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Abstract

For many interesting tasks, such as medical diagnosis and web page classification, a learner
only has access to some positively labeled examples and many unlabeled examples. Learn-
ing from this type of data requires making assumptions about the true distribution of the
classes and/or the mechanism that was used to select the positive examples to be labeled.
The commonly made assumptions, separability of the classes and positive examples being
selected completely at random, are very strong. This paper proposes a weaker assumption
that assumes the positive examples to be selected at random, conditioned on some of the
attributes. To learn under this assumption, an EM method is proposed. Experiments
show that our method is not only very capable of learning under this assumption, but it
also outperforms the state of the art for learning under the selected completely at random
assumption.

1. Introduction

When learning binary classifiers from fully labeled data, algorithms have access to the class
labels for all examples. However, in practice, many data sets only provide positive labels for
some examples, with the remaining data being unlabeled and containing both positive and
negative examples. Learning from positive and unlabeled data (PU learning) attempts to
learn a classifier from this data. PU learning is closely related to semi-supervised learning
and one-class classification (Khan and Madden, 2014).

The problem of positive and unlabeled data arises often in practice. Medical records, for
example, list the diseases that patients have been diagnosed with. However, some diseases,
like diabetes, often go undiagnosed. In this case, it is wrong to assume that an undiagnosed
patient does not have the disease. Another examples are bookmarked pages, as these are
but a subset of the pages of interest (Lee and Liu, 2003; Liu et al., 2003), and knowledge
bases, which only contain a subset of facts (Zupanc and Davis, 2018).

There are roughly three established assumptions that enable PU learning. 1) Assuming
the unlabeled data to be negative (Neelakantan et al., 2015). 2) Assuming separability,
i.e., that the negative examples are very different from the positive ones. Learning then
consists of two steps: finding reliable negative examples and then applying standard machine
learning (Li and Liu, 2003; Yu, 2005; Nguyen et al., 2011). 3) Assuming that the labeled
examples are selected completely at random from the set of positive examples, a classifier
can be learned by incorporating the probability of labeling an positive example (Denis,
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1998; Lee and Liu, 2003; Liu et al., 2003, 2005; Denis et al., 2005; Zhang and Lee, 2005;
Elkan and Noto, 2008; Mordelet and Vert, 2014; Claesen et al., 2015).

The aforementioned assumptions are very strong. Our goal in this paper is to enable
learning under weaker assumptions by introducing a new assumption to enable learning from
positive and unlabeled data: the Selected At Random (SAR) assumption. It is related to the
third category of approaches, but instead of assuming a constant probability for all positive
examples to be labeled, it assumes that the probability is a function of the attributes, called
the propensity score. The propensity score originates from causal inference, but has also
been applied in semi-supervised learning (Imbens and Rubin, 2015; Schnabel et al., 2016).
In order for it to be possible to learn in this setting, our proposed method SAR-EM assumes
that the propensity score only depends on a known subset of the attributes.

Our contributions are the following: 1) formulate the SAR assumption for learning
from positive and unlabeled data, 2) propose a method SAR-EM that works under this
assumption, 3) show that a special case of SAR-EM which assumes the SCAR assumption
outperforms the state-of-the-art methods for estimating the class prior in PU data, 4) show
that incorrectly making the SCAR assumption hurts the classifier performance, and 5) show
that SAR-EM can reconstruct propensity score functions and learn good classifiers.

2. Background

The goal of learning from positive and unlabeled (PU) data is to train a binary classifier
while only having access to positively labeled and unlabeled examples. An example is
represented by {x, y, s}, where x are its attributes, y the true class and s the label. Only
positive examples are labeled: s = 1⇒ y = 1, and unlabeled examples s = 0 can be of any
class y. Bold letters depict sets of variables, i.e., the dataset is represented by {x,y, s}.

To enable learning with positive and unlabeled data, assumptions about the population
of positives and negatives in the instance space are necessary. The two most popular
assumptions are 1) separability and 2) selected completely at random. The separability
assumption assumes that within the considered class of models a model exists that can
perfectly separate the positive from the negative examples. This assumption is violated if
the attributes do not contain enough information to deterministically determine the class.
When separability holds, two-step approaches can be used to solve the problem (Li and Liu,
2003; Yu, 2005; Li et al., 2009; Nguyen et al., 2011).

Learning without the separability assumption is challenging because examples with a
low probability of being positive could still have a positive label. In this case, the sampling
mechanism to select positive examples to be labeled needs to be considered. The most com-
mon assumption is that the labeled positives are a random subsample of the true positives.
This is the selected completely at random assumption.

2.1. Selected Completely at Random Assumption

Under the Selected Completely At Random (SCAR) assumption, every positive example has
exactly the same probability to be selected to be labeled (Elkan and Noto, 2008). Given the
class, this probability (the label frequency c), is conditionally independent of the attributes:

c = Pr(s = 1|x, y = 1) = Pr(s = 1|y = 1). (1)
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The SCAR assumption was introduced in analogy with the Missing Completely A Ran-
dom assumption (MCAR) that is common when working with missing data (Rubin, 1976;
Little and Rubin, 2014). However, there is a notable difference between the two assump-
tions. In MCAR data, the missingness of the variable cannot depend on the value of the
variable, where in PU learning this is necessarily the case because all negative labels are
missing. The class values are missing completely at random only if just the population of
positive examples is considered.

A very useful property follows from the SCAR assumption: An example’s probability
of belonging to the positive class is directly proportional to the probability of that example
being labeled (Elkan and Noto, 2008):

Pr(y = 1|x) =
1

c
Pr(s = 1|x). (2)

A probabilistic model to predict Pr(y = 1|x) can be obtained by training a model that
predicts Pr(s = 1|x) from the data and scaling the output probabilities with 1/c. This
method only works with well-calibrated models and is therefore not always robust. Other
methods have been introduced to cope with this, they integrate the label frequency in the
training process (Denis, 1998; De Comité et al., 1999; Liu et al., 2003; Zhang and Lee, 2005;
Elkan and Noto, 2008).

The previously mentioned methods require the label frequency, or equivalently the class
prior α = Pr(y = 1) = Pr(s = 1)/c, to be known. The class prior can be known from
domain knowledge or could be estimated by labeling a small random sample of the dataset.

A substantial effort has been done to estimate the label frequency c directly from the
data (Elkan and Noto, 2008; du Plessis et al., 2015; Jain et al., 2016a; Ramaswamy et al.,
2016; Bekker and Davis, 2018a,b). The common assumption that these methods make is
that in some region in the instance space, the positive class probability should be 1. We
refer to this assumption as the local certainty assumption.

3. Selected at Random Assumption

This paper introduces the notion of positive examples being Selected At Random (SAR)
to be labeled. This assumes that the selection probability is completely determined by its
attributes. Just like SCAR has MCAR as a counterpart in the missing data literature, SAR
is based on the Missing At Random (MAR) assumption (Rubin, 1976; Little and Rubin,
2014).

3.1. Propensity Score

The probability that a positive example is selected to be labeled is the propensity score e(x):

e(x) = Pr(s = 1|y = 1, x).

Note that the propensity score only applies to positive examples; negative examples never
get selected. This seems to imply that negative examples are never considered to be labeled.
However, this is not necessarily the case, the labels could be lost afterwards. For example,
doctors test both ill and healthy patients for diseases but may only store positive results in
the patients’ records. In this case, the propensity score is the unconditional probability of
testing a patient and the conditional probability of storing the disease in the record.
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3.2. Learning with a Known Propensity Score

The propensity score is known when the selection mechanism for positive examples is un-
derstood. For example, a hospital might have a protocol for testing people. An unbiased
classifier can then be trained from positive and unlabeled data by taking the propensity
score into account in an equivalent way as the label frequency under the SCAR assumption:
by either scaling the output probabilities with 1/e(x) or integration in the training process.

3.3. Learning with an Unknown Propensity Score

This paper’s goal is to learn from positive and unlabeled data under the SAR assumption
with an unknown propensity score. It is an ill-defined problem because any unlabeled exam-
ple can be explained by both a low positive class probability and a low labeling probability.
This section evaluates which reasonable additional assumptions would enable learning.

Propensity Attributes The first assumption is that the propensity function only re-
quires a subset of the attributes xe ∈ x:

Pr(s = 1|y = 1, x) = Pr(s = 1|y = 1, xe)

e(x) = e(xe).

This is often a reasonable assumption: not all of the attributes might have been available
at selection time, some of the attributes might be difficult to interpret for a labeler, or it
might be known which variables have the highest correlation with the class and the labeler
only used those.

SAR as Multi-SCAR Given discrete propensity attributes, the classification problem
under the SAR assumption can be reduced to multiple classification problems under the
SCAR assumption by partitioning the population into strata based on assignments to values
of the propensity attributes. While being suboptimal in practice, this approach is insightful
for theoretical analysis. Indeed, the conditions needed for training a correct classifier in
each of the strata are sufficient for a correct classifier over the entire population.

Local Certainty Assumption for Any Propensity Configuration To enable learn-
ing with an unknown label frequency under the SCAR assumption, local certainty is com-
monly assumed. This means that the probability of examples belonging to the positive
class needs to be 1 in some region of the attribute domain. A sufficient condition for learn-
ing under the SAR assumption to be possible is therefore that local certainty holds in all
the propensity strata. Although seemingly very strong, this assumption is not implausible.
It holds, for example, if one of the non-propensity attributes always provides certainty of
the positive class. In the task of classifying web pages as commercial, any page with a
“buy” button on it is commercial, regardless of the tags that the labeler had access to when
choosing the pages to label.

We argue that the local certainty assumption for any propensity configuration can be
relaxed if the propensity score function and the classification function have a certain smooth-
ness over the propensity attributes. In other words, some similarity between the classifi-
cation function when conditioned on different propensity configurations is expected. With
this insight, we propose to simultaneously train a classifier and a propensity score function
while promoting local certainty as much as possible.
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Algorithm 1: SAR-EM

Input: attributes x, labels s, propensity attributes xe, local certainty parameter d
Output: classifier f , propensity score model e
f, e = initialize models(x, s,xe);
repeat

// Expectation;
ŷf = f(x[s == 0]);
ŝ = d · e(xe[s == 0]) // Decay propensity scores;

ŷ = ŷf (1−ŝ)
ŷf (1−ŝ)+(1−ŷf )

;

// Maximization;
yw = ones(size(s)) :: zeros(size(s[s == 0]));
xw = x[s == 1] :: x[s == 0] :: x[s == 0];
w = s[s == 1] :: ŷ :: (1− ŷ);
f = fit(xw,yw,w);

sw = s[s == 1] :: s[s == 0];
xew = xe[s == 1] :: xe[s == 0];
w = s[s == 1] :: ŷ;
e = fit(xew, sw,w);

until Converged or maximum iterations reached ;
return f, e;

4. An EM Method for PU Learning under the SAR Assumption

We use an Expectation Maximization (EM) approach to solve the learning problem. The
true class values y are hidden variables, while attributes x and labels s are observed and
the propensity attributes are known. The data is generated by the following process:

(x, y, s) ∼ Pr(x, y, s)

∼ Pr(x) Pr(y|x) Pr(s|x, y)

∼ Pr(x) Pr(y|x) Pr(s|xe, y),

where xe are the propensity attributes. We assume that the process of classifying examples
and labeling examples can be modeled using parameters θ and φ respectively:

(x, y, s) ∼ Pr(x) Pr(y|x, θ) Pr(s|xe, y, φ).

The goal is to find the parameters θ and φ that explain the observed data the best.

4.1. Expectation Maximization

Optimizing parameters θ and φ means setting them to maximize the log likelihood of ob-
serving (x, s). Expectation maximization repeats two steps until the models e. During
the expectation step, it finds the expected values ŷ for y given the current models. During
the maximization step, it retrains the models to optimize the log likelihood of observing
(x, s, ŷ). The steps are derived below.
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Expectation (Algorithm 1, lines 3-7)

Pr(y = 1|x, s = 1, θ, φ) = 1

Pr(y = 1|x, s = 0, θ, φ)

=
Pr(x, s = 0|y = 1, θ, φ) Pr(y = 1|θ, φ)

Pr(x, s = 0|θ, φ)

=
Pr(x|y = 1, θ, φ) Pr(s = 0|x, y = 1, θ, φ) Pr(y = 1|θ, φ)

Pr(x, s = 0|θ, φ)

=

Pr(y=1|x,θ) Pr(x|θ,φ)
Pr(y=1|θ,φ) Pr(s = 0|xe, y = 1, φ) Pr(y = 1|θ, φ)

Pr(x, s = 0|θ, φ)

=
Pr(y = 1|x, θ) Pr(x|θ, φ) Pr(s = 0|y = 1, xe, φ)

Pr(s = 0|x, θ, φ) Pr(x|θ, φ)

=
Pr(y = 1|x, θ) Pr(s = 0|y = 1, xe, φ)

Pr(s = 0|x, θ, φ)

=
Pr(y = 1|x, θ) Pr(s = 0|y = 1, xe, φ)

Pr(y = 1|x, θ) Pr(s = 0|y = 1, x, φ) + Pr(y = 0|x, θ) Pr(s = 0|y = 0, x, φ)

=
Pr(y = 1|x, θ) Pr(s = 0|y = 1, xe, φ)

Pr(y = 1|x, θ) Pr(s = 0|y = 1, xe, φ) + Pr(y = 0|x, θ)

Maximization (Algorithm 1, lines 8-16)

max
θ,φ

Ey|x,s,θ,φ log Pr(x, s, y|θ, φ) = max
θ,φ

Ey|x,s,θ,φ log [Pr(x) Pr(y|x, θ) Pr(s|y, xe, φ)]

= max
θ,φ

Ey|x,s,θ,φ log [Pr(y|x, θ) Pr(s|y, xe, φ)]

= max
θ,φ

Ey|x,s,θ,φ [log Pr(y|x, θ) + log Pr(s|y, xe, φ)]

= max
θ

Ey|x,s,θ,φ log Pr(y|x, θ) + max
φ

Ey|x,s,θ,φ log Pr(s|y, xe, φ)

4.2. Local Certainty

Applying pure EM ensures converging to a combination of classifier and propensity score
model that explains the observed data well. However, care must be taken because a propen-
sity score model that always returns 1 and a classifier that predicts the probability of ob-
serving a label explains the observed data perfectly but is not the desired solution. As
stated in Section 3.3, classifiers with local certainty are preferred, so this needs to be taken
into account during the EM optimization process.

To guide the learning towards local certainty, lower propensity scores need to be en-
couraged. To this end, the predicted propensity scores can simply be decayed at every
iteration during the expectation step (Algorithm 1, line 6). This enhances the expected
class probabilities and makes sure that a more positively inclined classifier is trained.
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Algorithm 2: initialize models

Input: attributes x, labels s, propensity attributes xe

Output: classifier f , propensity score model e
// Fit f to predict s from x;
f = fit(x, s);

// SCAR assumption with minimum c ;
ŝ = f(x[s == 0]);
c = 1/max(̂s) ;

// Fit f to predict s from x with c ;

ŷ = 1−c
c

ŝ
1−ŝ ;

yw = ones(size(s)) :: zeros(size(s[s == 0]));
xw = x[s == 1] :: x[s == 0] :: x[s == 0];
w = s[s == 1] :: ŷ :: (1− ŷ);
f = fit(xw,yw,w);

// Train e to return c for any input
sw = ones(size(s)) :: zeros(size(s));
xew = xe :: xe;
w = c · ones(size(s)) :: (1− c) · ones(size(s);
e = fit(xew, sw,w) ;

return f,e;

4.3. Initialization

To start EM with reasonable models, a classifier and propensity model are trained under
the SCAR assumption. The label frequency is estimated by training a model to predict
Pr(s = 1|x) and setting the label frequency so that the maximum predicted class probability
becomes 1 (Algorithm 2, lines 1-5). This is estimator 3 of Elkan and Noto (2008), which
gives a fairly unstable estimate, but it is fine for initialization.

Subsequently, the classifier is trained to predict y by weighting the examples using
the label frequency (Elkan and Noto, 2008) (Algorithm 2, lines 6-11). The propensity score
model is trained to always return c, by providing all examples as both positive and negative,
but giving weight c when positive and 1− c otherwise (Algorithm 2, lines 12-16).

4.4. Convergence

Convergence is assumed when the propensity score predictions do not change much over
several iterations. Change is quantified as the average absolute slope of the minimum mean
square error line through the predictions:

slope(s, t, n) =
n
∑n−1

i=0 (ist−n+1+i)−
∑n−1

i=0 i
∑n−1

i=0 st−i

n
∑n−1

i=0 i
2 − (

∑n−1
i=0 i)

2

1

|̂s|
∑
ŝ∈ŝ
|slope(s, t, n)| < ε,
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Table 1: Datasets

Dataset # Examples # Vars Pr(y = 1)
Breast Cancer 683 9 0.350
Mushroom 8,124 21 0.482
Adult 48,842 14 0.761
IJCNN 141,691 22 0.096
Cover Type 536,301 54 0.495
20ng Comp - Rec 5,287 200 0.450
20ng Comp - Sci 5,279 200 0.450
20ng comp - Talk 4,856 200 0.401
20ng rec - Sci 4,752 200 0.499
20ng Rec - Talk 4,329 200 0.450
20ng Sci - Talk 4,321 200 0.451

Table 2: Class prior estimation: SAR-EM has the best rank and lowest absolute error.

Method Average |α̂− α| rank +/- SD Average |α̂− α| +/- SD
SAR-EM 2.87 +/- 1.83 0.08 +/- 0.07
KM2 3.38 +/- 2.38 0.10 +/- 0.13
TIcE 3.86 +/- 2.13 0.09 +/- 0.06
AlphaMax N 4.04 +/- 2.15 0.13 +/- 0.10
AlphaMax 4.16 +/- 1.72 0.12 +/- 0.09
KM1 4.92 +/- 2.01 0.11 +/- 0.09
EN 6.75 +/- 1.78 0.27 +/- 0.16
PE 7.02 +/- 1.61 0.29 +/- 0.14
pen-L1 7.81 +/- 2.03 0.37 +/- 0.21

where t is the current iteration, n the number of iterations over which the slope is taken,
si the propensity score prediction during iteration i, and ε the minimum average absolute
slope for non-convergence. Additionally, a maximum number of iterations can be set.

4.5. SCAR with Label Frequency Estimation as a Special Case of SAR-EM

SAR-EM can be used to train a classifier and estimate the label frequency under the SCAR
assumption, by assigning no propensity attributes: xe = ∅. Training the propensity score
model then reduces to estimating the label frequency c given the expected class values.

4.6. Learning with a Known Propensity Score as a Special Case of SAR-EM

If the propensity score (or label frequency) is known, SAR-EM can still optimize the classi-
fier. The algorithm remains the same, except for not training the propensity score model,
i.e., removing lines 13-16 in Algorithm 1 and 12-16 in Algorithm 2.

Training the classifier using SAR-EM is more stable than predicting the labels and
adjusting the output probabilities (Section 3.2). By optimizing the expected likelihood of
the observed data, the influence of unexpectedly labeled low probability positives is reduced.
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Figure 1: Class prior estimation comparison

5. Empirical Evaluation

Our experiments aim to evaluate the performance of SAR-EM. Because, to the best of our
knowledge, no other methods exist to learn from positive and unlabeled data under the
SAR assumption, we will first compare our method under the SCAR assumption to other
methods that assume SCAR and estimate the class prior in this data. Next, the SAR
assumption is considered. Here, our method is compared to SCAR methods, supervised
methods and SAR-EM when the propensity score function is known. Lastly, we analyze the
performance in unbalanced domains.

5.1. SAR-EM Settings

Logistic regression is used for both the classifier and the propensity score model because it
is a simple classifier that is known to predict well-calibrated probabilities (Niculescu-Mizil
and Caruana, 2005). All experiments have local certainty parameter d=0.9 and convergence
parameters n = 10, ε = 0.0001.

5.2. Performance under the SCAR Assumption

To evaluate how well SAR-EM does in the SCAR setting, the same datasets (Table 1) are
used as in Bekker and Davis (2018a) to benchmark methods for label frequency estimation.
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Figure 2: Propensity score with one variable, centered around c = 0.3. Assuming SCAR
(∆c = 0) hurts the performance when the reality deviates from it. Knowing the
propensity function does not result in a big benefit over estimating it.

IJCNN originates from the IJCNN 2001 neural network competition.1 The other dataset are
available on the UCI repository.2 The preprocessed datasets of Bekker and Davis (2018a)
are used here, which means that the multivalued features are binarized and numerical
features scaled between 0 and 1. To generate binary classification datasets from the twenty
newsgroups (20ng), different categories are compared (computer, recreation, science and
talk) and the features are generated using bag of words with the 200 most frequent words,
disregarding nltk stopwords.

The following class prior estimation methods are compared: EN (Elkan and Noto, 2008),
PE (du Plessis and Sugiyama, 2014), pen-L1 (du Plessis et al., 2015), KM1 and KM2
(Ramaswamy et al., 2016), AlphaMax (Jain et al., 2016b) and AlphaMax N (Jain et al.,
2016a). The datasets were turned into PU datasets in the same way as done by Bekker
and Davis (2018a): the positive examples are selected to be labeled with label frequencies
c ∈ [0.1, 0.3, 0.5, 0.7, 0.9].

As usual, the algorithms based on their absolute error in class prior |α̂− α|.

1. Available on: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2. http://archive.ics.uci.edu/ml/

17

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml/


Learning from Positive and Unlabeled Data under the SAR Assumption

5.2.1. Results

SAR-EM performs very well at estimating the class prior, as can be seen in Figure 1 and
Table 2. It has the best rank and lowest absolute error on average.

5.3. Performance under the SAR Assumption

The 20 newsgroups datasets are used to simulate SAR datasets. They always consider two
categories to classify. With four categories there are six combinations and 12 datasets in
total by switching which category is the positive class.

The attributes of 20 newsgroups are all binary: they indicate if a word appears in the
article or not. To select propensity attributes that are sure to have an impact on the
labeling, we only considered the attributes to have a frequency between 30% and 70% in
the data, which leaves between five and eight attributes per dataset.

We consider two types of propensity scores. The first one only depends on one attribute.
We analyze how deviating from the SCAR setting affects learners that assume SCAR. To
this end, the difference between the two propensity scores ∆c is varied with steps of 0.2,
centering them around c = 0.3 or c = 0.5:

e(xe) = xe(c +/− ∆c/2) + (1− xe)(c −/+ ∆c/2)

The second type of propensity score is based on three attributes, where all attributes
contribute independently: 0.9 for the attribute being 1 and 0.5 otherwise:

e(xe) = 0.9
∑
xe · 0.53−

∑
xe

The labels were generated for each combination of attributes, at random according to
the propensity scores functions.

The following methods are compared:
Supervised Logistic regression with all class labels available.
SAR SAR-EM as described in this paper.
SAR-e SAR-EM with access to the true propensity score (Section 4.6).
SCAR SAR-EM is used for the SCAR setting, as it outperformed the others (Section 5.2.1).
multi-SCAR Independent SCAR models for all propensity attributes configurations.
SCAR-c SAR-EM with access to a propensity score which is the true label frequency.

We compare the algorithms based on their classification F1 score and propensity score
accuracy. The datasets were randomly divided into five folds where four were used for
learning and one for evaluation. The folds are assigned in five different ways.

5.3.1. Results

As expected, the more the dataset deviates from the SCAR assumption, the worse the
results get when this is assumed. This result supports the need for methods like SAR-EM
that do not make this strong assumption (Figures 2 and 3).

Interestingly, learning with an unknown propensity score function performs almost
equally well as with a known one, even when multiple attributes are involved (Table 3).

Knowing the label frequency for the SCAR assumption does help when the assumption
does not hold. This is due to the label frequency always being an overestimate when the
assumption does not hold as a result of the local certainty assumption.
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Figure 3: Propensity score with one variable, centered around c = 0.5. Assuming SCAR
(∆c = 0) hurts the performance when the reality deviates from it.

5.4. Effect of Unbalanced Classes

Unbalanced classes are simulated for the datasets with three propensity features. To this
end, either the positive or negative class was subsampled to 30%, assuming completely
balanced classes this results in class priors α = 0.23 and α = 0.77.

5.4.1. Results

Figure 4 compares the F1 scores of the trained classifiers for the different class priors. Han-
dling unbalanced domains clearly becomes harder with PU data. Knowing the propensity
score (SAR-e) or the class prior (SCAR-c) gives an advantage here.

6. Conclusions

This paper considers learning from positive and unlabeled data (PU learning) under the
Selected At Random (SAR) assumption. That assumption states that the probability of
selecting a positive example to be labeled depends on the attributes, in contrast to being
constant, as commonly assumed in PU learning under the Selected Completely At Random
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Figure 4: Unbalanced domains are relatively harder when learning from positive and unla-
beled data than from fully supervised data. Knowing the true class prior (SCAR-c
and SAR-e) gives an advantage.

Table 3: Classifier F1 score (left) and propensity (right) score accuracies. ‘Supervised’
has no propensity model. SAR-EM with the SAR assumption performs similar to
learning with a known propensity score function. The SCAR assumption is clearly
insufficient.

Data Supervised SAR-e SAR multi-SCAR SCAR SCAR-c
Sci-Rec 0.68 0.64 0.65 0.65 0.64 0.36 0.29 0.56 0.54 0.60 0.59
Rec-Sci 0.68 0.64 0.64 0.65 0.63 0.36 0.30 0.57 0.53 0.61 0.58
Talk-Rec 0.76 0.71 0.65 0.70 0.63 0.38 0.29 0.59 0.53 0.65 0.59
Rec-Talk 0.71 0.66 0.62 0.66 0.61 0.39 0.34 0.60 0.51 0.63 0.55
Sci-Comp 0.74 0.71 0.67 0.71 0.66 0.37 0.25 0.60 0.58 0.65 0.63
Comp-Sci 0.69 0.64 0.64 0.64 0.63 0.36 0.30 0.56 0.52 0.61 0.58
Rec-Comp 0.80 0.75 0.67 0.75 0.65 0.39 0.25 0.65 0.57 0.70 0.62
Comp-Rec 0.75 0.69 0.64 0.68 0.63 0.39 0.30 0.59 0.51 0.66 0.58
Talk-Comp 0.89 0.82 0.67 0.80 0.65 0.41 0.25 0.66 0.55 0.75 0.63
Comp-Talk 0.83 0.74 0.63 0.73 0.61 0.43 0.33 0.65 0.50 0.71 0.56
Talk-Sci 0.73 0.69 0.65 0.69 0.64 0.36 0.28 0.59 0.55 0.63 0.60
Sci-Talk 0.67 0.63 0.63 0.64 0.62 0.37 0.33 0.56 0.51 0.60 0.56
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(SCAR) assumption. The SCAR assumption is clearly often violated in practice and our
experiments show that using it when it does not hold severely hurts the performance.

In this work, we analyzed common assumptions in PU learning and investigated how
they can be used under the SAR assumption, by formulating the problem as a multiple
problems under SCAR assumption. This results in a simple yet effective EM-based method.
In our experiments, we show that this method is very promising, as it does virtually equally
well as assuming that the labeling mechanism is known.

Future work will investigate if the method is still effective for more complex propensity
score functions. More powerful classifiers could then be preferred, but they might need
calibration of their output probabilities.
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