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Abstract

The problem of imbalanced domains is important in multiple real world applications. This
problem has been thoroughly studied for classification tasks. In particular, the adapta-
tion of ensembles to tackle imbalanced domains has shown important advantages in a
classification context. Still, for imbalanced regression problems only a few solutions exist.
Moreover, the capabilities of ensembles for dealing with imbalanced regression tasks are yet
to be explored. In this paper, we present the REsampled BAGGing (REBAGG) algorithm,
a bagging-based ensemble method that incorporates data pre-processing strategies for ad-
dressing imbalanced domains in regression tasks. The extensive experimental evaluation
conducted shows the advantage of our proposal in a diverse set of domains and learning
algorithms.

1. Introduction

Several real world applications involve learning from imbalanced domains. Although being
a problem more studied in a classification context, other tasks, such as regression, data
streams or multi-label, also suffer from this problem (Krawczyk, 2016; Branco et al., 2016b).
In imbalanced regression tasks, the user is more interested in being accurate in a subset of
the continuous target variable that, although being more important, is underrepresented in
the available data. For instance, in a financial context, when predicting the return of an
asset the high and low values are typically scarce. However, in this case, it is particularly
important for an agent to obtain accurate forecasts both in the high and low values because
those values can lead to either heavy losses or large missed profits.

The research community has been working intensively in the problem of imbalanced
domains for over two decades. Still, the majority of solutions proposed are concentrated in
the problem of class imbalance. Recently, some attention has been given also to imbalanced
regression tasks although this problem is still an open challenge (Krawczyk, 2016). This
paper addresses imbalanced regression tasks.

Over the past years several different aspects of the problem of learning from imbalanced
domains have been addressed (He and Ma, 2013). One essential challenge is related with
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performance evaluation. In these domains, the use of traditional performance assessment
metrics is not recommended as they fail to capture what is relevant to the user (Ribeiro,
2011). Therefore, we need to use evaluation metrics that are suitable for imbalanced re-
gression problems. Another major challenge is the inability of standard learners to focus
on the most important and rare cases. Typically, learning algorithms focus on the most
frequent cases, exhibiting a poor predictive accuracy on the rare and most interesting cases
for the end-user of these applications. To deal with this issue four types of methods were
put forward: data pre-processing, development of special purpose learners, prediction post-
processing or hybrid methods (Branco et al., 2016b).

One approach that produced promising results for solving the class imbalance prob-
lem, is the use of ensemble methods together with data pre-processing strategies (e.g. Liu
et al. (2009)). In general, these approaches aim at training an ensemble method where
the diversity among the members of the ensemble is achieved through the use of different
data samples obtained by a given pre-processing strategy. For a more complete review on
ensemble methods for imbalanced classification see Galar et al. (2012).

The success of the use of ensemble methods with pre-processing strategies in imbalanced
binary classification tasks led to its extension to other tasks such as multiclass (Lango
and Stefanowski, 2018). Also the use of bagging-based strategies has show advantages
in pursuing this direction (e.g. Khoshgoftaar et al. (2011); Blaszczyniski and Stefanowski
(2015)). Still, no similar attempt has been made for tackling imbalanced regression tasks.
This motivated the work we present in this paper whose goal is to study the incorporation
of pre-processing strategies with ensemble methods in imbalanced regression tasks. In
particular, we describe the REBAGG (REsampled BAGGing) algorithm. This method
integrates data pre-processing strategies with bagging. REBAGG is able to generate a
diverse set of models by taking advantage of different ways of resampling the training data.
We show that our proposal is effective for tackling imbalanced regression problems when
using different base learners and in a diversity of domains. The main contributions of our
work are as follows: i) we propose the first ensemble method for tackling the problem of
imbalanced regression; and ii) we demonstrate the advantage of our algorithm in a diversity
of domains and for multiple learning algorithms.

This paper is organised as follows. In Section 2 the problem definition is presented.
Section 3 provides an overview of the related work. Our proposal is described in Section 4
and the results of an extensive experimental evaluation are discussed in Section 5. Finally,
Section 6 presents the main conclusions.

2. Problem Definition

Standard predictive tasks aim at obtaining a model m(x) that provides a good approxi-
mation of an unknown function Y = f(x) that maps a set of p features into the values
of the target variable Y with domain ). This goal is achieved by using a training set
D = {(x;,y:)}¥, with N examples. When the target variable is nominal, the predictive
task is called a classification task, and when we have a numeric target variable, we face a
regression problem.

Imbalanced regression tasks are a special class of regression tasks. This type of problems
can be described by the two following assertions: i) the user assigns non-uniform prefer-
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ences across the target variable domain ); and ii) the most important cases are scarcely
represented in the available training data. Regarding the first assertion, this means that
the predictive performance of a model m has a different importance for the user on dif-
ferent locations of the target variable domain. The second assertion concerns the lack of
representation in the available training set D of the most important ranges of the target
variable. The conjugation of these two factors is responsible for a degradation in the models
performance on the most important cases for the user. In fact, standard learning algorithms
are ineffective in this context because they are unable to focus on the most important and
rare cases (Ribeiro, 2011; Branco et al., 2016b).

For solving the problem of defining the numeric target variable importance, Torgo and
Ribeiro (2007) and Ribeiro (2011) proposed the concept of a relevance function, ¢ :
Y — [0,1]. This function maps the variable domain into a scale of relevance, where 1
corresponds to maximal relevance and 0 to the minimum relevance. Ideally, this function
should be defined by domain experts that have the necessary background knowledge to
precisely quantify the mapping of the variable domain into a relevance scale. Still, there
are several difficulties related with domain experts: i) often there are no domain experts
available, ii) they represent an high investment, and iii) they require a considerable amount
of time to convert domain knowledge into a relevance function. Given these difficulties,
Ribeiro (2011) presented an automatic method for obtaining this function. This method
is based on the assumption that higher levels of rarity correspond to the most interesting
ranges of the domain, which is the most usual setting. Moreover, the automatic method
also assumes that the rare and interesting values of the target variable are concentrated on
the extremes of the distribution which is also a common setting. Function ¢(y) is estimated
using the target variable sample distribution by assigning more relevance to the rare and
most extreme cases. This is achieved by using the quartiles and the inter-quartile range
of the target variable estimated from the training data (further details available in Ribeiro
(2011)).

Using the relevance function and a user defined threshold on the relevance values, tg,
we are able to define two disjunct subsets of D: the set containing the rare and important
values, Dg, and the set Dy with the normal and uninteresting values. Formally these sets
are defined as follows: D = {(x,y) € D: ¢(y) > tr} and Dy = {(x,y) € D : ¢(y) < tr}.

When handling imbalanced domains, it is very important to consider suitable evaluation
measures. Standard evaluation metrics were shown to be unsuitable, potentially leading to
incorrect conclusions concerning the models expected performance (e.g. He and Ma (2013);
Ribeiro (2011)). Therefore, it is necessary to use adequate measures when assessing the
performance of imbalanced domains. This issue was addressed for both classification and
regression tasks. Torgo and Ribeiro (2009) and Ribeiro (2011) proposed a utility frame-
work for obtaining precision and recall for regression tasks that is able to capture the key
features of precision and recall in classification problems but is also capable to take into
account the magnitude of the errors that is important in regression. Based on the utility
framework (Torgo and Ribeiro, 2009; Ribeiro, 2011), Branco (2014) proposed the following
definitions of precision (prec?) and recall (rec?) for imbalanced regression tasks:

Z¢(ﬁi)>tR(1 +u(Gis i) b _ Z¢(yi)>tR(1 + u(@i, yi))

2o(gi)>en (1 + 0 (5:)) . T L+ 0() ®

prec® =
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where ¢(y;) is the relevance associated with the true value y;, ¢(9;) is the relevance of the
predicted value ;, tr is a user-defined threshold signalling the cases that are relevant for
the user, and u(¢;,y;) is the normalised utility of predicting g; for the true value y;, as
proposed by Torgo and Ribeiro (2009) and Ribeiro (2011).

In this paper we use as main evaluation metric the Fj-measure adapted for regression
tasks, Ffﬁ (cf. Equation 3), that depends on prec® and rec® measures (cf. Equations 1 and
2).

6 2 - prec? - rec?
=

3)

prec® + rec®

3. Related Work

Ensembles methods are techniques that involve building several different models that are
combined using a certain aggregation strategy. Ensembles main goal is to provide more
accurate predictions when compared with the use of a single model (Zhou, 2012). These
methods have shown this ability in a diversity of real world problems and competitions
(e.g. Netflix Competition (Koren, 2009), KDD-Cup (Yu et al., 2010)). We use the term
ensemble to refer to methods that combine different hypothesis generated by a selected
base learning algorithm. For obtaining ensembles that are accurate it is important to have
diversity in the models that compose it. In regression problems, ensembles diversity has
been thoroughly studied in the well-known “bias-variance” (Ueda and Nakano, 1996) and
“ambiguity” decomposition (Krogh and Vedelsby, 1994).

Ensemble methods by themselves are not sufficient to tackle the problem of imbalanced
domains. In fact, they are not able to overcome the problem that each single model suffers:
focusing on the average cases and neglecting the rare and more important cases (Galar et al.,
2012). However, their combination with other strategies for addressing imbalanced domains
has shown positive results in classification tasks. Namely, the integration of ensembles with
data pre-processing strategies has shown good results when dealing with the class imbalance
problem. Regarding imbalanced classification, a large number of proposals address this
problem using ensemble methods (e.g. Liu et al. (2009); Blaszczynski and Stefanowski
(2015)). We refer the interested reader to a survey dedicated to this particular issue (Galar
et al., 2012). However, in a regression context, as far as we know, no attempt has been made
to combine ensemble methods with other strategies designed for imbalance domains. Only
one study was conducted for assessing the impact in the performance of standard ensemble
methods (Moniz et al., 2017).

In this paper we are focused on bagging-based ensembles. Bagging (bootstrap aggre-
gating) was proposed by Breiman (1996) and consists of building models using bootstrap
samples of the original training data. These methods require two main steps: i) the genera-
tion of k different models using bootstrap samples of the training set, and, ii) the aggregation
of the models predictions. The latter step is typically achieved through averaging the pre-
diction in regression problems. Algorithm 1 displays the standard bagging method. More
detailed information regarding bagging can be found in Kuncheva (2004).
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Input: D - original regression data set

k - size of the bootstrap samples

m - number of models to train

L - learning algorithm

L.pars - learning algorithm parameters
Output: Predictions for a Test set
Learning Phase

for i <+ 1 to m do
‘ S; < bootstrap sample of D of size k

M; < model trained using S; data and applying algorithm £ with parameters L.pars
end

Prediction Phase
foreach z; € Test do
| M (2y) = ZE20E),

m ?

// Aggregation through models averaging
end
return M*(z;),Vz; € Test

Algorithm 1: Standard Bagging Algorithm (BAGG).

4. Bagging-based Strategies for dealing with Imbalanced Regression
Tasks

In this section, we describe our proposal regarding the integration of bagging-based ensem-
bles with data pre-processing methods. The diversity is a key aspect in ensemble learning.
Therefore, we propose an algorithm that allows to obtain diversity on the generated models
while simultaneously biasing them towards the least represented and more important cases.
We propose the REsampled BAGGing (REBAGG) algorithm, which works in two main
steps: 1) build a number of models using pre-processed samples of the training set; and
ii) use the trained models to obtain predictions on unseen data by applying an averaging
strategy. Algorithm 2 describes the REBAGG algorithm pseudocode.

Regarding the first step, we developed four main types of resampling methods to apply
on the original training set: balance, balance.SMT, variation, and variation.SMT. The key
distinguishing feature of these methods is related with: i) the ratio between the number of
rare and normal cases used in the new sample; and, ii) how new rare cases are obtained. On
the resampling methods labelled with the prefix “balance”, the new modified training set will
have the same number of rare and normal cases. On the other hand, for resampling methods
with the prefix “variation”, the ratio of rare to normal cases in the new training set will vary.
Specifically, a ratio is randomly selected among 5 possible choices (1/3,2/5,1/2,3/5,2/3).
The selected ratio is used as the target percentage of rare cases to include in the new training
set while the remaining cases are obtained from the set of normal examples. This provides
a higher diversity in the modified training sets which will include samples that can be either
balanced, or more favourable to the rare or normal cases. Another important issue concerns
the new rare cases that are added in some strategies. When the resampling method has no
suffix appended, then the new cases are obtained by using exact copies of randomly selected
rare cases. However, it is possible to use different approaches to add new synthetic cases.
We use the SMOTER, algorithm (Torgo et al., 2013) to generate new synthetic cases rare
cases in the methods that have as suffix “SMT”.

The use of the previously described resampling methods allow to obtain new training
sets that are capable of both biasing the learners towards the rare and important cases and
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Input: D - original regression data set

k - size of the bootstrap samples

m - number of models to train

L - learning algorithm

L.pars - learning algorithm parameters

@() - a relevance function

tr - threshold on the relevance values

resamp - the resampling method for obtaining the data samples

Output: Predictions for a Test set
Learning Phase

Dy
Dpr
for

do

—{<x,y>€D:¢(y) < tr}
—{<x,y>eD:¢(y) > tr}
1+ 1 tom; // Build biased resampled samples

if resamp = “balance” then
R; + bootstrap sample of D with size k/2
N; < bootstrap sample of Dy with size k/2
Ise if resamp = “balance.SMT” then
R; «+ Dr|J{ new cases generated with SMOTER until |R;| = k/2}
N; < bootstrap sample of Dy with size k/2
Ise if resamp = “variation” then
p < SAMPLE (1,{1/3,2/5,1/2,3/5,2/3})
R; + bootstrap sample of Dg with size p x |Dg|
N; < bootstrap sample of Dy with size k — p X |Dg|
Ise if resamp = “variation.SMT” then
p < SAMPLE (1,{1/3,2/5,1/2,3/5,2/3})
if nRare < |Dpg| then
| R; « sample of Dp without replacement with size p x |Dg|

@

o

o

else
| R; + DrJ{new cases generated with SMOTER until |R;| =p x |Dg|}
end
N; < bootstrap sample of Dy with size k — p X |Dg|
end

M; < model trained with algorithm £ with parameters L.pars using 5; data

end
Prediction Phase
foreach x; € Test do

k . .
M*(z;) = M; // Aggregation through models averaging

end
return M*(z;),Va; € Test
Algorithm 2: REBAGG Algorithm.
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{ ORIGINAL TRAINING SET } [ ORIGINAL TRAINING SET }
/\ Build sets of normal /\ Build sets of normal
and rare cases and rare cases
{ O } {
Build new balanced

training sets using
bootstrap or SMOTER

e R
(~ ) - (~ ) [ - (- [©
</|> M, Obtain m models @ M, Obtain m models
</|> Average the m models predictions </1> Average the m models predictions

Build new training sets
with random ratio of rare
to normal cases

Figure 1: REBAGG with balanced resam- Figure 2: REBAGG with train sets of vary-
pled train sets. ing ratio of normal to rare cases.

generating diversity in the ensemble models. Regarding the models aggregation strategy,
we implemented a simple models’ predictions averaging for obtaining the final predictions.
Figure 1 shows REBAGG algorithm with new balanced train sets, and Figure 2 displays
the REBAGG strategy that builds new train sets with varying ratio of rare to normal cases.

5. Experimental Evaluation

This section presents the experimental evaluation carried out and a discussion of the main
results. To enable an easy replication of our work, the data, the experiments code and
the results are available at https://github.com/paobranco/REBAGG. We have used the
free open source R environment (R Core Team, 2018) in our experiments. The main goal
of our experiments is to assess the effectiveness of REBAGG algorithm in the context of
imbalanced regression problems.

Table 1: Data sets information by descending order of rare cases percentage. (IN: nr cases;
tpred: nr predictors; p.nom: nominal predictors; p.num: numeric predictors;
nRare: nr. cases with ¢(y) > 0.8; %Rare: nRare/N x 100).

Data Set N tpred panom panum nRare % Rare Data Set N tpred p.nom paoum nRare % Rare
servo 167 4 2 2 34 20.4 ab 198 11 3 8 21 10.7
ab 198 11 3 8 33 16.7 fuelCons 1764 38 12 26 164 9.3
Abalone 4177 8 1 7 679 16.3 availPwr 1802 16 7 9 157 8.7
machCpu 209 6 0 6 34 16.3 cpuSm 8192 13 0 13 713 8.7
a3 198 11 3 8 32 16.2 maxTorq 1802 33 13 20 129 7.2
ad 198 11 3 8 31 15.7 dAiler 7129 5 0 5 450 6.3
al 198 11 3 8 28 14.1 bank8FM 4499 9 0 9 288 6.4
a7 198 11 3 8 27 13.6 ConcrStr 1030 8 0 8 55 5.3
boston 506 13 0 13 65 12.8 Accel 1732 15 3 12 89 5.1
a2 198 11 3 8 22 11.1 airfoild 1503 5 0 5 62 4.1

Data Sets We selected 20 regression data sets from different domains whose main char-
acteristics are described in Table 1. For each of these data sets we obtained a relevance
function through the automatic method proposed in Ribeiro (2011) which assigns higher
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Table 2: Base regression learners, parameter variants, and respective R packages.

Learner Parameter Variants R package

RPART minsplit = {20, 50, 100, 200}, cp = {0.01,0.05} rpart Therneau et al. (2017)

MARS nk = {10,17},degree = {1, 2}, thresh = {0.01,0.001} earth Milborrow (2012)

SVM cost = {10, 150, 300}, gamma = {0.01,0.001} €1071 Dimitriadou et al. (2011)

RF mitry = {5, 7}, ntree = {500, 750, 1500} randomForest Liaw and Wiener (2002)
(

GBM distribution = gaussian, n.trees = {300,450, 600},
shrinkage = {0.01, 0.1}, interaction.depth = {1, 2}

gbm with contributions from others (2017)

relevance to high and low extreme values of the target variable. We considered a relevance
threshold of 0.8 in all data sets.

Learning Algorithms All experiments were carried out in the R environment and we
tested the five following types of learning algorithms: regression trees (RPART), Multi-
variate Adaptive Regression Splines (MARS), Support Vector Machines (SVM), Random
Forests (RF) and Generalized Boosted Regression Models (GBM). The learning algorithms,
respective R packages and the used parameter variants are displayed in Table 2. We tested
the original learning algorithms, as well as the original BAGG algorithm and our proposed
REBAGG approach each using all the mentioned learners as base learners. Two variants of
BAGG were tested considering m € {10,40}. The REBAGG approach was tested for the
following parameter variants: m € {10,40}, resamp € {balance, balance.SMT, variation,
variation.SMT}, k equal to original training set size, tr = 0.8. REBAGG uses internally
the SMOTER algorithm for the generation of synthetic cases. In this algorithm we used
the following parameters: HEOM distance, 5 nearest neighbours. Therefore, 8 variants of
REBAGG were tested.

Results and Discussion We applied each of the 40 learning approaches (8 RPART +
8 MARS + 6 SVM + 6 RF + 12 GBM) to each of the 20 regression data sets. We tested
the original learning approaches, the two variants of BAGG algorithm and 8 variants of
REBAGG approach. Thus 8800 (40 x 20 x 11) combinations were tested. We appended to
REBAGG an abbreviation representing the resamp parameter used (B for balance, V for
variation, B.SMT for balance with SMOTER , and V.SMT for variation with SMOTER ).

The performance was evaluated using the Ffb measure for regression whose values were
estimated by 2 repetitions of a 10-fold stratified cross validation process and the statistical
significance of the observed paired differences was measured using the non-parametric Fried-
man Test and the post-hoc Nemenyi Test as recommended by Demsar (2006). The exper-
iments were carried out using the following R packages: performanceEstimation (Torgo,
2014) for the experimental infra-structure; uba (available at http://www.dcc.fc.up.pt/
~rpribeiro/uba/) for the relevance function and Fld) metric; and UBL (Branco et al., 2016a)
for the implementation of SMOTER algorithm and REBAGG strategies. Tables 3 to 7 show
the average Ff5 results obtained for each learning algorithm by data set and strategy ap-
plied. Globally, the advantage of using REBAGG algorithm is clear for all learners. Only
for RPART learner, our proposal presents a less striking advantage.

To assess the statistical significance of the differences observed we applied the Friedman
test which allowed to reject the null hypothesis that the performance of the different algo-
rithms was equivalent. We then proceeded to the post-hoc Nemenyi test. These results are
displayed by the CD diagrams proposed by Demsar (2006) in Figures 3 and 4 for a signif-
icance levels of 0.05. Figures 3 and 4 show the CD diagrams of the base learners, BAGG
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Table 3: RPART average Ff’ results by data set and strategy (bold represents the best
performance by data set).

m = 10 m = 40
REBAGG REBAGG

NONE BAGG B v B.SMT V.SMT BAGG B \% B.SMT  V.SMT
Servo 0.413 0.446 0.576 0.574 0.571 0.575 0.445 0.578 0.578 0.576 0.576
ab 0.269 0.362 0.535 0.531 0.535 0.543 0.335 0.536 0.536 0.541 0.544
Abalone 0.701 0.341 0.679 0.678 0.676 0.678 0.338 0.678 0.680 0.677 0.678
machCpu 0.458 0.512 0.660 0.665 0.660 0.658 0.526 0.666 0.665 0.662 0.660
a3l 0.213 0.163 0.533 0.536 0.534 0.532 0.149 0.5637 0.536 0.536 0.538
a4 0.367 0.344 0.583 0.581 0.594 0.585 0.320 0.583 0.582 0.597 0.599
al 0.151 0.236 0.546 0.554 0.543 0.544 0.231 0.551 0.555 0.549 0.546
a7 0.232 0.184 0.384 0.390 0.407 0.404 0.190 0.394 0.393 0.414 0.412
boston 0.761 0.833 0.868 0.868 0.852 0.863 0.842 0.871 0.871 0.854 0.863
a2 0.122 0.061 0.424 0.425 0.425 0.434 0.033 0.419 0.430 0.424 0.426
ab 0.099 0.035 0.404 0.423 0.405 0.409 0.028 0.410 0.412 0.415 0.409
fuelCons 0.818 0.713 0.778 0.779 0.771 0.780 0.726 0.783 0.782 0.773 0.779
availPwr 0.868 0.849 0.853 0.856 0.840 0.844 0.852 0.855 0.858 0.840 0.844
cpuSm 0.497 0.567 0.381 0.386 0.387 0.389 0.564 0.383 0.385 0.388 0.392
maxTorq 0.893 0.881 0.846 0.852 0.852 0.859 0.887 0.847 0.852 0.854 0.860
dAiler 0.710 0.340 0.710 0.723 0.711 0.722 0.338 0.710 0.722 0.712 0.724
bank8FM 0.916 0.854 0.845 0.851 0.866 0.870 0.875 0.846 0.852 0.868 0.874
ConerStr 0.418 0.095 0.854 0.861 0.850 0.864 0.073 0.857 0.862 0.853 0.863
Accel 0.875 0.822 0.854 0.855 0.854 0.859 0.863 0.854 0.856 0.852 0.859
airfoild 0.108 0.019 0.187 0.187 0.204 0.206 0.018 0.190 0.192 0.207 0.205
Mean+sd 0.49440.3 0.433+0.3 0.625+0.2 0.629£0.2 0.627+0.2 0.631+0.2 0.4324+ 0.32 0.6274+0.2  0.630+£0.2 0.6304+0.2 0.633+0.2

Table 4: MARS average Ff’ results by data set and strategy.
m = 10 m = 40
REBAGG REBAGG

NONE BAGG B A% B.SMT V.SMT BAGG B v B.SMT V.SMT
servo 0.645 0.659 0.670 0.672 0.667 0.667 0.656 0.670 0.673 0.669 0.669
ab 0.459 0.484 0.548 0.543 0.549 0.550 0.472 0.554 0.547 0.547 0.548
Abalone 0.708 0.712 0.739 0.738 0.738 0.737 0.713 0.739 0.739 0.738 0.738
machCpu 0.797 0.786 0.784 0.791 0.795 0.799 0.778 0.787 0.782 0.793 0.799
a3 0.498 0.430 0.547 0.553 0.556 0.558 0.441 0.551 0.551 0.549 0.558
ad 0.481 0.475 0.568 0.557 0.580 0.568 0.515 0.563 0.562 0.584 0.580
al 0.573 0.550 0.723 0.721 0.734 0.734 0.580 0.727 0.735 0.737 0.735
a7 0.294 0.305 0.351 0.354 0.377 0.377 0.308 0.365 0.364 0.381 0.374
boston 0.894 0.895 0.892 0.890 0.894 0.892 0.898 0.894 0.894 0.894 0.893
a2 0.260 0.235 0.532 0.529 0.537 0.546 0.223 0.547 0.546 0.539 0.545
ab 0.146 0.260 0.540 0.543 0.544 0.532 0.163 0.548 0.551 0.538 0.538
fuelCons 0.853 0.859 0.877 0.875 0.870 0.871 0.855 0.875 0.872 0.870 0.871
availPwr 0.902 0.904 0.907 0.908 0.903 0.905 0.904 0.905 0.904 0.902 0.902
cpuSm 0.142 0.142 0.169 0.174 0.173 0.173 0.144 0.170 0.174 0.173 0.174
maxTorq 0.954 0.962 0.974 0.975 0.970 0.968 0.963 0.976 0.976 0.971 0.969
dAiler 0.736 0.733 0.756 0.760 0.756 0.758 0.734 0.756 0.758 0.756 0.757
bank8FM 0.943 0.945 0.948 0.949 0.948 0.949 0.945 0.948 0.949 0.948 0.949
ConcrStr 0.886 0.887 0.901 0.901 0.900 0.900 0.888 0.903 0.904 0.901 0.902
Accel 0.895 0.896 0.893 0.889 0.896 0.894 0.889 0.887 0.885 0.885 0.887
airfoild 0.116 0.107 0.199 0.195 0.213 0.217 0.105 0.191 0.190 0.210 0.213
Meanztsd 0.609+0.29 0.611£0.29 0.676+0.24 0.676+0.24 0.680+0.24 0.680+0.24 0.609+0.29 0.678+0.24 0.6784+0.24 0.679+0.24 0.680+0.24
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Table 5: SVM average Ff5 results by data set and strategy.

m = 10 m = 40
REBAGG REBAGG

NONE BAGG B \ B.SMT V.SMT BAGG B A\ B.SMT V.SMT
Servo 0.366 0.385 0.651 0.637 0.648 0.635 0.382 0.652 0.642 0.652 0.640
a6 0.229 0.258 0.537 0.540 0.547 0.548 0.245 0.538 0.539 0.549 0.546
Abalone 0.712 0.712 0.738 0.738 0.736 0.736 0.712 0.737 0.738 0.736 0.737
machCpu 0.780 0.781 0.788 0.791 0.792 0.792 0.780 0.792 0.795 0.792 0.791
a3l 0.181 0.198 0.542 0.550 0.547 0.549 0.195 0.542 0.547 0.545 0.551
ad 0.252 0.327 0.566 0.572 0.584 0.586 0.308 0.571 0.572 0.585 0.581
al 0.113 0.138 0.718 0.710 0.724 0.727 0.150 0.725 0.723 0.728 0.725
a7 0.107 0.102 0.333 0.331 0.355 0.346 0.103 0.341 0.340 0.353 0.354
boston 0.883 0.885 0.898 0.898 0.898 0.899 0.884 0.900 0.899 0.898 0.899
a2 0.232 0.253 0.517 0.516 0.521 0.515 0.230 0.514 0.516 0.528 0.520
ab 0.139 0.128 0.554 0.560 0.545 0.557 0.117 0.551 0.560 0.553 0.558
fuelCons 0.908 0.903 0.903 0.904 0.907 0.906 0.903 0.905 0.905 0.907 0.907
availPwr 0.935 0.934 0.942 0.942 0.940 0.939 0.934 0.942 0.942 0.939 0.939
cpuSm 0.161 0.158 0.182 0.184 0.183 0.185 0.159 0.183 0.185 0.182 0.185
maxTorq 0.973 0.975 0.978 0.979 0.976 0.976 0.976 0.979 0.979 0.976 0.976
dAiler 0.728 0.727 0.759 0.761 0.759 0.760 0.728 0.759 0.760 0.759 0.760
bank8FM 0.947 0.946 0.950 0.950 0.950 0.950 0.946 0.950 0.950 0.950 0.950
ConcrStr 0.840 0.839 0.906 0.907 0.912 0.912 0.841 0.907 0.908 0.912 0.912
Accel 0.872 0.864 0.901 0.903 0.902 0.903 0.871 0.902 0.903 0.902 0.904
airfoild 0.158 0.152 0.240 0.238 0.240 0.241 0.154 0.237 0.240 0.242 0.244

Meantsd 0.526+0.35 0.533+0.34 0.680+0.24 0.6814+0.24 0.683+0.24 0.683+0.24 0.531+0.35 0.681+£0.24 0.68240.24 0.684+0.24 0.684:+0.24

Table 6: RF average Fld) results by data set and strategy.

m = 10 m = 40
REBAGG REBAGG

NONE BAGG B v B.SMT V.SMT BAGG B v B.SMT V.SMT
Servo 0.761 0.761 0.743 0.754 0.761 0.757 0.765 0.762 0.761 0.758 0.758
a6 0.527 0.539 0.529 0.536 0.533 0.538 0.533 0.529 0.532 0.539 0.533
Abalone 0.719 0.719 0.733 0.732 0.729 0.729 0.719 0.733 0.733 0.730 0.730
machCpu 0.797 0.794 0.796 0.796 0.796 0.799 0.796 0.796 0.797 0.798 0.799
a3 0.453 0.400 0.561 0.560 0.562 0.562 0.385 0.558 0.559 0.562 0.565
a4 0.506 0.513 0.569 0.568 0.587 0.582 0.523 0.558 0.564 0.586 0.587
al 0.621 0.603 0.738 0.747 0.737 0.742 0.606 0.746 0.745 0.746 0.744
a7 0.303 0.296 0.380 0.387 0.402 0.395 0.296 0.379 0.384 0.406 0.399
boston 0.902 0.898 0.905 0.904 0.899 0.899 0.897 0.905 0.905 0.897 0.899
a2 0.243 0.196 0.571 0.573 0.574 0.573 0.200 0.551 0.564 0.574 0.578
ab 0.209 0.186 0.550 0.546 0.561 0.556 0.127 0.551 0.551 0.560 0.558
fuelCons 0.918 0.901 0.930 0.928 0.929 0.928 0.903 0.932 0.931 0.927 0.928
availPwr 0.964 0.955 0.977 0.976 0.968 0.967 0.956 0.977 0.976 0.968 0.968
cpuSm 0.508 0.505 0.503 0.503 0.494 0.495 0.505 0.503 0.502 0.496 0.495
maxTorq 0.967 0.958 0.974 0.974 0.968 0.968 0.958 0.974 0.974 0.968 0.968
dAiler 0.735 0.736 0.744 0.745 0.752 0.756 0.737 0.744 0.745 0.755 0.755
bank8FM 0.946 0.945 0.947 0.947 0.948 0.948 0.945 0.947 0.947 0.948 0.948
ConcerStr 0.907 0.885 0.955 0.954 0.941 0.943 0.884 0.955 0.955 0.940 0.944
Accel 0.934 0.927 0.950 0.949 0.944 0.944 0.927 0.950 0.950 0.945 0.944
airfoild 0.219 0.142 0.219 0.218 0.193 0.197 0.136 0.220 0.223 0.195 0.196

Meantsd 0.657+0.27 0.643+0.28 0.714+0.22  0.7151+0.22 0.714%0.22 0.714+£0.22 0.640+£0.29 0.714+0.22  0.715+0.22 0.715%0.22 0.71540.22

and REBAGG algorithms when using 10 and 40 models respectively. These results confirm
that, overall, REBAGG algorithm displays a better performance with statistical significance
in the majority of the situations. When using 10 models, REBAGG variants are always sig-
nificantly better than the alternatives with the exception of RPART and RF learners. For
these learners, although REBAGG variants exhibit a lower rank, the differences observed
are not statistically significant. Regarding the results of the algorithms using 40 models,
REBAGG variants are always significantly better than the use of the base learner, with the
exception of the RPART learner.

One of the main conclusions is the overwhelming advantage of using REBAGG algo-
rithm. We also observed that the higher is the number of models used, the better is the
performance achieved by REBAGG. However, using 10 models in REBAGG algorithm is
globally sufficient to obtain results significantly better than the alternatives. Overall, no
variant of REBAGG stands out. However, we highlight that the performance achieved by
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CD CcD

e S— e S—

2 3 4 5 6 2 3 4 5 6
REBAGG.V.SMT —— REBAGG.B REBAGG.V.SMT — REBAGG.B
REBAGG.V NONE REBAGG.B.SMT NONE
REBAGG.B.SMT ——M ——— BAGG REBAGG.V BAGG

CD CD

e S— e S—

2 3 4 5 6 2 3 4 5 6
REBAGG.V.SMT REBAGG.B REBAGG.V — REBAGG.B.SMT
REBAGG.B.SMT ——— BAGG REBAGG.B — NONE

REBAGGV ——— ———— NONE REBAGG.V.SMT —— BAGG
CcD
CcD —
e S—
2 3 4 5 6
2 3 4 5 6 l | | | |
REBAGG.V.SMT REBAGG.B
REBAGG.B REBAGG.V
REBAGG.V NONE
REBAGG.V.SMT NONE
REBAGG.B.SMT BAGG
BAGG

REBAGG.B.SMT

Figure 3: CD diagrams by learner, for ensembles built with 10 models (learners from left
to right and top to bottom: RPART, SVM, MARS, GBM, RF, all).
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cb cD
I —— —
2 3 4 5 2 3 4 5 6
REBAGG.V.SMT REBAGG.B.SMT REBAGG.V.SMT REBAGG.B
REBAGGY ——— NONE REBAGG.V NONE
REBAGGB ———————————— L— BAGG REBAGG.B.SMT BAGG
cp cp
— S — .|
2 3 4 5 6 2 3 4 5 6
REBAGG.B REBAGG.B.SMT REBAGG.V — REBAGG.B.SMT
REBAGG.V BAGG REBAGG.B NONE
REBAGG.V.SMT NONE REBAGG.V.SMT BAGG
cD cp
— —
2 3 4 5 6 2 3 4 5 6
REBAGG.V REBAGG.B.SMT REBAGG.V REBAGG.B.SMT
REBAGG.B NONE REBAGG.V.SMT NONE
REBAGG.V.SMT BAGG REBAGG.B —— L—— BAGG

Figure 4: CD diagrams by learner, for ensembles built with 40 models (learners from left

to right and top to bottom: RPART, SVM, MARS, GBM, RF, all).

78



REBAGG: REsaMPLED BAGGING FOR IMBALANCED REGRESSION

Table 7: GBM average Fld) results by data set and strategy.

m = 10 m = 40
REBAGG REBAGG

NONE BAGG B \ B.SMT V.SMT BAGG B A\ B.SMT V.SMT
Servo 0.653 0.646 0.684 0.685 0.682 0.684 0.648 0.684 0.684 0.684 0.682
ab 0.523 0.529 0.514 0.519 0.536 0.539 0.530 0.516 0.518 0.536 0.538
Abalone 0.631 0.636 0.709 0.709 0.707 0.707 0.639 0.709 0.709 0.708 0.708
machCpu 0.722 0.722 0.734 0.740 0.740 0.748 0.726 0.737 0.741 0.742 0.749
a3 0.423 0.390 0.545 0.547 0.559 0.560 0.395 0.550 0.550 0.556 0.558
ad 0.535 0.532 0.539 0.539 0.557 0.554 0.522 0.532 0.529 0.557 0.554
al 0.629 0.622 0.732 0.735 0.724 0.731 0.620 0.734 0.735 0.729 0.731
a7 0.317 0.312 0.359 0.357 0.368 0.363 0.309 0.361 0.360 0.369 0.367
boston 0.889 0.888 0.900 0.899 0.893 0.897 0.887 0.900 0.901 0.894 0.895
a2 0.218 0.164 0.581 0.585 0.569 0.566 0.147 0.582 0.584 0.568 0.569
ab 0.311 0.269 0.567 0.568 0.563 0.560 0.259 0.566 0.569 0.564 0.560
fuelCons 0.828 0.823 0.871 0.869 0.867 0.868 0.827 0.871 0.871 0.868 0.869
availPwr 0.903 0.900 0.918 0.918 0.908 0.909 0.900 0.918 0.918 0.908 0.909
cpuSm 0.131 0.134 0.187 0.189 0.187 0.187 0.134 0.187 0.185 0.188 0.188
maxTorq 0.937 0.936 0.952 0.952 0.947 0.947 0.936 0.953 0.953 0.947 0.948
dAiler 0.563 0.575 0.760 0.761 0.762 0.763 0.580 0.760 0.761 0.762 0.763
bank8FM 0.913 0.913 0.935 0.935 0.933 0.933 0.913 0.935 0.935 0.933 0.934
ConcrStr 0.545 0.540 0.916 0.912 0.913 0.912 0.540 0.915 0.916 0.914 0.913
Accel 0.885 0.872 0.910 0.910 0.907 0.907 0.879 0.911 0.911 0.907 0.908
airfoild 0.072 0.083 0.170 0.163 0.136 0.146 0.082 0.172 0.169 0.137 0.141

Mean+tsd 0.581+0.27 0.574£0.28 0.674£0.24 0.675+0.24 0.6734+0.24 0.674+0.24 0.574£0.28 0.675+£0.24 0.6751+0.24 0.674+0.24 0.674+0.24

REBAGG variants were not statistically different among themselves but were significantly
different from the alternatives. In the majority of cases, any of the REBAGG variants
provides better results than the base learner of the standard BAGG algorithm.

6. Conclusions

In this paper we presented REBAGG, a new bagging-based ensemble method that incor-
porates data pre-processing strategies designed to handle imbalanced regression tasks. As
far as we know, this is the first ensemble method specifically adapted to handle this type of
tasks. A large set of experiments was conducted for a diverse set of domains and learning
algorithms. The results obtained showed the clear advantage of REBAGG algorithm. The
key contributions of this work are: i) the proposal of the first ensemble method specifically
developed for dealing with imbalanced regression tasks; and ii) the experimental verification
of the overwhelming advantages of the proposed algorithm in a diversity of domains and
learning algorithms.

As future work, we plan to explore the behaviour of REBAGG algorithm when using a
higher number of models. Given the good performance observed for the REBAGG variants
with varying ratio of normal to rare cases, we intend to explore the introduction of more
diversity in the generation of samples. This could be achieved for instance, by using different
methods for generating synthetic cases, and different strategies for under-sampling normal
cases.
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