWIT output is sensitive to the initializationpro
edure (see Algorithm 2, line 1). If we start with the initial index set I equal to theset {1, 2, . . . ,K} (ba
kward elimination mode), the wrappers usually produ
e relatively largeindex sets K (i.e feature sets {Xk}k∈K). If we start with the initial index set I equal to theempty set ∅ (forward sele
tion mode), the wrappers usually result in relatively small featuresets {Xk}k∈K. In instan
e transfer is advisable to be more 
onservative, i.e. to have largerfeature sets {Xk}k∈K to represent the data. In this way we preserve more information fromthe target data and use hopefully more relevant information from the sour
e data. That iswhy, our CFSWIT method is initialized in the ba
kward elimination mode with the initialindex set I equal to the set {1, 2, . . . ,K}. This means that the method aims at �nding thelargest feature sets {Xk}k∈K whi
h however depends on the sear
h algorithm used.11
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on
lude that the CFSWIT method aims at sele
ting a largesubset of features and the largest relevant subset of sour
e data that 
orresponds to a 
om-ponent of the sour
e distribution estimated to be 
lose the target distribution on the sele
tedfeatures. The distin
tive 
hara
teristi
 of the method is that all the estimation pro
eduresare implemented using a given 
lassi�
ation model. This means that the �nal results aretailored to the 
lassi�
ation model and aim at boosting its generalization performan
e. TheCFSWIT method 
an be applied for any type of 
lassi�
ation models. Thus, as a wrapperit is a model-independent method.7. Experiments and ResultsThis se
tion presents our experimental set-up, results, and analysis. The instan
e-transfertasks under study are des
ribed in Subse
tion 7.1. The experimental set-up is provided inSubse
tion 7.2. In Subse
tion 7.3, the generalization performan
e of the CFSWIT methodand other standard instan
e-transfer methods is evaluated and 
ompared.7.1. Instan
e-transfer Classi�
ation TasksIn the experiments, we 
onsidered �ve instan
e-transfer 
lassi�
ation tasks de�ned on real-world data sets that are 
ommonly used in transfer learning resear
h. Ea
h task is givenwith a target data set and a sour
e data set, des
ribed in Table 1. The instan
e-transfertasks are de�ned below.
• The �rst instan
e-transfer 
lassi�
ation task is the landmine dete
tion task (Xue et al.,2007). The landmine dete
tion data is a 
olle
tion of data sets related to dete
tinglandmine in di�erent geographi
al lo
ations. It 
onsists of 29 data sets from 29 land-mine �elds. The 29 data sets have di�erent distributions due to various ground surfa
e
onditions. For example, the data sets �Mine 1" to �Mine 15" 
orrespond to regionsthat are relatively foliated while the data sets �Mine 16" to �Mine 29" 
orrespond toregions that have bare earth. We used the data set �Mine 29" as the target data, anduse the data set �Mine 1" as the sour
e data. To guarantee that the target data and thesour
e data are distributed di�erently for some features, we manipulated the marginaldistribution of the feature with the highest information-gain ratio for the sour
e databy adding random noise generated from the standard uniform distribution.
• The se
ond instan
e-transfer 
lassi�
ation task is the wine quality task (Cortez et al.,2009). The wine quality data 
onsists of 1599 red-wine and 4898 white-wine instan
es.Ea
h instan
e is represented by 11 physio
hemi
al features (e.g. PH values) and agrade given by experts. We used a random sample from the red wine data as thetarget data and used a random sample of the white wine data as the sour
e data. Toguarantee that the target data and the sour
e data are distributed di�erently for somefeatures, random noise generated from the standard uniform distribution was addedto two features with the highest information-gain ratios for the sour
e data.
• The third instan
e-transfer 
lassi�
ation task is the survival predi
tion task from theTrial of Intensi�ed versus Standard Medi
al Therapy in Elderly Patients With Conges-tive Heart Failure (TIME-CHF)(Brunner-La Ro

a et al., 2006; P�sterer et al., 2009).12



Conformal Feature-Sele
tion Wrappers for Instan
e TransferEa
h patient instan
e is des
ribed by 18 bio-markers, and a 
lass label indi
ating thesurvival or death of a patient within 5.5 years follow-up. The patient bio-markers and
lass labels are 
olle
ted from �ve di�erent medi
al 
enters after the �rst follow-upperiod. We used the data from Center 14 as the target data set and data from theother four 
enters were 
ombined together in a sour
e data set.
• The fourth and �fth instan
e-transfer 
lassi�
ation tasks are de�ned on the examre
ords of students from two Portuguese s
hools: Gabriel Pereira and Mousinho daSilveira (Cortez and Silva, 2008). Ea
h exam re
ord is 
onsidered as an instan
e thatis represented by a series of demographi
, so
ial, and s
hool related features and abinary grade (pass or no pass). In the experiments, we de�ned a binary 
lassi�
ationtask on the grades. The two instan
e-transfer tasks are de�ned as follows: the fourthtask (referred to as Student 1) use the students' Mathemati
s exam re
ords of s
hoolMousinho da Silveira as the target data, and use the Portuguese exam re
ords of thesame group of students as the sour
e data; the �fth task (referred to as Student 2)employ the same target data as the �rst task, but use the students' Mathemati
s examre
ords of s
hool Gabriel Pereira as the sour
e data.Table 1: Des
riptions of the data sets for instan
e-transfer 
lassi�
ation tasksTask Number of Data set sizeClasses |T | |S|Landmine 2 449 690Wine Quality 3 159 1499TIME-CHF 2 81 453Student 1 2 46 46Student 2 2 46 3497.2. Experimental Set-upThe CFSWIT method was initialized as follows. The sear
h method employed was thebest-�rst sear
h method. The algorithm for sele
ting the largest relevant sour
e subsetwas the algorithm PASS (des
ribed in Se
tion 4.3). The algorithm employed the generalnon
onformity fun
tion based on the 
lassi�er used. The predi
tive power of the featuresubsets was evaluated using the Area Under the ROC Curve (AUC) (Bradley, 1997). Theinternal pro
edure for 
lassi�er evaluation in the CFSWIT method was 5-times repeated5-fold 
ross validation.The CFSWIT method was 
ompared with the seven instan
e-transfer methods presentedin Se
tion 2. The methods based on feature sele
tion were represented by the MMDEmethodand the f-MMD method. The methods were initialized as follows: (1) the dimension sizeof the redu
ed feature spa
e for the MMDE method was set equal to 10; (2) the featuresfor the f-MMD method with weights higher than 0.1 were ex
luded. The methods basedon sour
e-instan
e sele
tion were represented by the TrAdaBoost method, the Dynami
-13
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hoenmakers Peeters JiangTrAdaBoost method, the TraBagg method, and the DoubleBootStrap method. The methodswere initialized for iteration number equal to 100.The CFSWIT method, the methods based on feature sele
tion , and the methods basedon sour
e-instan
e sele
tion were applied for three types of base 
lassi�ers: C4.5 de
isiontrees (DT) (Quinlan, 1993), support ve
tor ma
hines (SVM) (Boser et al., 1992) with RBFkernel, and Naive Bayes 
lassi�ers (Mit
hell, 1997). When the base 
lassi�ers were C4.5de
ision tree, all the methods were 
ompared with 
onformal de
ision trees for instan
etransfer (CDTIT), sin
e this a method that 
ombines both feature sele
tion and sour
e-subset sele
tion. The implementation of CDTIT was that based on the C4.5 de
ision trees.The external pro
edure of evaluation for all the methods was 10-times repeated 10-fold
ross validation on the target data; i.e., the sour
e data was used as auxiliary training dataonly. The generalization performan
e of all the methods was evaluated using AUC. Theperforman
e of C4.5, SVM and NaiveBayes for the 
ase of no instan
e transfer was used asbaseline. A paired t-test is performed with signi�
an
e level 0.05 to �nd signi�
antly better(or worse) results with respe
t to the 
orresponding baseline 
lassi�er.7.3. ResultsThe results when the C4.5 trees were used as baseline 
lassi�ers are presented in Table 2.From the table we see that the CDTIT method a
hieves the best generalization performan
efor all the instan
e-transfer 
lassi�
ation tasks. It gains a margin of 0.08 over the AUC of thebaseline 
lassi�er in the best 
ase (the TIME-CHF task). The proposed CFSWIT methodhas the se
ond best generalization performan
e (a
hieves 3 wins out of 5). It a
hievessigni�
ant better results than the baseline 
lassi�er over all the tasks, but a bit worsethan CDTIT. This is due to the fa
t that CDTIT is more �exible than CFSWIT: CDTITperforms a multivariate instan
e transfer as a series of several univariate instan
e transferswhile CFSWIT performs a non-de
omposable multivariate instan
e transfer.Tasks Baseline CFSWIT CDTIT MMDE f-MMD TrAda-Boost Dynami
TrAda-Boost TraBagg Double-BootstrapLandmine 0.55 0.58∗ 0.59∗ 0.56 0.52− 0.57 0.56 0.56 0.57Wine Quality 0.60 0.64∗ 0.66∗ 0.58 0.59 0.62 0.63 0.64∗ 0.66∗TIME-CHF 0.58 0.64∗ 0.66∗ 0.55− 0.61∗ 0.60 0.60 0.64∗ 0.64∗Student 1 0.71 0.74∗ 0.77∗ 0.67− 0.68− 0.65− 0.74 0.61− 0.68−Student 2 0.71 0.74∗ 0.78∗ 0.70 0.71 0.71 0.74∗ 0.85∗ 0.71Table 2: AUCs of CFSWIT, CDTIT, MMDE, f-MMD, TrAdaBoost, Dynami
-TrAdaBoost,TraBagg and DoubleBootStrap employing C 4.5 as the base 
lassi�er. ∗(−) denotessigni�
antly better (worse) results w.r.t the baseline 
lassi�er.The results when SVMs and Naive Bayes were used as baseline 
lassi�ers are presented inTables 3 and 4, respe
tively. From the tables we see that the CFSWIT method has the bestgeneralization performan
e 
ompared with the other instan
e transfer methods: it a
hieves3 wins out of 5 for both SVMs and Naive Bayes. The se
ond best is the Double-BootStrapmethod with 2 wins out of 5 for SVMs only. The CFSWIT method does not result in14
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tion Wrappers for Instan
e Transfernegative transfer while any other instan
e transfer method has at least one experiment withnegative transfer.If we analyze Tables 3 and 4 we observe that the CFSWIT method does not fail be
ausethe 
omponent of the sour
e distribution on the �nal subset of features that 
orresponds tothe sele
ted sour
e instan
es is indeed 
lose to the target distribution for all the experiments.This does not always happen for other methods be
ause they either sele
t features or sour
einstan
es; i.e. they are mu
h less �exible.Tasks Baseline CFSWIT MMDE f-MMD TrAda-Boost Dynami
TrAda-Boost TraBagg Double-BootstrapLandmine 0.59 0.62∗ 0.62∗ 0.58 0.55 0.56 0.64∗ 0.59Wine Quality 0.72 0.74 0.67− 0.72 0.67− 0.66− 0.70 0.74TIME-CHF 0.68 0.70∗ 0.62− 0.70∗ 0.64− 0.64− 0.67 0.69Student 1 0.63 0.70∗ 0.64 0.65 0.63 0.65 0.67 0.71∗Student 2 0.63 0.80∗ 0.72∗ 0.74∗ 0.63 0.64 0.78∗ 0.72∗Table 3: AUCs of CFSWIT, EmbedSR-DT, MMDE, f-MMD, TrAdaBoost, Dynami
-TrAdaBoost, TraBagg and DoubleBootStrap employing SVM as the base 
lassi�er.
∗(−) denotes signi�
antly better (worse) results w.r.t the baseline 
lassi�er.

Tasks Baseline CFSWIT MMDE f-MMD TrAda-Boost Dynami
TrAda-Boost TraBagg Double-BootstrapLandmine 0.56 0.58∗ 0.63∗ 0.59∗ 0.47− 0.47− 0.56 0.56Wine Quality 0.72 0.75 0.66− 0.73 0.69− 0.69− 0.74 0.75TIME-CHF 0.71 0.74∗ 0.59− 0.74∗ 0.76∗ 0.76∗ 0.72 0.74∗Student 1 0.68 0.79∗ 0.69 0.70 0.63 0.61− 0.73∗ 0.71Student 2 0.68 0.77∗ 0.66 0.71∗ 0.62 0.62 0.75∗ 0.73∗Table 4: AUCs of CFSWIT, EmbedSR-DT, MMDE, f-MMD, TrAdaBoost, Dynami
-TrAdaBoost, TraBagg and DoubleBootStrap employing NaiveBayes as the base
lassi�er. ∗(−) denotes signi�
antly better (worse) results w.r.t the baseline 
las-si�er.If we 
ompare the results for the methods in Tables 2-4, we observe that the generalizationperforman
e is lowest when the base 
lassi�ers are the C4.5 de
ision trees and highest whenbase 
lassi�ers are the Naive Bayes 
lassi�ers. This shows the importan
e of the option of
hoosing the base 
lassi�ers. This option is provided by the model-independent methodssu
h as the CFSWIT method.8. Con
lusionIn this paper we proposed the new method of 
onformal feature-sele
tion wrappers forinstan
e transfer (CFSWIT). Given a 
lassi�
ation model in the presen
e of target data andsour
e data, the method performs feature sele
tion and sour
e-subset sele
tion for this model.15
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hoenmakers Peeters JiangFor that purpose the CFSWIT method examines the spa
e of feature subsets a

ording toa sear
h algorithm 
hosen. When it evaluates a set of features, it 
onsiders both target andsour
e data represented only by these features. Under this 
onstraint, the method �rst �ndsthe largest relevant set of sour
e instan
es that 
an be sele
ted using a 
onformal sour
e-subset sele
tion pro
edure from (Zhou et al., 2017
). Then, it estimates the generalizationperforman
e of the 
lassi�
ation model on the target data and sele
ted sour
e instan
es.On
e the sear
h algorithm 
ompletes the examination of the spa
e of feature subsets, theCFSWIT method outputs a large subset of features and the largest relevant subset of sour
edata for these features for whi
h the generalization performan
e of the 
lassi�
ation modelis maximized. In this respe
t the CFSWIT method is similar to the 
onformal de
ision treesfor instan
e transfer (Zhou et al., 2017b) and is di�erent from any me
hani
al 
ombinationof instan
e-transfer methods based on either feature sele
tion or sour
e-instan
e sele
tion.The experiments showed that the CFSWIT method is 
apable of outperforming severalinstan
e-transfer methods. This means that pra
ti
ally 
ombining feature sele
tion andsour
e-instan
e sele
tion is a powerful approa
h to instan
e transfer whi
h the CFSWITmethod exempli�es as a model-independent method.Referen
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