Proceedings of Machine Learning Research 93:30-43, 2019 International Conference on Grammatical Inference

Using Adaptive Sequences for Learning Non-Resettable
FSMs

Roland Groz ROLAND.GROZQUNIV-GRENOBLE-ALPES.FR
Nicolas Bremond NICOLAS.BREMOND2@UNIV-GRENOBLE-ALPES.FR
LIG, Université Grenoble Alpes, F-38058 Grenoble, France

Adenilso Simao ADENILSO@QICMC.USP.BR
Universidade de Sao Paulo, ICMC, Sdo Carlos/Sao Paulo, Brasil

Editors: Olgierd Unold, Witold Dyrka, and Wojciech Wieczorek

Abstract

This paper proposes a new method to infer non-resettable Mealy machines based on the
notions of adaptive homing and characterizing used in FSM testing. This method does
not require any knowledge on the system inferred apart from its input set. It progressively
extends an output query, and also avoids almost all equivalence queries. It is fast, and
scales to machines that have hundreds of states. It outperforms in most respect previous
algorithms, and can even compete with algorithms that assume a reset.

Keywords: Query learning, FSM testing

1. Introduction

Query learning has been used in software engineering and (software-based) system valida-
tion. In such contexts, it is indeed possible to test a system to observe its reactions, and
infer a model from the observations. It is used to retrieve models from reactive software
artifacts, so typical queries in that context are output queries (observing the output from
each input sent to the system) rather than membership queries. Query learning assumes
that a System Under Inference (SUI) can be provided multiple queries, and a model of it
is derived from its answers to the queries. New queries are derived from previous observa-
tions. Most algorithms assume that each query will be applied from the initial state of the
system, so it is assumed that the system can be reset. But in many contexts, it may not be
possible to reset the system, or this may take a long time and require complex operations.
Typically, when a system is queried over a network, there might not be any signal to ask
the distant system to restart. And even when this is possible, if resetting a software to its
initial state implies restarting part of its hardware or software environment as well, each
reset could take a time that is considerably longer than a single input/output interaction.

In this paper, we propose a fully adaptive method to infer non-resettable reactive sys-
tems, which we call the hW-inference method. The corresponding automata models are
input-output machines (Mealy machines), usually referred to as FSM (Finite State Ma-
chines) in software engineering, especially for testing.

A very preliminary version of hW-inference was presented in Groz et al. (2018), and
showed that it had the potential to scale up. In this paper, we extend the method to be fully
adaptive, and use a combination of heuristics and detection of inconsistencies to make the
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most of the observed trace. We assess the impact of using adaptive sequences, and compare
this new algorithm with existing algorithms for inference without reset. hW-inference turns
out to be surprisingly effective:

e [t does not require any knowledge of the SUI, yet it converges rather rapidly for most
machines. It makes the assumption that the system can be reset almost unnecessary.

e It is fast, and scales up easily to machines that have thousands of states.

e It avoids most calls to an external oracle (equivalence queries) as a source of coun-
terexamples, using instead the inconsistencies observed during its execution.

Yet contrary to our expectations, being fully adaptive does not bring a clear-cut improve-
ment over using non-adaptive test sequences; it improves however for machines with large
input sets or non-random graphs with “deep” states. The rest of this paper is organized
as follows. In Section 2, we give the formal notations and definitions used in the paper to
describe the algorithms. In Section 3 we present our adaptive algorithm. We illustrate in
Section 4 how it works on a small example. In Sections 5 and 6 we compare h W -inference to
other algorithms. Finally, in Section 7 we provide concluding remarks and point to future
directions for this research.

2. Definitions

In this section, we recall a few classical definitions for the type of automata we are consider-
ing here, namely Mealy machines. Then, we introduce the specific definitions for adaptive
h W -inference.

2.1. Basic notations

A Finite State Machine (FSM) is a complete deterministic Mealy machine. Formally, it is
a tuple M = (Q,I,0,0,\) where

e () is a finite set of states,
e [ is a finite set of inputs (the input alphabet), and O a finite set of outputs,
e ):(Q x I — (Q is the transition mapping, and A : Q x I — O is the output mapping.

Notations  and A are lifted to sequences, including the empty sequence e: for g € Q
d(q,€) = q, Mg, e) = € and for ax € I and o € I*, (q,ax) = 6(0(q, ), x) and A(q,ax) =
Mg, 2)A(0(q, @), z). We will call A(q,«) and (g, @) the answer or response of the machine
in state ¢ to the sequence o and the tail state of the sequence, respectively. We will use
o/ to denote the interleaved sequence of inputs and corresponding outputs observed when
the application of « to the machine yields the response 8. Such a sequence of input/output
pairs is called a trace. Given a trace w = «/f3, a = @ denotes its input projection, and
B = w its output projection. For any sequence «, |a| denotes its length. Notice that we
slightly abuse the notation to represent as well the cardinal of a set: |I| is the number of
elements in set I.
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In order to be able to infer without reset, we will assume that the FSM to be inferred
is strongly connected, i.e. for all pairs of states (g, ¢’) there exists an input sequence o € IT*
such that §(¢,a) = ¢'.

Given a machine M = (Q, I, O, 6, \) and its current state g, we denote try(a) = a/A(q, @)
and Tr(q) = {trq(a)}acr-. Two states are equivalent iff they have the same set of traces
Tr(q) = Tr(q¢"). Two machines M and M’ are equivalent, denoted, M =~ M’, iff there
exist state ¢ of M and state ¢’ of M’ such that Tr(q) = Tr(¢’). Note that we can define
equivalence between a FSM and a software system as long as the observable behaviour of
this system can be defined by the set of traces it can exhibit.

2.2. Homing and characterizing

A sequence of inputs h € I* is homing iff Vq,q¢' € Q, A(q,h) = A(¢',h) = §(q,h) = (¢, h).
In other words, the observed output sequence uniquely determines the state reached at the
end of the sequence.

Two states q,¢ € Q are distinguishable by v € I* if A(q,7) # AMq',7). Two states are
distinguishable by a set Z C I* if there exists v € Z that distinguishes them. A set W of
sequences of inputs (henceforth conventionally called a W-set, following Vasilievskii (1973))
is a characterization set for an FSM M if each pair of states is distinguishable by W.

If a sequence « distinguishes ¢ from all states of a subset Q' C Q, any sequence a.y will
also distinguish ¢ from any state in @’. Thus, when using a set of sequences to identify
a state, we do not need to keep prefixes of other sequences in the set since they do not
distinguish more states than the extended sequence.

2.3. Adaptive application of sequences

In conformance testing, it is usual to distinguish preset test sequences from adaptive ones.
In our context, a homing sequence is a preset sequence, because the same input sequence
will be applied completely from any state to ensure that after its application, the SUI is in a
well-defined state that can be determined by the observed output sequence (response). An
adaptive homing procedure would try some input prefix, observe the output, then decide
whether the observed output prefix is sufficient to determine the state reached. For some
outputs, the system could still be in one of several states, so further inputs should be
applied. Adaptive homing (or characterizing) can be represented by a rooted tree, where
each decision node corresponds to an input, and edges to the possible outputs for that input,
leading to further nodes (or a leaf when no further input is needed).

Adaptive procedures make it possible to have shorter tests. A preset (i.e. non-adaptive)
sequence can always be represented as a tree, where every path from root to leaf has the
same input projection, therefore the same length. This length is the worst case solution,
but there can be adaptive trees that home or characterize with paths of a shorter length.

Our definition of adaptive trees is inspired by Hierons (2006), whose definition we extend
to cover adaptive characterization with multiple sequences. Figure 1 illustrates the notions
on a simple automaton. Figure la shows an example of Mealy automaton. Figure 1b
represents an adaptive homing for this automaton. For convenience, we added in brackets
the possible states reached after execution of start of the tree. For instance, we can start
in any state but after applying b and observing 0, we can only be in state 1 or 2.
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Figure 1: examples of automaton and adaptive homing and characterizing

Figure 1c shows an example of characterizing tree for the example automaton. On this
figure we displayed the states leading to each part of the tree. For instance, we can start
from any state but only states 1, 2 and 3 will produce output 0 for input b, whereas only
state 3 will produce output 0 for input b and output 1 for input a.

An adaptive tree is a rooted tree defined recursively as follows. Each adaptive tree t € T
is either:

e V (a leaf node)

e o(i, f) where i € I and f is a (partial) function from O to T; this extends the current
sequence with a new input to be applied;

e O(i, f) where i € I and f is a (partial) function from O to T this implies that a new
sequence should be started from the same point as where the root was applied. We
also call it a NewSeq node.

We then define a pointed adaptive tree, p-tree, p € P as a couple (¢, &) where £ designates
a unique node in ¢. This notion will be used in the algorithm to record which level of (partial)
homing or characterizing we have reached. Since adaptive trees are rooted, (t,root) will
denote the pointed root node. 7(t,§) is the trace (input-output sequence) traversed on the
path from (¢, root) to (¢,€). v(t, &) is the set of maximal subsequences of (¢, ) that do not
traverse a ® node. So the trace from the root to £ is the concatenation of the (ordered)
traces in v. v(p) will denote the set of input projections of traces in v. We denote I(p) the
input labelling the pointed node, and similarly F'(p) the function that associates an output
to a child node. Predicates leaf (p), seq(p) and newseq(p) will check the type of the node.
An adaptive tree is the structure used by the procedure Apply-NextSeq. This procedure
takes as input a pointed adaptive tree and returns a pointed adaptive tree after applying on
the SUI the part of the tree between these nodes. It goes down the tree from the pointed
node and stops on the first node that is either a leaf (V) or a NewSeq (®) node.
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Algorithm 1: Adaptive testing procedure
function Apply-NextSeq(p: P)

if leaf(p) then
| return p

else
Apply I(p), observe o
if newseq(F(p)(o)) then
| return F(p)(o)
else
| return Apply-NextSeq(F'(p)(0))
end

end
end

2.4. Adaptive homing and characterizing

Adaptive homing uses an adaptive tree that does not contain any ® node; it applies only
one adaptive sequence. Such an adaptive tree h is homing iff when Apply-NextSeq(h, root)
is executed from any node, the leaf node returned uniquely determines the state reached.
Formally, h is a homing tree iff Vq,¢' € Q s.t. p = Apply-NextSeq(h,root) from ¢ and
P = Apply-NextSeq(h,root) from ¢ then 7(p) = 7(p') = d(q, 7(p)) = d(¢', 7(/)).

Similarly, an adaptive tree W is characterizing iff each leaf p is associated to a unique
state, i.e. v(p) is a state identifier. In hW-inference, the leaves of the (current) W tree will
make up the states of the conjecture. By resolving inconsistencies (e.g. from counterexam-
ples when the conjecture is not equivalent to the SUI) W will be progressively refined, until
it is (fully) characterizing for the SUI.

3. Adaptive hW-inference

If we know a homing sequence or tree h and a characterizing tree or set W, we can infer
an FSM with a repeated loop: home with h into a state (associated to leaf p of h), improve
the characterization of that state with W. The algorithm uses a mapping H that associates
to each leaf p of h its current (possibly partial) characterization H(p). Once h leads to a
p that is fully characterized (at least w.r.t. the current W), learn a transition from it by
applying an input, observing the output, and learning the tail state of the transition with
W. If after homing into a state ¢ we already know A and § for all transitions from ¢, we
traverse known transitions to learn unknown ones. Once all transitions for all states are
known, the FSM is completely inferred.

However, we do not want to assume that we may know in advance a homing and charac-
terizing structures for an unknown SUI. The core idea of hW-inference is to consider that
if we use some putative h and W that are not homing or characterizing, we can use them
as if they were. States that should be different will be confused, and this will lead to either
inconsistencies in the course of the learning loop, or to an incorrect conjecture for which an
equivalence query will provide a counterexample. Inconsistencies and counterexamples will
be used to refine h or W, until they are fully homing and characterizing. We can just start
from an empty h and W initially. Adaptive hW-inference is presented as algorithm 5.
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FEvery time we apply an input in the course of the algorithm, we check for inconsistencies
(see 3.1). So the base algorithm is complemented by this implicit exception handling.
Handling the inconsistency leads to refining either h or W, and restarting the algorithm
from line 1. Note that we do not need to fully reinitialize Q, A, §: for states corresponding
to leaves of W that have not been impacted by the refinement, we just keep them, so we do
not need to relearn transitions from such states. Similarly, only new leaves of h will require
extending H.

Algorithm 2: Base hW-inference algorithm
function Infer()
initialize: h <+ V; W < V; Q, \,6 < 0
1 repeat
repeat
p < Apply-NextSeq(h)
if H(p) is undefined then
| H(p)«W
end
if —leaf(H(p)) then // Improve characterization
H(p) + Apply-NextSeq(H (p)) // Apply next w sequence
if leaf(H(p)) then
Qe QU{HE)):
end
Ise
let ¢ = H(p) be the state reached at end of h;
2 find shortest ax € I* s.t. d(q,a) = ¢ and (6(¢,z) is undefined or
~leaf(5(d',2)))
if such a path cannot be found then
‘ break; // go to line 5, as graph is not strongly connected
end
if 0(¢', x) is undefined then // Start learning tail state
| o(d )« W
end
Q<+ QuU{d}
3 apply ax observe Bo; // Learn transition
Ad',x) <o
4 0(¢',z) + Apply-NextSeq(d(¢’,z)) // Incrementally learn tail state
if leaf(0(¢',x)) then // Full characterization reached
| Q< QU{d(d, )}

end

]

end
until M = (Q,1,0,6,\) contains a strongly connected complete component;
5 Get_Counterexample

Process_Counterexample
until no counterexample can be found;

end
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On line 2, we might not be able to find a path to a partially defined transition, if we
are in a complete subgraph of a not strongly-connected machine M. In order to be able to
reach back a partially defined state out of the current subgraph, we need a counterexample.

3.1. Handling inconsistencies
3.1.1. h-ND INCONSISTENCY

If we start with a h which is not homing, this implies that we will consider as a single
state (as reached by a given response r to h) at least two states that are in fact different.
Later on, when we apply some sequence of inputs ~ after observing h/r, we may observe
a different sequence of output than a previous application of 7 after observing h/r. This
we call an h-ND inconsistency, because it appears as non-deterministic behaviour from the
state of the machine reached after observing h/r. Actually, h7y is a better attempt at a
homing sequence because it will reduce the uncertainty (as in Rivest and Schapire (1993)).

Formally, h-ND inconsistency occurs when the global trace contains a sequence h/r.[3 /v
and another sequence h/r.3/v’ such that v # v'. In this case, we append 3/v and 8/v" to
the leaf h/r.

3.1.2. W-ND INCONSISTENCY

Even though h may be homing, different responses r and 7’ can be associated to the same
state ¢ € @ if they have the same response to W. Similarly, the tail states of two transitions
can be merged, viz. §(q,z) = 6(¢’,2’) even if those states could be distinguished by a
sequence that is not in W. State confusion again can lead to apparent non-determinism for
sequences of inputs that are applied from ¢ or d(q,z). In that case, some suffix of those
sequences can be added to W to enhance distinguishability of states.

Formally, W-ND inconsistency occurs when the global trace contains a sequence h/r.«/u. /v
and another sequence h/r'.o/ /u'.8/v" such that r # 1’ or o # o, §(H(r), ) = 6(H (1), )
and v # v'. This implies that 6(H(r),«) and §(H (r'),a’) can be distinguished by 3. Actu-
ally, all states traversed while applying 5 can be distinguished by some suffix of 8. There
can be several ways of choosing which subsequence of 8 should be added to W. Currently,
we refine the leaf of W reached at that point with the shortest suffix of S which is not yet
in the leaf. If a sequence higher up in the tree is a prefix of the new sequence, we extend
the old sequence, otherwise we change the leaf into a new sequence.

3.1.3. OTHER CONSISTENCY ISSUES

During the course of the algorithm, h W-inference also checks whether h and H are consistent
with the partial conjecture machine, i.e. with A and 6. If not, we can identify a sequence
that when applied to the SUI will elicit A-ND or W-ND. Another issue is that the procedure
can produce a set of states () and a function ¢ such that the transition graph is not strongly
connected. Since the algorithm always attempts to complete transitions from the current
state reached, it will build some complete strongly connected component, but could yield a
global machine that is not strongly connected (and possibly incomplete). Since we assume
the SUI is strongly connected and complete, this implies that the conjecture M is not
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equivalent to the SUI. Finding a way of “escaping” from the current strongly connected
component will use a counterexample.

3.2. Getting and processing counterexamples

The inference procedure could end with a complete machine without detecting an inconsis-
tency, even if W is not characterizing or A not homing. In that case, h W-inference requires
a counterexample, i.e., a trace that is produced by the SUI but cannot be produced (from
any state) by the conjecture M. Actually, it is quite possible that when the conjecture is
complete, the global trace produced by hW-inference might not be accepted by the con-
jecture. In our experience, this turned out to be a major source of counterexamples, thus
relieving the need to call an external oracle to get counterexamples.

Since we do not know the initial state of the conjecture, we try applying the global trace
from all states of the conjecture. If the conjecture is not complete (this can happen when
it is not strongly connected), then any undefined transition could lead to any state, so we
continue checking the trace on the conjecture again from all states.

The procedure Get_Counterexample therefore starts by checking whether the current ob-
served trace is consistent with the conjecture. Otherwise it calls an oracle to get a sequence
of inputs that would distinguish the conjecture from the SUIL In our black-box software
testing context, such an oracle can only be approximated. We chose (in our implementa-
tion) to approximate it with a bounded random walk on the graph of the conjecture. Other
approaches, such as the Vasilievskii-Chow algorithm or constraint solving (as in Petrenko
et al. (2017) could incur exponential costs in the bound (on the number of states).

Whether a counterexample has been found in the global trace or by an additional se-
quence (provided by the oracle) appended to the tail of the trace, it will result in an
inconsistency between the conjecture and the observed trace. So Process_Counterexample
simply handles inconsistencies as described in section 3.1.

3.3. Dictionary

Each time for a given response to h some sequence axw is applied (line 4), we keep a record
of it in a dictionary (Niese, 2003). Therefore, on line 3, we do not need to apply azw if it
is already recorded. This actually would occur quite often since W would be refined more
often than h and as long as h is unchanged, we can reuse previous applications of azw. Note
that if we applied the same sequence ax again, we might observe a different output, since
h and W may not yet be correct. But as the rest of the approach, keeping that previous
value is a heuristic that shows good results.

4. Example

In this section, we will detail the execution of hW-inference on the automaton from Fig-

ure la.
a/0 b/0 a/0 a/0 a/l

1 5 2 —q 1 —2 2 —3 3 —4 3
~~ . , ~N =~ ~~
h=v w=V h=v w=V ~
=Vh,o0 gp—q W0 R=Vh,0 .y w,0 counterexample
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We start with h = Vo and W = Vyy, therefore empty sequences (leaves). The first
step is to apply h and we get the response Vjo. H(Vp ) is undefined and thus, we record
Vw,o in H(Vpp).

Now, we identified the current state and we start to learn transitions. We apply input
a and observe output 0 and then we apply W to identify the state reached. We get the
output Vo which means there is a transition from state Vyo with input a leading to state
Vw,o with output 0.

We now have a single-state machine with all transitions looping to this state. To con-
tinue, we query an oracle for equivalence, and get the counterexample a/0 a/0 a/1 that is
produced the by SUI but not accepted by the conjecture.

This counterexample highlights two Non-Determinisms:

e IW-ND because before transition 4 we were in state Vyyo and 6(V,a) = 0 but we
observed output 1

e h-ND: since h is still the empty (leaf) sequence), it occurs between transitions 1
and 2 and also between transitions 2 and 3. Hence the traces h/Vj o a/0 a/0 and
h/Vho a/0 a/1 imply that Vj ¢ must be extended with two a’s.

We now have the homing and characterizing trees shown in Figures 2a and 2b.

O(@)h,o

RN o)
o(a)h,/l \Vh,z O/ V<1
0/ \1 Vw1 Vv,2

Vi3 Vha (b) new tentative characterization tree

(which is not characterizing the SUI)
(a) new tentative homing tree (which is ac-

tually a homing tree for the SUT)

Figure 2: Current h and W after 5 transitions

a/0 a/0 a/l a/0 a/0 a/l a/0
3 — 5 2 — 6 3 —r 7 4 — 8 2 —9 3 —> 10 4 — 11 2
~— —— —— ——
h/Vn3 W/Vw,2 h/Vn,3 z=a W/Vw,

Transitions 4, 5 and 6 will define H(Vj3) <= V2, then transitions 8 to 11 show the
discovery of a new transition in graph from state H(Vj 3) = V2 to state Vi for input a
with output 1.

a/0 a/l a/0 a/0 a/l a/0 a/0
2 — 12 3 — 13 4 — 14 2 — 15 3 — 16 4 — 17 2 — 18 3
——— —_——— ———
h/Vha W/Vw,1 h/Vh.a4 z=a W/Vw,1

Similarly, transitions 12 to 18 will build H(Vj4) < Vw,1 and discover the transition
a/1 looping in state Vyy;.

a/0 a/0 a/l a/0 b/0 b/0
.4 — 30 2 — 31 3 — 32 4 ... 4 — 67 2 — 68 1 — 69 1

H —inconsistency counterexample
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4 T Z %

bwsz Vwa

Vw3 Vw4 / \

(a) Third characterization tree (which is not Y v
characterizing the SUT) w5 w6

(b) Fourth and final characterization tree

Figure 3: Characterization trees obtained after W-ND

After transition 32, we refine W as shown in Figure 3a and we restart inference. This
inference will build another false conjecture and the oracle will give the counterexample
a/0 b/0 b/0 in transitions 67 to 69.

This counterexample is used to refine the characterization Vyy 3 with the new sequence
b. This produces the W-tree shown in Figure 3b.

We now have the correct h and W and we restart the inference once again.

a/0 a/0 a/l b/1
1 — 70 2 — 71 3 — 72 4 — 73 3
——— ———
h/Vh,:s z=a W/Vw,s

After transition 71, we need to identify the state reached, but actually, we already
applied W after observing V3 (in transitions 5, 6 and 7) and thus we can build again
H(Vp3) < V.

In the case when the dictionary provides a sequence leading to a leaf of W which was
modified (e.g. Vj_3), we can still reuse the sequence if it leads to a ® node. In that case we
do not apply W and we take directly the modified node.

Then we continue to build the model by using the trace or by executing queries on the
system until transition 98 which lets us learn the last transition of the model.

Finally, we call the oracle for a counterexample and it answers that the model is correct.

5. Related work

Inferring automata that cannot be reset was first addressed by Rivest and Schapire (1993).
The basic idea is to use a homing sequence as a substitute for a reset, and for each outcome
of the reset sequence, using a distinct copy of L*. Each copy maintains its own observation
table, and asks for its own queries. After each query, a new homing is performed and the
associated copy of L* is continued. The homing sequence can be approximate initially,
and will be refined similarly to A-ND. However, counterexamples and h-ND might not be
sufficient to get the correct conjecture, so the algorithm needs a bound on the number of
states, and uses a probabilistic approach to spot inconsistencies by replaying some queries.
Compared to hW-inference, it requires this bound, and creates several copies of the obser-
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vation table. Rivest and Schapire (1993) acknowledged they did not find a way of reducing
this redundancy.

The problem was readdressed by Groz et al. (2015), using a characterization set and
a bound on the number of states. We now call it the LocW algorithm. It assumes the
W-set is correct, which implies that an oracle is no longer required; only output queries are
performed on the SUIL It does not require a homing sequence: a specific procedure, called
a localizer, that uses nested iterations of sequences from W plays this role. In LocW the
approach was preset, but later in Groz et al. (2017) it was extended to be adaptive if the
W-set is given in the form of a splitting tree (a restricted version of adaptive trees where
only ® nodes can have several children).

A completely different approach has been proposed by Petrenko et al. (2017). It does not
require any oracle. The only assumption is to have a bound on the number of states. Based
on this minimal knowledge, it uses a constraint solver to check whether there are alternative
solutions (conjectures) accounting for a trace. It computes a sequence distinguishing the
current state of the conjecture with an alternative conjecture, applies that sequence, and
chooses the new conjecture as the one that satisfies the observations. It continues like this
until the constraint solver proves there is no alternative conjecture. Although this approach
builds the shortest traces to infer a black-box model, it does not scale up beyond a dozen
states, so we do not include it in our comparisons.

Finally, in our experiments, we also compare to inference algorithms that use a reset.
We compare with a classical Mealy adaptation of L* called L,, (Shahbaz and Groz, 2009), as
well as with an algorithm based on tree structures instead of observation tables. The most
recent and efficient algorithms are TTT (Isberner et al., 2014) and Z-Quotient (Petrenko
et al., 2014). We chose the latter as we had the implementation available in our framework.

6. Experiments

In this section, we compare hW-inference with other algorithms with or without reset.
Some algorithms are quite slow (at least in the implementations we have) and thus we do
not provide data for the inference of bigger automata. That is the case for Z-Quotient.
In all experiments on random machines, we limit the inference time to 100 seconds on a
laptop computer. In order to get meaningful average values with random machines, for each
number of states, 150 machines were generated with that number of (inequivalent) states.

Figure 4a compares the algorithms on randomly generated strongly connected Mealy
automata with two input symbols and two output symbols. The automata used for Figure 4b
are more challenging: these are automata with five input symbols and two output symbols;
we randomly pick one specific transition for each state, and we assign the first output to
that specific transitions and the second output to all other transitions. Those automata are
harder to infer because they have more transitions and we need to apply more inputs to
distinguish two states.

The main measure we use is the number of inputs executed on the SUI until the FSM
is correctly inferred. Another key measure is the number of equivalence queries.

Figure 4d shows the average number of counterexample asked by each algorithm. For
this figure, we included the last call to the oracle (the one for which the oracle answers
that the conjecture is correct). hWW-inference requires at least two calls: one after the first
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Figure 4: Comparing inference algorithms on random automata

“daisy” (one state) conjecture because no counterexample can be derived from applying each
input once, and the last at the end of procedure to conclude equivalence. Experiments show
that for random machines, on average, no other call is needed: all other counterexamples
can be derived from the trace produced by the algorithm.

It is known that random algorithms are not representative of the models of real systems.
For a better assessment of the algorithms, we use the Radboud benchmark that was specif-
ically set up to collect case studies of inference of software systems!. Table 1 shows that
adaptive h W-inference performs better than the preset version for large automata, and uses
in most cases (except for the TCP example) even much less inputs than the reset-based al-
gorithm Lm. It also outperforms LocW especially if they are provided with the same initial
W -set.

"http://automata.cs.ru.nl/0Overview#Mealybenchmarks
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5 | 5 g g g § 25
automata & (o< g < ~ ~ < &
Edentifier2 new device | 15 1247 209 170 230 (80) 148 192
Edentifier2 old device 20 1146 317 389 355 (105) 251 277
mqtt mqtt 21 | 768 351 301 448 (154) 48 146
VerneMQ simple 21 768 335 282 448 (154) 48 146
emqtt simple 21 768 350 319 448 (154) 48 146
mqtt invalid 33 1649 843 929 1100 (374) 81 232
emgqtt invalid 33 1788 590 462 1100 (374) 80 218
VerneMQ invalid 33 1649 856 809 1100 (374) 81 232
ActiveMQ invalid 55 3249 1442 2270 2189 (616) 823 659
mqtt non_clean 72 61012 10990 2943 7624 (990) 4930 2648
emqtt non_clean 72 44805 21642 2477 5017 (752) 2739 1584
VerneMQ non_clean 72 61643 12483 2758 7541 (974) 4664 1820
ActiveMQ non_clean 72 62999 10581 2868 7675 (994) 4775 1838
VerneMQ 2 client 1id | 77 7899 3271 1604 3781 (998) 1845 1582
mgqtt 2 client 1 id T 7858 4647 1707 3826 (1003) 1891 1486
emqtt 2 client 1 id s 7527 3427 1618 3772 (996) 1806 1569
VerneMQ 2 client ret. 153 262991 33466 8735 26968 (3779) 28116 | 4440
ActiveMQ 2 client ret. | 162 372575 104507 10631 36698 (4713) 39636 | 5518
mqtt 2 client ret. 162 250734 40398 8683 27294 (3777) 31428 | 3890
unknownl 162 388585 107274 10208 36041 (4695) 38994 | 5460
TCP W8 server 468 2847351 | 1216027 | 1277662 | 219073 (23525) - -

Table 1: Trace length during inference of benchmark models with different algorithms

From those experiments it turns out that hW-inference is very efficient. The length of
the trace to infer a SUI is shorter by an order of magnitude than the previous methods
for non-resettable systems. The advantage of adaptive over preset sequences is unclear for
random machines with only two inputs, but becomes clear with more inputs, and with
realistic machines from the benchmark. On realistic automata, adaptive hW-inference even
outperforms reset-based algorithms just for output queries, notwithstanding the fact that
such algorithms require a large number of resets, each of which would cost more than sending

a single input.

7. Conclusion

hW-inference is a new approach for inferring FSM models of software systems that cannot
be reset. It uses minimal assumptions (knowledge of the input set, and being able to observe
outputs). It uses a kind of optimistic heuristic but converges rapidly and scales up easily to
machines with hundreds of states. It looks as a potential breakthrough for active learning,
and makes the ability to reset a system a potentially superfluous luxury especially if resets
are costly. Another benefit is that it drastically reduces the need for an oracle to get
counterexamples: most can be found in the trace. We plan extending it into two directions:
first, dealing with systems whose models are not strongly connected; second, extending the
approach to deal with parameters and values, such as register automata or other types of
extended finite state machines.
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