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Conformal Feature-Seletion Wrappers for Instane TransferShuang Zhou s.zhou�uit.edu.nShool of Controlling Engineering, Chengdu University of Information TehnologyEvgueni Smirnov smirnov�maastrihtuniversity.nlGijs Shoenmakers gm.shoenmakers�maastrihtuniversity.nlRalf Peeters ralf.peeters�maastrihtuniversity.nlDepartment of Knowledge Engineering,Maastriht University,P.O. Box 616, 6200 MD, Maastriht, The NetherlandsTao Jiang jiang�uit.edu.nShool of Controlling Engineering, Chengdu University of Information TehnologyEditor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov and Ralf PeetersAbstratIn this paper we propose a new method of onformal feature-seletion wrappers for instanetransfer (CFSWIT). Given target and soure data, the method optimally selets featuresand soure data that are relevant for a lassi�ation model. The CFSWIT method is model-independent. It was tested experimentally for several types of lassi�ers. The experimentsshow that the CFSWIT method is apable of outperforming standard instane transfermethods.Keywords: Instane Transfer, Conformal Predition, Feature Seletion, Wrappers1. IntrodutionInstane transfer was proposed to improve lassi�ation models for a target domain of interestby making use of the data borrowed from an auxiliary soure domain (Pan and Yang, 2010;Weiss et al., 2016). The target and soure domains share the same input feature spaeand the same lass-label set but di�er in the underlying probability distributions. If thesoure domain is relevant to the target domain; i.e., the soure distribution is lose to thetarget distribution, instane transfer an signi�antly improve the lassi�ation models forthe target domain (Torrey and Shavlik, 2009), espeially for small target data (Dai et al.,2007b).Estimating the loseness of the soure distribution to the target distribution is a di�ultproblem. This is due to the fat that the target and soure probability distributions are usu-ally unknown. There exist two main approahes to this problem that are both data-driven.The �rst approah measures the loseness of the soure distribution to the target distributionby �rst estimating the parameters of the distribution funtions from the target and souredata (Dai et al., 2007a,b; Zhou et al., 2015; Tan et al., 2015). Then, it omputes the dis-tanes between estimated distribution funtions to approximate the distribution loseness.The seond approah measures the loseness of the soure distribution to the target distri-© 2018 S. Zhou, E. Smirnov, G. Shoenmakers, R. Peeters & T. Jiang.



Zhou Smirnov Shoenmakers Peeters Jiangbution by estimating how probable is that the target data and soure data are generatedfrom the same distribution (Zhou et al., 2017a).Following the results of both approahes, if we �nd that the soure distribution is loseto the target distribution, we add the soure data to the target data and then train thetarget lassi�ation model. However, if we �nd that the soure distribution is not lose tothe target distribution, we an follow one of the three senarios given below:
• no instane transfer: we anel the instane transfer and train the target lassi�-ation model on the target data only.
• soure-instane seletion: we selet a subset of the soure instanes that orre-sponds to a omponent of the soure distribution estimated to be lose to the targetdistribution 1. If the subset is nonempty, we add it to the target data and then trainthe target lassi�ation model.
• feature seletion: we selet a subset of features for whih the soure distribution isestimated to be lose to the target distribution. If the subset is nonempty, the targetand soure data are represented by the seleted features only. The soure data is addedthe target data, and, then, the target lassi�ation model is trained.When the last two senarios fail, we an follow a forth senario of ombining featureseletion and soure-instane seletion. In this senario we selet a subset of features and asubset of soure data that orresponds to a omponent of the soure distribution estimatedto be lose the target distribution on the seleted features. This task assumes that seletingfeatures and seleting soure data are mutually dependent, and thus annot be realized bya mehanial ombination of the instane-transfer methods based on feature seletion andinstane-transfer methods based on soure-instane seletion. So far, Zhou et al. (2017b)proposed the only method available for mutually dependent feature and soure-instaneseletion. The method realizes this property using deision trees (Quinlan, 1993) in an uni-variate manner by imposing an additional restrition that the �nal features have a good pre-ditive power. The experiments showed that this method outperforms the existing instanetransfer methods based on either soure-instane seletion or feature seletion. However,this method is tailored to deision trees; i.e., it is model-dependent.In this paper we propose a model-independent method for the task of ombining featureseletion and soure-instane seletion. The method is essentially a wrapper method forfeature seletion (Kohavi and John, 1997). Given a lassi�ation model that needs featureseletion, our method examines the spae of feature subsets aording to a hosen searhstrategy. When it evaluates a set of features, it onsiders both target and soure datarepresented by these features only. Under this onstraint, our method �rst �nds the largestrelevant set of soure instanes that an be seleted using a onformal soure-subset seletionproedure proposed by (Zhou et al., 2017). Then, it estimates the generalization perfor-mane of the lassi�ation model on the target data and seleted soure instanes. One our1. The soure-instane seletion impliitly assumes that the soure distribution is a mixture distribution.The seleted instanes are expeted to be those that are generated by a omponent of the soure distri-bution that is lose to the target distribution. 2



Conformal Feature-Seletion Wrappers for Instane Transfermethod has visited and evaluated all the feature subsets aording the searh strategy ho-sen, it determines a subset of features with the maximal generalization performane. Thissubset is outputted together with the orresponding largest relevant set of soure instanes.We note that our method assumes that the proess of examining the spae of featuresubsets starts from the set of all the features. That is why, the �nal subset of features isrelatively large. Thus, our method outputs a large subset of features and the largest subsetof soure data that orresponds to a omponent of the soure distribution estimated to belose the target distribution on the seleted features.The remainder of this artile is strutured as follows. Setion 2 provides an overviewof the related work. The lassi�ation task in ontext of instane transfer is formulated inSetion 3. Setion 4 explains the onformal test and its orresponding soure-subset seletionproedure. The wrapper method is given in Setion 5. Setion 6 introdues the mainontribution of this artile, namely the onformal feature-seletion wrappers for instanetransfer. The experiments are provided in Setion 7. Setion 8 onludes the artile.2. Related WorksAs it was stated in the previous setion there exist two types of methods for instane transferwhen the relevane of the soure domain is not su�ient for the target domain: methodsbased on soure-instane seletion and methods based on feature seletion. In this setionwe provide an overview of these two types of methods as well as the only ombined method.2.1. Methods based on Soure-Instane SeletionMethods based on soure-instane seletion transfer relevant soure instanes to improvelassi�ation models for the target domain (Zhou et al., 2017). Soure-instane seletionan be done in two ways: soft seletion and hard seletion. The soft seletion piks thesoure instanes impliitly. It assigns weights to soure instanes proportionally to theirrelevane to the target data. In this way the in�uene of the less relevant soure instanesis restrited ompared with that of most relevant ones when the �nal lassi�ation modelis being trained. The hard seletion piks the soure instanes expliitly. It diretly seletssoure instanes depending on their relevane to the target data. In this way only the mostrelevant soure instanes in�uene training of the �nal lassi�ation model.The soft seletion was implemented in several boosting-based methods, e.g., TrAdaBoost(Dai et al., 2007a) and Dynami-TrAdaBoost (Al-Stouhi and Reddy, 2011). These methodsare similar to the AdaBoost algorithm (Freund and Shapire, 1996) but employ two oppositeweight-update shemes depending on the type of the instanes: (1) the weights of mislassi-�ed target instanes are inreased, and (2) the weights of mislassi�ed soure instanes aredereased. In theory the average weighted training loss of boosting-based algorithms on thesoure data is guaranteed to onverge to 0 as the number of iterations approahes in�nity(Dai et al., 2007a). This implies that in this ase the relevant soure instanes will be las-si�ed orretly and the irrelevant soure instanes will reeive a weight of 0; i.e., there willbe a perfet seletion of the soure instanes. However, in pratie when most of the soureinstanes are irrelevant, these algorithms are likely to stop at very �rst iterations beausethe training error on target data exeeds 0.5 in early iterations. In this ase, the irrelevant3



Zhou Smirnov Shoenmakers Peeters Jiangsoure instanes are not �ltered out and ause a negative e�et on the �nal lassi�ationmodel.The hard seletion is implemented in several bagging-based methods. There are twotypes of implementations: diret and indiret. Double-Bootstrap (Lin et al., 2013) is anexample of diret implementation. It �rst onstruts an ensemble of lassi�ation modelstrained on bootstrap samples from the target data. Then the ensemble lassi�es the soureinstanes and those of them that are orretly lassi�ed are seleted. Thus, when most ofthe soure instanes are irrelevant, this method tends not to selet soure instanes; i.e., theinstane transfer proess stops.TrBagg (Kamishima et al., 2009) is an example of an indiret implementation of thehard instane seletion. It �rst randomly generates a set of bootstrap samples from theombined target and soure data, and then trains several base lassi�ation models on thosesamples. Finally, a subset of the base lassi�ation models are seleted by minimizing theempirial error on the target data. The latter means that soure subsets that are ontainedin the bootstrap samples are indiretly seleted through seleting the base models. AlthoughTraBagg is simple, it has similar problem as the boosting methods when the soure datais rather irrelevant. In this ase TrBagg requires a large number of bootstrap iterations to�lter out irrelevant soure instanes whih makes it omputationally ine�ient.2.2. Methods based on Feature SeletionMethods based on feature seletion aim at �nding relevant features for whih the souredistribution beomes loser to the target distribution. Historially, in instane transfer thesemethods were preeded by feature transformation methods (Pan et al., 2008, 2011). That iswhy, for the sake of ompleteness of the presentation we �rst onsider feature transformationmethods and then feature seletion methods.The feature transformation methods operate as follows. First they searh for a low-dimensional feature spae where the target data and soure data are relevant. Then, theytrain lassi�ation models on the target data and soure data in that spae. The MaximumMean Disrepany Embedding (MMDE) is of one of the �rst representative of the featuretransformation methods (Pan et al., 2008). It �rst learns a kernel matrix orresponding to anonlinear transformation that projets the target data and soure data to a latent spae inwhih the distane between the two data sets is minimized. The distane between the datasets is measured by Maximum Mean Disrepany (MMD) sore (Borgwardt et al., 2006).Then, MMDE applies Prinipal Component Analysis (PCA) (Jolli�e, 2011) on the learnedkernel matrix to obtain a low-dimensional feature spae for the target data and souredata. The new spae allows any lassi�ation algorithm to be trained on the target andsoure data. Reently the omputational ine�ieny of MMDE was addressed in (Pan et al.,2011). As a result a new feature transformation method was proposed, namely TransferComponent Analysis (TCA). TCA has proven itself as e�etive as MMDE but muh moreomputationally e�ient.Maximum Mean Disrepany (f-MMD) is a feature seletion methods that was proposedin (Uguroglu, 2011). It is based on the MMD sore as well. However, instead of �nding alow-dimensional representation for the target data and soure data jointly, f-MMD identi�esa subset of features (alled variant features) whih ontribute the most to the MMD sore4



Conformal Feature-Seletion Wrappers for Instane Transferand exludes them. The problem of �nding variant features is formulated as a onvexoptimization problem. More preisely, a weight matrix, the diagonal of whih orrespondsto the weights of all the features, is inorporated in the MMD alulation. The variantfeatures are expeted to reeive higher weights after optimization, sine they minimize thenegative MMD sore in the objetive funtion. That is to say the variant features are de�nedas those that ontribute most to maximizing the MMD between data sets.Analyzing the methods onsidered in this subsetion we note mainly two drawbaks.First, these methods may impair geometri or statistial properties of the original targetand soure data due to the dimensionality redution. Seond, these methods learn the low-dimensional spae in an unsupervised manner and dismiss the relevane of the input featuresfor the lass labels. Some of the removed features may have a strong lass relevane andin�uene the performane of resulting lassi�ation models.2.3. Conformal Deision Trees for Instane TransferConformal deision trees for instane transfer (CDTIT) were proposed in (Zhou et al.,2017b). They represent an instane-transfer method that ombines feature seletion andsoure-instane seletion. The method employs the standard deision-tree algorithm (Quinlan,1993) to onstrut trees. Univariate instane transfer is performed on the level of featureseletion for test nodes of deision trees. More preisely, at eah test node the method �rstselets for every feature the largest soure subset whih is relevant to the target data whenonly onsidering this feature. The relevane of soure instanes is deided by a statistialtest, namely onformal test (Zhou et al., 2017a). Then, the method estimates the preditivepower of this feature on the target data and the seleted soure subset using some measures.One the preditive power of all features were estimated, the method selets the feature withthe highest preditive power for this test node (i.e. the best feature is determined based onthe target data and most relevant soure instanes and its preditive power). We note thatonstruting a deision tree onsists of a series of suh steps of univariate instane transferand feature seletion. Thus, the onformal deision trees are essentially an embedded multi-variate feature seletion method for instane transfer based on univariate soure instaneseletion and feature seletion.The onformal deision trees demonstrated the power of ombining feature seletion andsoure-instane seletion for instane transfer. However, the results are restrited to deisiontrees only. In this paper we address this issue by developing a model independent method.3. Classi�ation Tasks and SolutionsLet X be a instane spae de�ned by K input features Xk, k ∈ {1, 2, . . . ,K} and Y be a�nite lass set. A domain is de�ned as a tuple onsisting of a labeled spae (X × Y ) anda probability distribution P over (X × Y ). We onsider �rst a domain 〈(X × Y ), PT 〉 thatwe all a target domain (domain of interest). The target data set T is a multi set of mTinstanes (xt, yt) ∈ X×Y drawn from the target distribution PT under the i.i.d assumption.Given a test instane xmT+1 ∈ X, the target lassi�ation task is to �nd an estimate ŷ ∈ Yfor the true lass of xmT+1 aording to PT .Let us onsider a seond domain 〈(X×Y ), PS〉 that we all a soure domain. The souredata S is a multi set of mS instanes (xs, ys) ∈ X × Y drawn from the soure distribution5



Zhou Smirnov Shoenmakers Peeters Jiang
PS under the i.i.d assumption. Assuming that the soure domain is relevant to the targetdomain (i.e. PS is lose to PT ), the instane-transfer lassi�ation task is to �nd an estimate
ŷ ∈ Y for the true lass of xmT+1 aording to PT using soure data S as an auxiliarytraining data.To solve the lassi�ation tasks de�ned above we train a lassi�er h(x) in a hypothesisspae H of lassi�ers h (h : X → 2Y). We note that for the target lassi�ation task h(x) isbased on T . For the the instane-transfer lassi�ation task the lassi�er h(x) is based on
T and seleted soure instanes from S. One the lassi�er is available, it outputs for anytest instane xmT+1 a posterior distribution of sores {sy}y∈Y . The lass y with the highestposterior sore sy is the estimated lass ŷ for the instane x.4. Conformal test for soure relevaneThe onformal feature-seletion wrappers for instane transfer that we propose in this paperare based on the onformal test (CT) introdued in (Zhou et al., 2017a). The test is usedto estimate the relevane of the soure data to the target data. In the following, we �rstdesribe the CT and the p-value funtion it employs. Then, we explain and ompare twodi�erent ways to use the CT for soure relevane estimation. Finally, we introdue thealgorithm we used for seleting the largest soure subset based on the CT.4.1. Conformal TestThe CT is proposed under the exhangeablity assumption of data generation (Aldous, 1985)2. It works with data sequenes. Given a target data sequene T and a soure data sequene
S , it deides the relevane of S to T by testing the null hypothesis that the onatenateddata sequene TS was generated by the target distribution PT under the exhangeabilityassumption.To test the null hypothesis, CT makes use of the onformal predition framework thatwas introdued in (Shafer and Vovk, 2008; Vovk, 2014). The test employs the nononformitysores of subsequenes of TS as statistis for the null hypothesis. The nononformity sore ofa subsequene an be omputed based on the nononformity sores of the instanes ontainedin the subsequene. Given the onatenated sequene TS, the nononformity sore α of aninstane (x, y) ∈ TS is a positive real number that indiates how strange the instane (x, y)is for the sequene T . To ompute the instane nononformity sores we need an instanenononformity funtion A. If (X × Y )(∗) represent the set of all sequenes de�ned over
(X×Y ), the instane nononformity funtion A is a mapping from (X×Y )(∗)× (X×Y ) to
R
+∪{+∞} that measures the degree of strangeness of an instane in relation to a sequene.To ompute the sequene nononformity sores we need a sequene nononformity fun-tion. Given the onatenated sequene TS and a subsequene U of some elements of T ∪S,the sum sequene nononformity funtion returns a sore αU indiating how strange thesubsequene U is with respet to all subsequenes with size |U | of the data sequene TS.2. The exhangeability assumption is a weaker assumption than the randomness assumption. It holds fora sequene of random variables if and only if the joint probability distributions of any two permutationsof those variables oinide. 6



Conformal Feature-Seletion Wrappers for Instane TransferDe�nition 1 (Sum Sequene Nononformity Funtion) Given an instane nonon-formity funtion A, data sequenes T and S, and a subsequene U of some elements of T ∪S,the sum sequene nononformity funtion A∗ : (X × Y )(∗) × (X × Y )(∗) → R
+ ∪ {+∞} isde�ned as

A∗(T,U) =
∑

(x,y)∈U

α(x,y),where α(x,y) =

{

A(T \ {(x, y)}, (x, y)), for (x, y) ∈ T

A(T, (x, y)), otherwise.The CT employs sequene nononformity sores as test statistis. The p-value funtionof the CT is de�ned as follows.De�nition 2 (p-Value Funtion)The p-value funtion is a funtion t : (X ×Y )(∗)×N →
[0, 1] de�ned as:

t(T, S) =
|{U ∈ P(TS,mS) : αU ≥ αS}|

|P(TS,mS)|
,where P(TS,mS) is the set of all subsequenes of TS with length |S| = mS, αU and αS aresequene nononformity sores returned by A∗(T,U) and A∗(T, s), respetively.The validity of the p-value funtion t was proven in (Zhou et al., 2017a). The p-valuereturned by the funtion t indiates the likelihood that the sequene TS was generated bythe target distribution PT under the exhangeability assumption. The higher the p-value is,the more relevant the soure sequene is to the target sequene. Therefore, this p-value anbe viewed as a non-symmetrial measure of relevane of the soure data to the target data.The CT employs the p-value funtion t for testing the exhangeability of the onatenateddata sequene TS. The soure data sequene is relevant to the target data sequene at thesigni�ane level ǫt ∈ [0, 1] if and only if the returned p-value is greater than or equal to ǫt.The CT was extended for data sets (sine the sum sequene nononformity funtion

A∗(T,U) is independent of the ordering of the sequene U) (Zhou et al., 2017a). The p-value funtion t is rede�ned as follows:
t(T, S) =

|{U ∈ C(T ∪ S,mS) : αU ≥ αS}|

|C(T ∪ S,mS)|
,where T and S are the target and soure data sets, respetively, and C(T ∪S,mS) is the setof all subsets of T ∪ S with size mS = |S|.4.2. Measure individual relevane and set relevane by the p-value funtionAs it was mentioned in the previous subsetion, the p-value returned by the funtion t anbe viewed as a non-symmetrial measure of relevane of the soure data to the target data.Sine the p-value funtion t an be applied to soure data with arbitrary size, it allowsfor measuring the relevane of soure data in two di�erent ways. When the size of thesoure data S equals 1 (mS = 1), funtion t estimates the individual relevane of a soureinstane (xs, ys) with value t(T, {(xs, ys)}). When the size of the soure data is greater than1 (mS > 1), funtion t estimates the relevane of the soure set as a whole with value t(T, S).7



Zhou Smirnov Shoenmakers Peeters JiangComparing to individual relevane, set relevane is more preise in terms of soure rel-evane estimation. Aording to funtion t, if S = {(xs, ys)} then mS = 1, and |C(T ∪
S,mS)| = mT + 1, whereas the numerator is a positive integer. Consequently, the numberof possible individual p-value is bounded by mT + 1. If mS > 1, the number of possibleset p-value is bounded by |C(T ∪ S,mS)|, whih quikly grows muh larger than mT + 1.Therefore, the set p-value an better distinguish sets with di�erent nononformity sores.Soure-subset seletion based on individual relevane is omputationally more e�ientthan that based on set relevane. Assume that all instanes in the soure data S are sortedin inreasing order of nononformity sores. Aording to De�nition 2, we have that theindividual relevane of the soure instane with index s(s > 1) is always less than or equalto that of the soure instane with index s − 1, i.e., t(T, {(xs, ys)}) ≤ t(T, {(xs−1, ys−1)}).That is to say the individual relevane is a dereasing funtion of the index s, and throughthe index s, it is also a dereasing funtion of the nononformity sore. When individualrelevane is employed to selet the largest subset of soure instanes that passes the CT ata signi�ane level ǫt, we an simply apply binary searh on the sorted soure set to quikly�nd the last instane that has p-value no less than ǫt. The largest soure subset is thenformed by adding all the instanes before this instane and the instane itself.The set relevane in general is not a monotoni funtion of the index s, and is not amonotoni funtion of the nononformity sores as well. Let Ss be a subset onsisting of �rst
s(s > 1) instanes of the sorted data S. For eah s we may have either t(T, Ss) ≤ t(T, Ss−1)or t(T, Ss) ≥ t(T, Ss−1). To better illustrate this laim, we provide the following example.Assume that TS onsists of target instane t1, t2, t3 assoiated with nononformity sores1,4,5, and soure instanes s1, s2, s3 assoiated with nononformity sores 2,3,6 (note thatthe soure instanes are sorted by inreasing order of the nononformity sores). In this ase,we have t(T, S1) = 0.75, t(T, S2) = 0.8 and t(T, S3) = 0.5. Due to the non-monotoniity,soure-subset seletion based on set relevane is omputationally ine�ient.4.3. Pre-training Approximate Seletion for the Relevant Soure SubsetIf a soure subset is generated by the target distribution, the expeted p-value of this subset isequal to 1

2 . We all suh a subset as relevant soure subset S 1
2 . Due to the non-monotoniityof the soure relevane �nding the largest relevant soure subset S 1

2 may involve repeatedappliation of the funtion t. To redue the omputational overhead, a pre-training approx-imate seletion algorithm for the relevant soure subset (denoted as PASS) was proposed in(Zhou et al., 2017). The algorithm �nds a lose approximation Ŝ
1
2 of the largest relevantsubset S 1

2 at a small omputational ost.To illustrate the key idea behind the PASS algorithm assume that the soure data S issorted in inreasing order of the nononformity sores α(xs,ys) and Sn is a subset onsistingof the �rst n instanes of the ordered soure data S. By Theorem 3 from (Zhou et al.,2017), if the average of individual p-values of all instanes in the soure subset Sn equals
1
2 + 1

2(mT+1) , then the set p-value of Sn is approximately equal to 1
2 . For large target datathe term 1

2(mT+1) an be ignored. Therefore, the PASS algorithm �nds the largest subset Sn8



Conformal Feature-Seletion Wrappers for Instane Transferwith the average individual p-value equals 1
2 , whih in this ase is the approximate subset

Ŝ
1
2 .The PASS algorithm is presented in Algorithm 1. Given a target data set T , a souredata set S, and an instane nononformity funtion A, it �rst omputes the nononformitysores α(xs,ys) for the soure instanes (xs, ys) ∈ S using the instane nononformity funtion

A. Then, the soure data set S is sorted in inreasing order of the nononformity sores
α(xs,ys); i.e. it beomes sorted in dereasing order of the individual p-values. This impliesthat the average p̄n of individual p-values of the instanes in Sn is dereasing with the index
n. Therefore, the PASS algorithm employs the binary-searh method on the sorted souredata S to generate the largest soure subset Sn with the average individual p-value greaterthan or equal to 1

2 .Algorithm 1 PASS: Pre-training seletion algorithm based on individual relevaneInput: Target data T , Soure data S, Instane nononformity funtion A.Output: Largest soure subset Sn with the mean individual p-value p̄n equal to 1
2 .1: for eah soure instane (xs, ys) ∈ S do2: Set the nononformity sore α(xs,ys) equal to A(T, (xs, ys));3: end for4: Sort the soure data S in inreasing order of the nononformity sores α(xs,ys);5: Set the left ounter L equal to 1 and the right ounter R equal to mS − 1;6: while L ≤ R do7: Set the middle index n equal to ⌊

L+R
2

⌋;8: Set p̄n as the mean of the individual p-values of the instanes in Sn;9: Set p̄n+1 as the mean of the individual p-values of the instanes in Sn+1;10: if p̄n ≥ 1
2 and p̄n+1 <

1
2 then11: break;12: else if p̄n > ǫ then13: Set L equal to n+ 1;14: else15: Set R equal to n− 1;16: end if17: end while18: output Sn.5. Feature Seletion WrappersThe wrapper method is a standard method for feature seletion proposed in (Kohavi and John,1997). The method examines the spae of all possible ombinations of the input features

Xk aording to a hosen searh algorithm. The goal is to �nd that feature ombination forwhih generalization performane of a given lassi�er is maximized.To formally introdue the wrapper method we observe that any possible ombination ofthe input features Xk is given by a index set K ⊆ {1, 2, . . . ,K}, where K is the numberof the features. Hene, the spae of all possible ombinations of the input features Xkan be uniquely represented by the power set P({1, 2, . . . ,K}). We note that the power set9
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P({1, 2, . . . ,K}) is a partially-ordered set and, thus, it an be systematially examined usingany searh algorithm. When the searh algorithm visits any index set K ∈ P({1, 2, . . . ,K}),the wrapper method estimates the generalization power of a lassi�er on the input features
Xk for k ∈ K. One the searh algorithm stops, the wrapper method outputs that index set
K that spei�es a set {Xk}k∈K of features for whih the generalization power of the lassi�eris maximized (see Algorithm 2).Algorithm 2 FSW: Feature Seletion WrapperInput: K input features Xk, Target data T , Classi�er h, Searh algorithm SA,Initial index set I ⊆ {1, 2, . . . ,K}.Output: index set K ⊆ {1, 2, . . . ,K} so that the generalization performane of h ismaximized for {Xk}k∈K.1: Set the set V of the visited index sets equal to {I};2: repeat3: Determine the set C of the andidate index sets from the members of V aording tothe searh algorithm SA;4: Determine the set R of the index sets that are diretly reahable from the index setsin C aording to the searh algorithm SA;5: Evaluate the generalization performane of h on the feature subset {Xk}k∈K de�nedby any index set K in R;6: Retain in R those index sets that result in a better generalization performane of hompared with that for any index set in C;7: Set V equal to V ∪R;8: until R 6= ∅9: Output index set K in V that results in a maximal generalization performane of h.6. Conformal Feature-Seletion Wrappers for Instane TransferIn this setion we desribe the proposed method, namely onformal feature-seletion wrap-pers for instane transfer (CFSWIT). Given the target data, the soure data, and a las-si�ation model, the method selets a large subset of features and the largest subset ofsoure data that orresponds to the seleted features. The distintive harateristi of theCFSWIT method is that the seletion of features and soure instanes is realized with re-spet to the lassi�ation model. Thus, the CFSWIT method is indeed a wrapper and itspseudo-ode is similar to that given in Algorithm 2. The main di�erene is the way how thegeneralization performane of the lassi�er h is estimated for a set features {Xk}k∈K with
K ⊆ {1, 2, . . . ,K} (see line 5 in Algorithm 2).The pseudoode for onformal instane-transfer estimation of the lassi�er's generaliza-tion performane (CITCGP) for a set features is given in Algorithm 3. Given a lassi�er h,all the input features Xk, a partiular index set K, target data T and soure data S, thealgorithm estimates the generalization performane of h for the input features {Xk}k∈K asfollows. First, it represents the target data T and the soure data S with the features Xk for
k ∈ K only. Then, the algorithm selets the largest subset Ŝ 1

2 of the soure data S with set
p-value lose to 1

2 . For that purpose it employs the PASS algorithm. The PASS algorithm10



Conformal Feature-Seletion Wrappers for Instane Transferuses the general non-onformity funtion based on the lassi�er h (Shafer and Vovk, 2008).Formally, given the target training data T and a soure instane (x, y), the funtion outputsa sore α equal to:
∑

yi∈Y,yi 6=y

syi ,where syi is the sore of the i-th lass in the lass set Y produed by h trained on targettraining data T .Algorithm 3 CITCGP: Conformal Instane-Transfer Estimation of Classi�er Generaliza-tion PerformaneInput: Classi�er h, K input features Xk, Index set K ⊆ {1, 2, . . . ,K},Target data T , Soure data S.Output: an estimate of the generalization performane of h for {Xk}k∈K.1: Represent the target data T and the soure data S with the features Xk for k ∈ K;2: Selet the largest subset Ŝ 1

2 of the soure data S with set p-value lose to 1
2 (using thePASS algorithm with the general non-onformity funtion based on h);3: Estimate the generalization performane of the lassi�er h on T ∪ Ŝ

1

2 using a repeatedross validation;4: Output estimate of the generalization performane of h.The general non-onformity funtion based on the lassi�er h is used in order to tailorseleting relevant soure instanes (Ŝ 1

2 ) to the spei� set of features {Xk}k∈K throughthe lassi�er h. One the the largest soure subset Ŝ
1

2 was seleted, the generalizationperformane of the lassi�er h is estimated on the union of T and Ŝ
1

2 . The estimation proessis implemented using a repeated ross-validation proedure. When it stops, the estimatedgeneralization performane of the lassi�er h is outputted for the features {Xk}k∈K.Depending on the appliation (target) domain any useful evaluation riterion an beused to measure the generalization performane of the lassi�er h. In our experiments weemployed area under ROC urve (AUC) (Bradley, 1997).As it is suggested above our CFSWIT method is represented by Algorithm 2 wherethe evaluation of the lassi�er generalization performane is realized by Algorithm 3. Themethod outputs a feature subset and the largest relevant soure-subset for the seletedfeatures. In this ontext, we note that the CFSWIT output is sensitive to the initializationproedure (see Algorithm 2, line 1). If we start with the initial index set I equal to theset {1, 2, . . . ,K} (bakward elimination mode), the wrappers usually produe relatively largeindex sets K (i.e feature sets {Xk}k∈K). If we start with the initial index set I equal to theempty set ∅ (forward seletion mode), the wrappers usually result in relatively small featuresets {Xk}k∈K. In instane transfer is advisable to be more onservative, i.e. to have largerfeature sets {Xk}k∈K to represent the data. In this way we preserve more information fromthe target data and use hopefully more relevant information from the soure data. That iswhy, our CFSWIT method is initialized in the bakward elimination mode with the initialindex set I equal to the set {1, 2, . . . ,K}. This means that the method aims at �nding thelargest feature sets {Xk}k∈K whih however depends on the searh algorithm used.11



Zhou Smirnov Shoenmakers Peeters JiangFrom the above we may onlude that the CFSWIT method aims at seleting a largesubset of features and the largest relevant subset of soure data that orresponds to a om-ponent of the soure distribution estimated to be lose the target distribution on the seletedfeatures. The distintive harateristi of the method is that all the estimation proeduresare implemented using a given lassi�ation model. This means that the �nal results aretailored to the lassi�ation model and aim at boosting its generalization performane. TheCFSWIT method an be applied for any type of lassi�ation models. Thus, as a wrapperit is a model-independent method.7. Experiments and ResultsThis setion presents our experimental set-up, results, and analysis. The instane-transfertasks under study are desribed in Subsetion 7.1. The experimental set-up is provided inSubsetion 7.2. In Subsetion 7.3, the generalization performane of the CFSWIT methodand other standard instane-transfer methods is evaluated and ompared.7.1. Instane-transfer Classi�ation TasksIn the experiments, we onsidered �ve instane-transfer lassi�ation tasks de�ned on real-world data sets that are ommonly used in transfer learning researh. Eah task is givenwith a target data set and a soure data set, desribed in Table 1. The instane-transfertasks are de�ned below.
• The �rst instane-transfer lassi�ation task is the landmine detetion task (Xue et al.,2007). The landmine detetion data is a olletion of data sets related to detetinglandmine in di�erent geographial loations. It onsists of 29 data sets from 29 land-mine �elds. The 29 data sets have di�erent distributions due to various ground surfaeonditions. For example, the data sets �Mine 1" to �Mine 15" orrespond to regionsthat are relatively foliated while the data sets �Mine 16" to �Mine 29" orrespond toregions that have bare earth. We used the data set �Mine 29" as the target data, anduse the data set �Mine 1" as the soure data. To guarantee that the target data and thesoure data are distributed di�erently for some features, we manipulated the marginaldistribution of the feature with the highest information-gain ratio for the soure databy adding random noise generated from the standard uniform distribution.
• The seond instane-transfer lassi�ation task is the wine quality task (Cortez et al.,2009). The wine quality data onsists of 1599 red-wine and 4898 white-wine instanes.Eah instane is represented by 11 physiohemial features (e.g. PH values) and agrade given by experts. We used a random sample from the red wine data as thetarget data and used a random sample of the white wine data as the soure data. Toguarantee that the target data and the soure data are distributed di�erently for somefeatures, random noise generated from the standard uniform distribution was addedto two features with the highest information-gain ratios for the soure data.
• The third instane-transfer lassi�ation task is the survival predition task from theTrial of Intensi�ed versus Standard Medial Therapy in Elderly Patients With Conges-tive Heart Failure (TIME-CHF)(Brunner-La Roa et al., 2006; P�sterer et al., 2009).12



Conformal Feature-Seletion Wrappers for Instane TransferEah patient instane is desribed by 18 bio-markers, and a lass label indiating thesurvival or death of a patient within 5.5 years follow-up. The patient bio-markers andlass labels are olleted from �ve di�erent medial enters after the �rst follow-upperiod. We used the data from Center 14 as the target data set and data from theother four enters were ombined together in a soure data set.
• The fourth and �fth instane-transfer lassi�ation tasks are de�ned on the examreords of students from two Portuguese shools: Gabriel Pereira and Mousinho daSilveira (Cortez and Silva, 2008). Eah exam reord is onsidered as an instane thatis represented by a series of demographi, soial, and shool related features and abinary grade (pass or no pass). In the experiments, we de�ned a binary lassi�ationtask on the grades. The two instane-transfer tasks are de�ned as follows: the fourthtask (referred to as Student 1) use the students' Mathematis exam reords of shoolMousinho da Silveira as the target data, and use the Portuguese exam reords of thesame group of students as the soure data; the �fth task (referred to as Student 2)employ the same target data as the �rst task, but use the students' Mathematis examreords of shool Gabriel Pereira as the soure data.Table 1: Desriptions of the data sets for instane-transfer lassi�ation tasksTask Number of Data set sizeClasses |T | |S|Landmine 2 449 690Wine Quality 3 159 1499TIME-CHF 2 81 453Student 1 2 46 46Student 2 2 46 3497.2. Experimental Set-upThe CFSWIT method was initialized as follows. The searh method employed was thebest-�rst searh method. The algorithm for seleting the largest relevant soure subsetwas the algorithm PASS (desribed in Setion 4.3). The algorithm employed the generalnononformity funtion based on the lassi�er used. The preditive power of the featuresubsets was evaluated using the Area Under the ROC Curve (AUC) (Bradley, 1997). Theinternal proedure for lassi�er evaluation in the CFSWIT method was 5-times repeated5-fold ross validation.The CFSWIT method was ompared with the seven instane-transfer methods presentedin Setion 2. The methods based on feature seletion were represented by the MMDEmethodand the f-MMD method. The methods were initialized as follows: (1) the dimension sizeof the redued feature spae for the MMDE method was set equal to 10; (2) the featuresfor the f-MMD method with weights higher than 0.1 were exluded. The methods basedon soure-instane seletion were represented by the TrAdaBoost method, the Dynami-13



Zhou Smirnov Shoenmakers Peeters JiangTrAdaBoost method, the TraBagg method, and the DoubleBootStrap method. The methodswere initialized for iteration number equal to 100.The CFSWIT method, the methods based on feature seletion , and the methods basedon soure-instane seletion were applied for three types of base lassi�ers: C4.5 deisiontrees (DT) (Quinlan, 1993), support vetor mahines (SVM) (Boser et al., 1992) with RBFkernel, and Naive Bayes lassi�ers (Mithell, 1997). When the base lassi�ers were C4.5deision tree, all the methods were ompared with onformal deision trees for instanetransfer (CDTIT), sine this a method that ombines both feature seletion and soure-subset seletion. The implementation of CDTIT was that based on the C4.5 deision trees.The external proedure of evaluation for all the methods was 10-times repeated 10-foldross validation on the target data; i.e., the soure data was used as auxiliary training dataonly. The generalization performane of all the methods was evaluated using AUC. Theperformane of C4.5, SVM and NaiveBayes for the ase of no instane transfer was used asbaseline. A paired t-test is performed with signi�ane level 0.05 to �nd signi�antly better(or worse) results with respet to the orresponding baseline lassi�er.7.3. ResultsThe results when the C4.5 trees were used as baseline lassi�ers are presented in Table 2.From the table we see that the CDTIT method ahieves the best generalization performanefor all the instane-transfer lassi�ation tasks. It gains a margin of 0.08 over the AUC of thebaseline lassi�er in the best ase (the TIME-CHF task). The proposed CFSWIT methodhas the seond best generalization performane (ahieves 3 wins out of 5). It ahievessigni�ant better results than the baseline lassi�er over all the tasks, but a bit worsethan CDTIT. This is due to the fat that CDTIT is more �exible than CFSWIT: CDTITperforms a multivariate instane transfer as a series of several univariate instane transferswhile CFSWIT performs a non-deomposable multivariate instane transfer.Tasks Baseline CFSWIT CDTIT MMDE f-MMD TrAda-Boost DynamiTrAda-Boost TraBagg Double-BootstrapLandmine 0.55 0.58∗ 0.59∗ 0.56 0.52− 0.57 0.56 0.56 0.57Wine Quality 0.60 0.64∗ 0.66∗ 0.58 0.59 0.62 0.63 0.64∗ 0.66∗TIME-CHF 0.58 0.64∗ 0.66∗ 0.55− 0.61∗ 0.60 0.60 0.64∗ 0.64∗Student 1 0.71 0.74∗ 0.77∗ 0.67− 0.68− 0.65− 0.74 0.61− 0.68−Student 2 0.71 0.74∗ 0.78∗ 0.70 0.71 0.71 0.74∗ 0.85∗ 0.71Table 2: AUCs of CFSWIT, CDTIT, MMDE, f-MMD, TrAdaBoost, Dynami-TrAdaBoost,TraBagg and DoubleBootStrap employing C 4.5 as the base lassi�er. ∗(−) denotessigni�antly better (worse) results w.r.t the baseline lassi�er.The results when SVMs and Naive Bayes were used as baseline lassi�ers are presented inTables 3 and 4, respetively. From the tables we see that the CFSWIT method has the bestgeneralization performane ompared with the other instane transfer methods: it ahieves3 wins out of 5 for both SVMs and Naive Bayes. The seond best is the Double-BootStrapmethod with 2 wins out of 5 for SVMs only. The CFSWIT method does not result in14



Conformal Feature-Seletion Wrappers for Instane Transfernegative transfer while any other instane transfer method has at least one experiment withnegative transfer.If we analyze Tables 3 and 4 we observe that the CFSWIT method does not fail beausethe omponent of the soure distribution on the �nal subset of features that orresponds tothe seleted soure instanes is indeed lose to the target distribution for all the experiments.This does not always happen for other methods beause they either selet features or soureinstanes; i.e. they are muh less �exible.Tasks Baseline CFSWIT MMDE f-MMD TrAda-Boost DynamiTrAda-Boost TraBagg Double-BootstrapLandmine 0.59 0.62∗ 0.62∗ 0.58 0.55 0.56 0.64∗ 0.59Wine Quality 0.72 0.74 0.67− 0.72 0.67− 0.66− 0.70 0.74TIME-CHF 0.68 0.70∗ 0.62− 0.70∗ 0.64− 0.64− 0.67 0.69Student 1 0.63 0.70∗ 0.64 0.65 0.63 0.65 0.67 0.71∗Student 2 0.63 0.80∗ 0.72∗ 0.74∗ 0.63 0.64 0.78∗ 0.72∗Table 3: AUCs of CFSWIT, EmbedSR-DT, MMDE, f-MMD, TrAdaBoost, Dynami-TrAdaBoost, TraBagg and DoubleBootStrap employing SVM as the base lassi�er.
∗(−) denotes signi�antly better (worse) results w.r.t the baseline lassi�er.

Tasks Baseline CFSWIT MMDE f-MMD TrAda-Boost DynamiTrAda-Boost TraBagg Double-BootstrapLandmine 0.56 0.58∗ 0.63∗ 0.59∗ 0.47− 0.47− 0.56 0.56Wine Quality 0.72 0.75 0.66− 0.73 0.69− 0.69− 0.74 0.75TIME-CHF 0.71 0.74∗ 0.59− 0.74∗ 0.76∗ 0.76∗ 0.72 0.74∗Student 1 0.68 0.79∗ 0.69 0.70 0.63 0.61− 0.73∗ 0.71Student 2 0.68 0.77∗ 0.66 0.71∗ 0.62 0.62 0.75∗ 0.73∗Table 4: AUCs of CFSWIT, EmbedSR-DT, MMDE, f-MMD, TrAdaBoost, Dynami-TrAdaBoost, TraBagg and DoubleBootStrap employing NaiveBayes as the baselassi�er. ∗(−) denotes signi�antly better (worse) results w.r.t the baseline las-si�er.If we ompare the results for the methods in Tables 2-4, we observe that the generalizationperformane is lowest when the base lassi�ers are the C4.5 deision trees and highest whenbase lassi�ers are the Naive Bayes lassi�ers. This shows the importane of the option ofhoosing the base lassi�ers. This option is provided by the model-independent methodssuh as the CFSWIT method.8. ConlusionIn this paper we proposed the new method of onformal feature-seletion wrappers forinstane transfer (CFSWIT). Given a lassi�ation model in the presene of target data andsoure data, the method performs feature seletion and soure-subset seletion for this model.15
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