
Proceedings of Machine Learning Research 94:38–51, 2018 LIDTA 2018

Non-Linear Gradient Boosting
for Class-Imbalance Learning

Jordan Frery jordan.frery@univ-st-etienne.fr
Amaury Habrard amaury.habrard@univ-st-etienne.fr
Marc Sebban marc.sebban@univ-st-etienne.fr
Univ. Lyon, Univ. St-Etienne F-42000,
UMR CNRS 5516, Laboratoire Hubert-Curien, France

Liyun He-Guelton liyun.he-guelton@worldline.com

Worldline, 95870 Bezons, France

Editors: Lúıs Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, and Paula Branco

Abstract

Gradient boosting relies on linearly combining diverse and weak hypotheses to build
a strong classifier. In the class imbalance setting, boosting algorithms often require many
hypotheses which tend to be more complex and may increase the risk of overfitting. We
propose in this paper to address this issue by adapting the gradient boosting framework to a
non-linear setting. In order to learn the idiosyncrasies of the target concept and prevent the
algorithm from being biased toward the majority class, we suggest to jointly learn different
combinations of the same set of very weak classifiers and expand the expressiveness of
the final model by leveraging their non-linear complementarity. We perform an extensive
experimental study using decision trees and show that, while requiring much less weak
learners with a lower complexity (fewer splits per tree), our model outperforms standard
linear gradient boosting.

Keywords: meta-learning, non-linear boosting, class imbalance learning

1. Introduction

Class imbalance learning has received a lot of interest during the past decade from the ma-
chine learning community (He and Garcia, 2008; Chawla et al., 2002). This phenomenon
takes its origin from the numerous real-life applications, such as fraud detection, click detec-
tion or anomaly detection, where the number of positive examples (i.e data from the class
of interest) is much smaller than the negative data. As ensemble learning proved to be very
effective on real-life datasets such as bagging (e.g. random forest (Breiman, 2001)), stack-
ing (Wolpert, 1992), cascade generalization (Gama and Brazdil, 2000), boosting (Freund
and Schapire, 1997), etc., it is natural that many contributions around ensemble methods
with class imbalance learning were brought to light (Liu et al., 2009; Galar et al., 2012).
However, these methods are all based on either cost sensitive learning (Fan et al., 1999)
or sampling strategies (Chawla et al., 2003) which often leads to a dramatic effect on the
posterior probability due to the change in the training class distribution (Dal Pozzolo et al.,
2015). In this paper, we rather work on the original dataset. We focus on gradient boosting
which stands out in this class imbalance learning context by combining different classifiers

c© 2018 J. Frery, A. Habrard, M. Sebban & L. He-Guelton.

Non-Linear Boosting

linearly where each of them aims at correcting the error of the previously formed linear
combination. As the boosting algorithm adds more classifiers in the ensemble, the minority
class receives more attention along the iterations of boosting. Moreover, the popularity of
gradient boosting has been increased by recent implementations showing the scalability of
the method even with billions of examples (Chen and Guestrin, 2016; Ke et al., 2017).

Despite these advantages, gradient boosting-based methods face a limitation: they usu-
ally perform a linear combination of the learned hypotheses which may limit the expres-
siveness of the final model to reach complex target concepts. More specifically, in class
imbalance problems, the class of interest is underrepresented and thus more base learners
induced from a more complex family of hypotheses is often required. This may lead to
overfitting as well dramatic impacts in terms of time and storage complexity.

In this work, we propose to address these issues by (i) learning different linear projections
of the base model outputs and (ii) optimizing a non-linear mapping of these projections.
The principle of our method, called NLB for Non-Linear Boosting, is illustrated in Fig. 1.
At first glance, it looks similar to boosted neural networks, as done in Han et al. (2016);
Opitz et al. (2017), where the embedding layer is learned with boosting in order to infer
more diversity. However, our method aims at learning the weak hypotheses iteratively, each
new weak learner tries to minimize the error made by the network restricted to the previous
hypotheses (see the thickest lines in Fig. 1 that will be used to learn h2). The other main
difference comes from the back-propagation that is performed at each step only on the
parameters related to the weak learner subject to an update (see the red lines in Fig. 1).
Moreover, inspired from previous research in domain adaptation (Becker et al., 2013) and
boosted-multi-task learning (Chapelle et al., 2011), NLB resorts to the same set of boosted
weak learners, projects their outputs in different latent spaces and takes advantage of their
complementarity to learn non linearly the idiosyncrasies of the underlying concept. It is
worth noticing that in standard gradient boosting methods, weak learners are combined
linearly and in the presence of highly imbalanced data, many iterations (number of weak
learners) are necessary before the boosting method focuses on the minority class examples.
With such models, capturing the peculiarities of the class of interest is challenging. Our
method allows us to learn more with fewer and weaker models reducing the risk of overfitting
and making it suitable to capture patterns from the minority class.

One key point of our method is its ability to generate diversity in the set of combina-
tions and thus benefit from their non-linear complementarity to deal with complex target
problems. Along these lines, NLB makes use of very weak base classifiers built over different
distributions that tend to emphasize on misclassified instances. Despite its simplicity, NLB
benefits from an extensive predictive power.

To the best of our knowledge, only (Garcã-Pedrajas et al., 2007) tackled this topic by
proposing a non-linear boosting projection method where, at each iteration of boosting, the
authors build a new neural network only with the examples misclassified during the previous
round. They finally take the new feature space induced by the hidden layer and feed it as
the input space to the next learner. This procedure has the main drawback to train one
neural network between each weak classifier requiring a higher time complexity. Moreover,
neural networks need extra pre-processing steps to work with special feature types (e.g.
categorical features) when our meta-learner rather works in the space of the base model
outputs which are continuous and bounded.

39

Non-Linear Boosting

Figure 1: Graphical representation of our Non-Linear gradient Boosting method: the first
top layer corresponds to the learned weak classifiers; the second layer represents different
linear combinations of their outputs; the bottom layer proceeds a non-linear transformation
of those combinations. The thickest lines show the needed activated path to learn a given
classifier (here h2). The red lines show the update performed only on the parameters
concerned by this weak learner. The dashed lines are not taken into account at this iteration.

The rest of this paper is organized as follows: after a presentation of the notations in
Section 2, our new non-linear gradient boosting algorithm NLB is presented in Section 3.
Section 4 is devoted to a large experimental comparison in the class imbalance setting. We
conclude the paper in Section 5.

2. Notations and definitions

In this paper, we consider a binary supervised learning setting with a training set S =
{xi, yi}Mi=1 of M examples where xi ∈ X is a feature vector and yi ∈ {−1, 1} is its label.
In this study we aim at learning a function f : X → R that gives a real value to any new
x ∈ X . Let ht be a weak learner. Our final strong model is an ensemble as a set {ht}Tt=1 of
T weak models.

In standard boosting, these models are combined in a linear fashion as follows:

F (x) =

T∑
t=1

αtht(x), (1)

where αt stands for the weight of the weak learner ht. Note that in our case, and
generally in the gradient boosting methods, the weak learners are regressors. In Friedman

40

Non-Linear Boosting

(2001) the author studies the case of regression trees as weak learners which later became
a standard in gradient boosting.

3. Non-Linear Gradient Boosting algorithm

We now present our Non-Linear gradient Boosting algorithm, named NLB. As shown in
Fig. 1, our method maintains P different representations that correspond to different com-
binations of the T weak learners, projecting their outputs into different latent spaces. Every
representation p is updated right after a weak hypothesis is learned. The outputs given by
the p representations are then merged together to build a strong classifier F (x). To capture
non-linearities during this process, we propose to pass the output of each representation p
into a non-linear function Lp. We define the prediction of our model F (x) as follows:

F (x) =

P∑
p=1

αpLp
(T∑
t=1

αptht(x)
)
, (2)

where αpt are the weights projecting the outputs of the weak learner ht in the latent space p
and αp the weight of this representation. Eq (2) illustrates clearly the difference with linear
boosting formulation of Eq (1). We denote by Fk the classifier restricted to the first k weak

learners: Fk(x) =
∑P

p=1 α
pLp
(∑k

t=1 ηα
p
tht(x)

)
.

Our method aims thus at combining the same set of classifiers into different latent
spaces. A key point here relies in making these classifiers diverse while still being relevant
in the final decision. To achieve this goal, we update every weak learner ht to decrease the
error of the previous model Ft−1 such that:

ht = argminh

M∑
i=1

`c
(P∑
p=1

αpLp
(t−1∑
k=1

αpkhk(xi) + h(xi)
)
, yi
)
, (3)

ht can be rewritten as follows:

ht = argminh

M∑
i=1

`c(

P∑
p=1

αpLp
(
Ft−1(xi) + h(xi)

)
, yi), (4)

where `c(F (x), y) is a classification loss. In other words, we look for a learner ht able to
improve the current model Ft−1.

In gradient boosting (Friedman, 2001), one way to learn the next weak learner is to
approximate the negative gradient (residuals) of Ft−1 by minimizing the square loss between
these residuals and the weak learner predictions. We define rit the residual at iteration t for
the example xi as follows:

rit = −∂`c(Ft−1(xi), yi))
∂Ft−1(xi)

. (5)

In fact, from this functional gradient descent approach, we can define a greedy approx-
imation of Eq (4) by using a regression loss `r on the residuals computed in Eq (5) with

41

Non-Linear Boosting

respect to the classification loss `c:

ht = argminh

M∑
i=1

`r(h(xi), r
i
t). (6)

All the steps of our NLB training process are summarized in Algorithm 1.

In practice, we instantiate our losses with the square loss for the regression and the
logistic loss for the classification as follows:

`c(f(xi), yi) = log(1 + e−yiFt(xi)); `r(f(xi), r
i
t) = (rit − f(xi))

2.

The choice of the logistic loss is motivated by the need to have bounded gradients in
order to avoid their exponential growth with the boosting iterations, which can happen for
noisy instances. Then, according to Eq (6), the weak classifiers are updated as follows:

ht = argminh

M∑
i=1

(h(xi)− rit)2. (7)

The residuals can be obtained thanks to a straight forward closed form:

rit =
−yi

1 + eyiFt−1(xi)
.

Finally, we used a relu activation function such that L(x) =

{
x if x > 0,
0 otherwise.

When a new weak learner ht is added, we need to find its corresponding weights αpt
p ∈ P . Adding a new weak learner is changing each representation and thus we also need
to update αp accordingly as follows:

αp = argminα

M∑
i=1

`c(
P∑
p=1

αLp
(
Ft−1(xi) + αptht(xi)

)
, yi) (8)

αpt = argminα

M∑
i=1

`c(

P∑
p=1

αpLp
(
Ft−1(xi) + αht(xi)

)
, yi) (9)

At test time, our model learned using Algorithm 1 predicts as follows:

F ∗(x) = sign

(
F (x)

)
= sign

(P∑
p=1

αpLp
(T∑
t=1

αptht(x)
))

.

4. Experiments

In this section, we compare our method, NLB, with the linear gradient boosting, GB 1. We
first give a visualization of both algorithms on a didactic dataset. We then take different

1. We used the implementation of the gradient boosting in scikit-learn.

42

Non-Linear Boosting

Algorithm 1 Non-linear boosting

INPUT: T weak learners, {xi, yi}Mi=1
Initialize h0 = 0
Initialize αpt and αp

Predict F0(xi) = h0 = 0
for t = 1 to T do

Compute the residuals rit =
∂`t(Ft−1(xi),yi))

∂Ft−1(x)

ht = argminh
∑M
i=1(h(xi)− rit)2

for p = 1 to P do
αp = argminα

∑M
i=1 `c(

∑P
p=1 αLp

(
Ft−1(xi) + ht(xi)

)
, yi)

αpt = argminα
∑M
i=1 `c(

∑P
p=1 α

pLp
(
Ft−1(xi) + αht(xi)

)
, yi)

end for
Predict Ft(xi)

end for

imbalanced datasets from the KEEL repository (Alcalá-Fdez et al., 2011) described in
Table 1. Every dataset name presents the new distribution of classes. For example, abalone-
20 vs 8-9-10 is the abalone dataset transformed to the binary format by setting the class
20 against the classes 8,9 and 10. Finally, we show different properties of NLB on a bigger
dataset.

4.1. Visualisation with a toy dataset

In this experiment, we propose to evaluate the models with two different metrics. The first
one is the F1 score which is known to be relevant especially in the class imbalance problems
where one needs to emphasize on the class of interest (usually, the positive class). We recall
the Fβ and F1 scores to be:

Fβ = (1− β2)× precision× recall
(β2 × precision) + recall

,

F1 = 2× precision× recall
precision+ recall

, where β represents the weight given to the precision (the higher, the more Fβ will emphasis
on the precision while lowering the value of β will intensify the importance of the recall).
The second evaluation metric is the Average Precision (AP), a well-known measure in the
learning to rank community. We explain this choice for two main reasons. 1) It offers
a good intuition of the potential of a model regardless of the decision threshold learned.
Indeed, in the class imbalance setting, the decision threshold is likely to be suboptimal. 2)
It has been shown that AP makes more sense when the classes are highly skewed than other
metrics such as the AUC ROC (Davis and Goadrich, 2006; Frery et al., 2017). We recall
this measure:

AP =
1

P

P∑
i=1

precision(ki),

where P is the number of positive examples and precision(ki) is the precision when the
decision threshold is set at the ki rank of example xi.

43

Non-Linear Boosting

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Figure 2: On the left, we present the toy dataset with two classes. The red class is in
minority. The figures in the middle and on the right show the probability boundaries of
GB and NLB respectively, on the test set. Blue areas show a strong probability for the
examples to belong to the blue class while the red areas show a strong probability for the
examples to belong to the red class. As the color disappears, the model is uncertain to
which class the examples belong.

We first present an experiment on a didactic dataset in Fig 2. We use a binary im-
balanced dataset (the red class is in minority) in two dimensions to highlight the main
differences while training NLB and GB. The underlying concept is rather easy with a speci-
ficity on the top left corner where examples are randomly overlapping with respect to the
imbalanced ratio in the dataset #positive

#totalexamples ≈ 0.1. In this experiment, both algorithms

are allowed to build two different stumps (trees with only one split) 2 and their probability
boundaries (continuous scores) are used instead of the decision boundaries (binary classifi-
cation) to illustrate internal decision rules on the test set. It is worth noticing that, both
algorithms learn the exact same splits. However, their weighting schema is different. In fact,
GB (in the middle) and NLB(on the right) build their two hypotheses naturally: first split-
ting the dataset vertically on x2. Then splitting horizontally on x1. For this second split,
the only solution using the linear combination of the hypotheses is to assign more weight to
the examples on the left to belong to the red class. However, this gives a higher probability
for the examples in the upper left area to belong to the red class. NLB, instead, finds a
representation of the hypotheses learned such as to give the highest probabilities on parts
where the examples are not overlapping. At this stage of learning, GB has an AP = 0.4476
while NLB has AP = 0.9088. The best F1 score for both algorithm is F1 = 0.7012 and
F1 = 0.8874 for GB and NLB respectively. Also, note that the next learning steps for GB
are going to be more specialized on misclassified examples and thus the risk of overfitting
will be high. In fact, with decision stumps, GB is not able to reach NLB performances. Fi-
nally, we would like to point out that, in this case, the meta-learning part does not increase
the complexity of the model. Indeed, the meta-learner does not create new boundaries but
rather re-weights the existing areas to improve the performance on the given task and so
does not increase the risk of overfitting.

2. It is clear that this toy example could be solved with only one tree more complex than a stump. However,
in general, finding the right complexity is not trivial. For example, a tree with depth two would have
solved our problem correctly while a tree of depth three would have overfitted.

44

Non-Linear Boosting

4.2. Experiments on real datasets

Dataset #Examples Imbalance ratio

poker-8 vs 6 1477 0.0115

abalone-20 vs 8-9-10 1916 0.0136

winequality-red-3 vs 5 691 0.0145

winequality-white-3-9 vs 5 1482 0.0169

kr-vs-k-zero vs eight 1460 0.0185

winequality-red-8 vs 6-7 855 0.0211

winequality-white-3 vs 7 900 0.0222

abalone-17 vs 7-8-9-10 2338 0.0248

kr-vs-k-three vs eleven 2935 0.0276

yeast5 1484 0.0296

winequality-white-9 vs 4 168 0.0298

yeast-1-2-8-9 vs 7 947 0.0317

poker-9 vs 7 244 0.0328

car-vgood 1728 0.0376

glass-0-1-6 vs 5 184 0.0489

zoo-3 101 0.0495

abalone9-18 731 0.0575

glass4 214 0.0607

ecoli-0-1-4-6 vs 5 280 0.0714

vowel0 988 0.0911

yeast-0-5-6-7-9 vs 4 528 0.0966

ecoli-0-1 vs 2-3-5 244 0.0984

yeast-0-3-5-9 vs 7-8 506 0.0988

yeast-2 vs 4 514 0.0992

Table 1: Properties of the datasets used in the experiments.

We now present an extensive experimental study of our algorithm compared with GB.
Our experimental protocol generates 30 different 2/3-1/3 splits of the data using strat-

ified sampling to obtain the training and test sets respectively. Note that we use decision
trees as our base learners. We tune the models over this 2/3 split using a 3-fold cross-
validation. The parameters tuned are the number of weak learners T ∈ {0, 1, ..., 100}, the
depth of each decision tree and the learning rate. We set a maximum limit of depth 5 such
as to have very weak learners.

We report the average of the metrics obtained on each test set in Table 2.
In general, NLB outperforms linear gradient boosting. Interestingly, we can see that

the two metrics do not always agree on the best method. In fact, an interpretation of the
average precision (which is nothing else than the area under the precision and recall curve)
is that a model having a better AP has, on average, a better F1 score across all possible
decision thresholds than a model with a lower AP. Indeed, classification in imbalanced data
is very domain specific (i.e. emphasizing more on the recall rather than the precision and

45

Non-Linear Boosting

vice versa). Instead of computing multiple β for the fβ score, we simply use the AP so as
to have a global view on the model performances. The only condition is on the model that
must allow probability outputs which is the case for NLB and GB.

Finally, we report in Table 3 the average number of weak learners and the average num-
ber of splits built by the trees to which we refer, as the model complexity. We see that,
on average, GB builds more complex base learners and needs almost twice as many weak
learners as NLB. Also note that the model complexity depends mainly on the hyperparam-
eter of the tree depth and that as the depth increases linearly, the model complexity grows
exponentially.

Dataset NLB(AP) GB(AP) NLB(F1) GB(F1)

poker-8 vs 6 29.3± 19.8 25.8± 31.3 28.9± 24.4 9.8± 19.8

abalone-20 vs 8-9-10 27.9± 11.7 20.1± 18.9 20.2± 15.7 19.3± 20.0

winequality-red-3 vs 5 8.7± 6.0 11.1± 12.3 7.2± 14.0 2.8± 7.9

winequality-white-3-9 vs 5 23.8± 12.6 14.8± 12.9 25.8± 16.9 14.9± 16.3

kr-vs-k-zero vs eight 99.0± 1.5 95.2± 7.0 77.1± 7.3 81.5± 16.4

winequality-red-8 vs 6-7 13.1± 8.1 6.8± 3.9 12.8± 13.2 4.3± 8.4

winequality-white-3 vs 7 41.5± 9.5 37.7± 19.2 36.2± 15.0 32.7± 16.5

abalone-17 vs 7-8-9-10 28.7± 7.9 21.4± 7.5 22.2± 10.2 23.8± 7.6

kr-vs-k-three vs eleven 99.8± 0.6 96.0± 5.1 96.8± 2.4 96.7± 2.8

yeast5 67.2± 8.2 62.8± 16.8 67.6± 4.6 62.6± 13.4

winequality-white-9 vs 4 41.7± 35.4 30.3± 34.6 22.2± 35.1 5.6± 15.7

yeast-1-2-8-9 vs 7 29.9± 12.1 22.2± 13.6 25.4± 14.8 21.2± 16.7

poker-9 vs 7 35.1± 17.1 25.4± 18.7 24.1± 23.0 15.4± 20.2

car-vgood 99.9± 0.2 97.3± 5.0 96.4± 4.2 83.2± 31.7

glass-0-1-6 vs 5 71.2± 28.9 65.7± 32.4 56.3± 34.4 36.7± 35.5

zoo-3 35.3± 29.9 29.4± 21.4 32.2± 30.0 20.4± 29.2

abalone9-18 40.1± 7.4 30.4± 9.9 37.9± 6.4 30.2± 11.4

glass4 54.4± 16.4 51.2± 22.2 46.9± 24.8 54.0± 16.1

ecoli-0-1-4-6 vs 5 69.9± 16.0 74.6± 18.4 68.9± 11.1 69.2± 11.8

vowel0 94.7± 5.2 97.7± 2.1 89.4± 5.8 91.9± 4.5

yeast-0-5-6-7-9 vs 4 46.8± 4.4 55.3± 12.7 40.3± 10.8 52.2± 12.3

ecoli-0-1 vs 2-3-5 76.5± 11.1 67.7± 11.6 65.9± 12.9 57.0± 8.4

yeast-0-3-5-9 vs 7-8 42.1± 8.3 36.9± 11.5 29.4± 6.9 29.1± 11.8

yeast-2 vs 4 82.7± 7.4 80.7± 7.4 75.2± 6.5 71.0± 9.6

Table 2: The Average Precision (AP) and the F1 score (F1) reported for NLB and GB.

Model Average #Splits Average #Weak learners

GB 22.13± 7.92 67.25± 35.55

NLB 5.08± 3.83 35.42± 39.01

Table 3: Average number of weak learner and number of splits per weak learner for GB and
NLB.

While NLB shows a better convergence rate in terms of weak learners, it still needs an
extra step to update the meta-learner parameters. However, since we update our parameters

46

Non-Linear Boosting

sequentially and only once per weak learner and per representation, the overall update time
of the meta-learner is not larger than the time to train a basic neural network with one
layer and T inputs (the number of weak learners).

4.3. In-depth analysis of NLB

In this section, we present two different qualitative analyses on the latent representations
learned by our algorithm. An important point in NLB is to learn different representations
of the weak models. With this in mind, we provide evidence that NLB can generate some
diversity. We also show that these representations contribute in a comparable way to the
final decision. Finally, we give some convergence figures comparing NLB to GB. All the
following experiments are made on the MNIST dataset in the 1-vs-all conditions.

Our first analysis aims at showing that the learned representations tend to be uncor-
related when using a weak learner. For this purpose, we compute a correlation matrix C
between all the representations such that Cnm = covnm√

covnn∗covmm measures the correlation

between the latent representations n and m, cov is the covariance matrix computed with
respect to the input weights {αmi }Ni=1 and {αni }Ni=1 of these representations. We show, in
Fig. 3, the matrix, C, for the representations obtained after convergence with the decision
stumps as base learners. We can see that most of the representations tend to be uncorre-
lated or weakly correlated. That said, we still need to assess whether these uncorrelated
representations are contributing to the final decision.

We propose to compute, for each representation p, a relative importance coefficient Ωp

by taking the absolute values of the predictions of each representation right before they are
merged together with the others to form the final prediction. We average this coefficient
over {xi}Ki=1 examples taken from a validation set independent from the learning sample as
follows:

Ωp =
1

K

K∑
i=1

|αpLp
(T∑
t=1

αptht(xi)
)
|. (10)

We expect for important representations a high Ωp (i.e. having a high impact in the
final decision) and a low Ωp for irrelevant ones (i.e. having low impact in the final decision).

We consider the model learned with the decision stumps. We plot the importance
coefficient Ωp (y-axis) against the average correlation of each representation (x-axis) that

we define as Ĉp = 1
P

∑P
i=1Cpi. This illustrates the importance of each representation in the

final decision with respect to their correlation level.
Fig. 4 gives the plot for the model using the decision stumps as base learners. We see

here that all the representations are involved in the final decision and that their relative
importance coefficients are rather comparable. In these conditions, NLB has a clear ad-
vantage other GB. We give in Fig. 7 the performances F1 and AP as we add more weak
learners. GB not only converges slower toward its final state but it also has an optimal
solution which is less efficient than for NLB. With only 15 weak learners, NLB achieves the
same results as GB with 100 weak learners.

Now, as stated earlier, GB needs stronger weak learner to achieve better results in some
cases and it would be fair to assess NLB in this context. In Fig. 5, we compute the same

47

Non-Linear Boosting

correlation matrix of the representations as previously, however, the base learner is now set
to be a tree of depth 10.

We see that most of the representations are highly correlated. In this case, where
Ĉp ≈ 1, the final NLB model is comparable to a linear combination that could be built
in the standard linear gradient boosting. In addition, in Fig. 6, we can see that many
representations are unused in the final model and only representations with few variations
were useful with this strong base learner. In general, boosting methods have a hard time
to diversify complex models (hence the popular term ”weak learner” used in GB) and so it
also becomes hard for NLB to build diverse and useful representations of these classifiers.

Figure 3: Correlation matrix of the repre-
sentations with stumps as base learner.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Correlation coefficient

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

im
po

rta
nc

e
(%

)

Figure 4: Relative importance of each rep-
resentation with stumps as base learner.

5. Conclusion

We presented a new non-linear boosting algorithm, NLB. Our method builds different rep-
resentations of the classifiers during the learning iterations of boosting. We showed several
advantages using NLB:
1) A fast convergence rate in terms of weak learners. 2) NLB has a better generalization
potential. Since we learn the specificities of the target concept using very weak learners, we
reduce the risk of overfitting while increasing the expressiveness of the final model with the
non-linear combinations. 3) Suited for class imbalance learning problems. We presented an
experimental study that showed a better performance for NLB for the classification task in
the imbalanced setting compared to standard linear gradient boosting. Finally, we provided
an evidence that the representations learned in NLB bring diverse and relevant knowledge
on the given task.

In future works, further analyses of the representations should be conducted in order to
improve their collaboration and remove irrelevant ones.

References

Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaqúın Derrac, Salvador Garćıa,
Luciano Sánchez, and Francisco Herrera. Keel data-mining software tool: data set repos-

48

Non-Linear Boosting

Figure 5: Correlation matrix of the repre-
sentations with trees of depth 10 as base
learner.

Figure 6: Relative importance of each rep-
resentation with trees of depth 10 as base
learner.

0 20 40 60 80 100
#Weak learners

0.2

0.4

0.6

0.8

1.0

AP

NLB
GB

0 20 40 60 80 100
#Weak learners

0.2

0.4

0.6

0.8

F1score

NLB
GB

Figure 7: AP (on the left) and F1score(on the right) for NLB and GB along the iterations
of boosting.

49

Non-Linear Boosting

itory, integration of algorithms and experimental analysis framework. Journal of Multiple-
Valued Logic & Soft Computing, 17, 2011.

Carlos J Becker, Christos M Christoudias, and Pascal Fua. Non-linear domain adaptation
with boosting. In Advances in Neural Information Processing Systems, pages 485–493,
2013.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Olivier Chapelle, Pannagadatta Shivaswamy, Srinivas Vadrevu, Kilian Weinberger,
Ya Zhang, and Belle Tseng. Boosted multi-task learning. Machine learning, 85(1-2):
149–173, 2011.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. JAIR, pages 321–357, 2002. doi:
10.1613/jair.953. URL http://dx.doi.org/10.1613/jair.953.

Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer. Smote-
boost: Improving prediction of the minority class in boosting. In ECML PKDD, pages
107–119, 2003. doi: 10.1007/978-3-540-39804-2 12. URL http://dx.doi.org/10.1007/

978-3-540-39804-2_12.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD,
pages 785–794. ACM, 2016.

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When is undersampling effec-
tive in unbalanced classification tasks? In ECML PKDD, pages 200–215, 2015. doi: 10.
1007/978-3-319-23528-8 13. URL http://dx.doi.org/10.1007/978-3-319-23528-8_

13.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves.
pages 233–240, 2006.

Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and Philip K. Chan. Adacost: Misclassification
cost-sensitive boosting. In ICML, pages 97–105, 1999.

Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-Guelton. Effi-
cient top rank optimization with gradient boosting for supervised anomaly detection. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 20–35. Springer, 2017.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

50

http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-540-39804-2_12
http://dx.doi.org/10.1007/978-3-540-39804-2_12
http://dx.doi.org/10.1007/978-3-319-23528-8_13
http://dx.doi.org/10.1007/978-3-319-23528-8_13

Non-Linear Boosting

Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. A review on ensembles for the class imbalance problem: bagging-, boosting-,
and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 42(4):463–484, 2012.

João Gama and Pavel Brazdil. Cascade generalization. Machine Learning, 41(3):
315–343, 2000. doi: 10.1023/A:1007652114878. URL https://doi.org/10.1023/A:

1007652114878.

Nicolas Garcã-Pedrajas, CÃDsar Garcã-Osorio, and Colin Fyfe. Nonlinear boosting pro-
jections for ensemble construction. Journal of Machine Learning Research, 8(Jan):1–33,
2007.

Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, and Yan Tong. Incremental boosting
convolutional neural network for facial action unit recognition. In NIPS, pages 109–117,
2016.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge & Data Engineering, (9):1263–1284, 2008.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS,
2017.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-
imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(2):539–550, 2009.

Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Bier-boosting indepen-
dent embeddings robustly. In CVPR, pages 5189–5198, 2017.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992. doi:
10.1016/S0893-6080(05)80023-1. URL https://doi.org/10.1016/S0893-6080(05)

80023-1.

51

https://doi.org/10.1023/A:1007652114878
https://doi.org/10.1023/A:1007652114878
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1

	Introduction
	Notations and definitions
	Non-Linear Gradient Boosting algorithm
	Experiments
	Visualisation with a toy dataset
	Experiments on real datasets
	In-depth analysis of NLB

	Conclusion

