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Abstract

Early approaches to detect concept drifts in data streams without actual class labels aim at
minimizing external labeling costs. However, their functionality is dubious when presented
with changes in the proportion of the classes over time, as such methods keep reporting
concept drifts that would not damage the performance of the current classification model.
In this paper, we present an approach that can detect changes in the distribution of the
features that is insensitive to changes in the distribution of the classes. The method also
provides an estimate of the current class ratio and use it to adapt the threshold of a classi-
fication model trained with a balanced data. We show that the classification performance
achieved by such a modified classifier is greater than that of a classifier trained with the
same class distribution as the current imbalanced data.

Keywords: Class imbalance, concept drift, quantification

1. Introduction

Class imbalance is an omnipresent problem. Researchers and practitioners have addressed
the issue of learning from skewed data in a large number of application domains. In batch
learning, an imbalanced dataset has one or more minority classes heavily outnumbered by
the majority classes.

Such discrimination between minority and majority classes is not so clear for sequence
data, as in online learning. In a data stream, the examples are not provided at once, but
they arrive during the stream. Additionally, concept drifts can change the data distribution,
requiring the online learner to update its model.

Concept drifts can occur in the features or the class attribute. Drifts in the class
attribute may lead to imbalanced class ratios. Therefore, the relative frequency of the
classes may depend on the span of the stream that is being processed. For this reason
and differently from the batch setting, in online learning, a class can be both minority and
majority within the same dataset.

To make this discussion more concrete, consider a real application of an insect surveil-
lance sensor (Silva et al., 2015). The objective of such a sensor is to predict the species of
a flying insect using data obtained from the wings movement. The class distribution may
be affected by several factors, including the circadian rhythm of the insects. The circadian
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rhythm is a biological process that governs peaks of activity and periods of resting. For
many insect species, these peaks occur at dawn and dusk, as shown in Figure 1.

12 a.m. 6 a.m. 12 p.m. 6 p.m. 12 a.m.
Hour of the day

Aedes aegypti

Culex quinquefasciatus

Figure 1: Histograms representing the circadian rhythm of Aedes aegypti and Culex quin-
quefasciatus mosquitoes. At dawn, Culex is the dominant class, but it is out-
numbered by Aedes at dusk (dos Reis et al., 2018b).

A conventional approach to deal with concept drifts is to use drift tests. These tests
can be divided into two categories: supervised and unsupervised. The difference lies in the
need of class labels after deployment. The supervised tests assume that one examples’ true
class labels are available as soon as the classifier issues a prediction for this example. Such
an assumption does not hold for a large number of applications. In the case of the insect
sensor, the actual classes of the insects that passed in front of the sensor are expensive to
obtain. In field conditions, this information could only be obtained by having an expert
next to the sensor.

On the other hand, the unsupervised tests detect changes in the data distribution to
flag concept drifts while not requiring class labels after deployment. Two examples are
the nonparametric incremental drifts tests proposed by Kifer et al. (2004) and dos Reis
et al. (2016). These approaches compare two samples: the first is the one used to train the
classifier and the second is the latest stream data. The test indicates a concept drift if these
samples come from different data distributions.

The main point of this paper is that the unsupervised drift tests available in the literature
are sensitive to changes in the features as well as in the class attribute. It means that a
significant difference in the class distribution will cause a drift flag. Moreover, such tests
do not distinguish flags that were caused by changes in the features and the class attribute.
However, we advocate that an ideal unsupervised detector should either be insensitive to
drifts in the class attribute or, preferably, explicit which is the type of change that occurred.

We show a simple precursory experiment to make our point clearer. Figure 2 shows a
comparison between three hypothetical Random Forest classifiers assessed with three perfor-
mance measures: AUC, F1, and accuracy. The horizontal axis represents the class distribu-
tion in the test set for a binary classification problem. The red and green curves represent
classifiers that were trained with a fixed balanced training data. The first o them, how-
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Figure 2: A comparison between two Random Forest classifiers on insect data. The classifier
trained with a fixed and balanced class distribution outperforms the classifier
trained with the same class distribution as the test set.

ever, has its threshold adjusted according to the expected class proportion at each test set1,
while the latter’s threshold remains unchanged. The blue curve represents a classifier that
is trained with data that share the same class distribution as each test set. Both classifiers
trained with a fixed balanced class distribution performed better than the third classifier.
This can be explained by the latter’s need of extrapolating further with fewer examples for
the minority class. Finally, among those classifiers trained upon a fixed balanced data, the
one that has its threshold adjusted presented the best performance, which is expected.

From this experiment, we can advocate that if we have a classifier trained in a fairly
balanced distribution, possibly with the aid of sampling techniques, there is no gain in
retraining the classifier if the class distribution changes and the feature distribution remains
the same, provided that the new class distribution is known. A better approach would be
to keep the same classifier and adjust its decision threshold. Therefore, a concept drift test
should preferably tell apart changes in the class distribution and changes in the distribution
of the features.

In this paper, we adapt a recently proposed technique for learning with recurrent con-
cepts (dos Reis et al., 2018b) as an unsupervised concept drift test. The proposed test is
insensitive to changes in the class distribution and provides an estimate for the class distri-
bution in the test set. In other words, the proposal is also a quantification method. We use
such quantification estimate to adjust the decision threshold of the classifiers dynamically.
We show that our test is more accurate than the state-of-the-art for recognizing concept
drifts and, as a consequence, leads to more accurate classifiers.

This paper is organized as follows: Section 2 summarizes the related work on data
streams, concept drift, and quantification methods. Section 3 details the proposed method

1. The decision threshold is a scalar value that separates positive examples from negatives ones in a rank.
Examples with a score greater than the threshold are labeled as positive. The remaining examples are
marked as negative.
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for detection of concept drifts. Section 4 explains the experimental setup and list the
datasets that are used in our evaluation. Section 5 analyzes our experimental results and
compare them against the state-of-the-art. Finally, Section 6 presents our conclusions and
directions for future work.

2. Related Work

In this section, we summarize the relevant related work in concept drift detection and
quantification in data streams.

2.1. Data Streams and Concept Drift Detection

A data stream is an ordered sequence of instances, E = (e1, e2, . . . , et, . . .), where et ∈ Rp
is an example in a p-dimensional feature space. In supervised problems, each instance et
has an associated label. Thus, a supervised data stream can be represented by an ordered
sequence of pairs Es = ((e1, y1), (e2, y2), . . . , (et, yt), . . .), where yt ∈ C = {c1, c2, . . . , ck}.

Data stream mining faces several challenges, such as high volume, velocity, and volatil-
ity (Nguyen et al., 2015). In several application domains, data distributions are nonstation-
ary, leading to concept drifts. A concept drift is a significant change in the data distribution
that may impact the classification performance of a system. Therefore, data streams re-
quire identifying and reacting to concept drifts as well as updating the models to incorporate
those changes (Gama et al., 2004).

Supervised methods that deal with concept drifts assume the presence of actual labels
throughout the entire stream. One example’s true label is usually made available as soon
as the model issues a prediction for this example. The true labels are used to retrain the
model periodically or to detect drifts by monitoring the model’s classification performance
and retraining it when necessary (Kuncheva et al., 2008; Bifet and Gavaldà, 2009; Masud
et al., 2011; Wu et al., 2012). However, such supervised strategy strongly depends on the
constant availability of labels to rebuild the model or to detect the concept drift. This
dependence can rarely be fulfilled in real-world applications.

Some recent papers have explored the use of statistical tests as unsupervised triggers for
concept drift. Kifer et al. (2004) applied hypothesis tests to detect concept drifts without
labels. The hypothesis test verifies whether the distributions of training and test sets are
similar. Žliobaitė (2010) has employed a similar strategy over data streams. A hypothesis
test compares if two consecutive sliding windows present the same behavior. Maletzke et al.
(2017) and dos Reis et al. (2016) explore similar mechanisms, applying hypothesis tests to
compare classification scores rather than feature values. The scores come from the training
set and the most recent data stream sample. Such unsupervised detection approaches need
current true labels only to retrain the model, similarly to an active learning approach,
reducing the dependence on true label availability.

However, the statistical tests employed in these four papers are sensitive to changes in
both features and the class attribute. More importantly, those changes are not distinguished.
Therefore, if the only difference between two sets of data is the proportion of the classes,
then those methods generically indicate a concept drift, regardless of the change in the
class distribution not incurring the need of training a new classification model. In the
previous section, we argued and showed empirical evidence that knowing how the class
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attribute changes suffice to adapt the threshold of a model and keep comparable or superior
performance to a retrained model. Although classification performance can be affected by
changes in the proportions of the classes, training a new classification model is not a better
option than adapting the current model without requesting true labels. For this reason,
detectors should not flag such changes as concept drifts but instead should provide by how
much the class distribution changed.

dos Reis et al. (2018b) proposes an approach to learn in the presence of recurrent
concepts. The main assumption is that the data stream approximately follows a small
set of data distributions, called concepts. Therefore, the authors propose two methods to
identify the most similar concept given the current data sample. One of these methods,
the Single Most Relevant HDy (SMR-HDy), has a dual property: at the same time, it is a
proxy for a distance between two data samples and a quantification method. We postpone
the details of SMR-HDy to the next section. For now, let us clarify that, as a distance,
SMR-HDy is not able to identify a new concept. Therefore, one of the contributions of this
paper is to give a statistical interpretation of SMR-HDy distances. We want to understand
how likely a given distance is and flag a concept drift for distances beyond a statistical
threshold.

As a quantification method, SMR-HDy provides an estimate of the positive class dis-
tribution. Our approach uses this estimate to adjust the decision threshold of a classifier.
Additionally, in the process of estimating the positive class ratio, SMR-HDy does an inter-
nal search for the minimum distance between all assessed class ratios. We hypothesize that,
due to this search, such distance is invariant to the class distributions and is sensitive just
to feature drifts.

2.2. Quantification

Quantification is a supervised task, recently formalized as a machine learning problem (For-
man, 2005). This task shares similarities with classification. For instance, both consider the
same representation for examples and a nominal output feature describing the class. How-
ever, quantification is not particularly interested in predicting the label for each instance.
Instead, it is interested in the overall quantity of elements of a specific class. Consequently,
a quantifier issues an output for a set of examples, rather than one for each instance. The
output is an estimate for the class distribution, which consists of a sequence of real values
that are the estimates of the proportions of the individual classes in the set.

A straightforward, but usually inaccurate quantifier, is the Classify and Count (CC)
approach. It consists of directly using a classifier to quantify a test set, i.e., this method
simply counts the number of examples predicted in each class. CC has a series of lim-
itations. Although, it can provide optimal results for test sets with a class distribution
that makes FPR equal to FNR2, CC introduces a systematic error as the class distribution
changes (González et al., 2017). This is a severe issue for quantification problems since
quantification is only interesting when the class distribution is nonstationary. Otherwise,
we could directly use the training set class distribution to predict the test set distribution.

The literature in quantification is quite vast, and we do not intend to do a comprehensive
review in this paper. We point the interested reader to (González et al., 2017) for a thorough

2. FPR and FNR are the false positive and negative ratios, respectively.
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survey on the subject. We are particularly interested in a class of methods known as Mixture
Models (MM) (Forman, 2006), and one representative of this class named HDy (González-
Castro et al., 2013).

The HDy builds two normalized (unit area) histograms, H+ and H−, for the scores
obtained by the classifier on two validation sets with exclusively positive and exclusively
negative instances, respectively. When presented with an unlabeled test set, the algorithm
builds a histogram HT with the scores obtained by the same classifier. These histograms,
H+, H−, and HT , represent the distributions of the training set for each class and of the
test set, respectively. Finally, HDy estimates the positive proportion rate as follows:

HDy(H+, H−, HT ) = arg min
0≤α≤1

{
HD

(
αH+ + (1− α)H−, HT

)}
where HD is the Hellinger Distance (Pollard, 2002), and each histogram, with B bins, is
represented as a vector in the RB. Hellinger Distance is a function that estimates the
dissimilarity between two probability distributions. Equation 1 defines Hellinger Distance
for discrete distributions, as a histogram with B bins, and Figure 3 illustrates this process.

HD(P,Q) =
1√
2

√√√√ B∑
i=1

(
√
pi −

√
qi)

2 (1)

HD ([ ]α ,H+ H-
+ (1-α)

HT)
Figure 3: HDy uses the Hellinger Distance (HD) to measure the dissimilarity between a

mixture of positive and negative score distributions and an unlabelled score dis-
tribution, where α is the proportion of the positive class. HDy searches for an α
that minimizes the Hellinger Distance (dos Reis et al., 2018c).

The original intent of HDy was solely to estimate the proportion of the classes in a binary
quantification problem. However, dos Reis et al. (2018b) observe that HDy provides, as a
byproduct, the distance between the test sample and the most similar linear combination
of positive and negative training samples. Therefore, such byproduct distance can be taken
as a dissimilarity measure between the training and test samples, while being insensitive to
changes in the proportions of the classes.

SMR-HDy (dos Reis et al., 2018b) assumes that a known set of concepts can approxi-
mately describe a data stream. Therefore, this approach stores the positive and negative
training scores for all concepts and uses the byproduct distance of HDy to search for the
most similar concept to the test sample.

The Hellinger Distance suits SMR-HDy since we can compare different distances and
decide which one is smaller. In other words, we do not infer that a distance is either small
or large, but instead, we verify which concept has the most similar data distribution to the
current data by choosing the concept with the smallest HDy distance.
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In this paper, we do not assume the existence of a set of known concepts and develop
SMR-HDy as a concept drift test. However, this distance lacks statistical meaning, and we
are unable to affirm that it is big enough to infer that a concept drift has occurred with high
probability. In the next section, we provide a statistical meaning for this single distance
and offer a way of estimating a threshold that, once surpassed, indicates the occurrence of
concept drift with high probability.

3. Proposal

As mentioned, the SMR-HDy algorithm consists in identifying, among a set of known con-
cepts, which one is the most similar to the current stream data. In this paper, we are
not interested in calculating the similarity to known concepts. Instead, we want to identify
when the latest data significantly differs from the sample used to train the current classifier.

To this task, we need to set a threshold to the HDy distances so that distances greater
than this value indicate a concept drift. We empirically observed that distributions of HDy
distances are approximately normally distributed around a mean when the histograms H+,
H−, and HT come from the same concept, even when the test set is imbalanced.

Figure 4 presents the results for ten benchmark binary datasets from UCI (Dheeru and
Karra Taniskidou, 2017) and OpenML (Vanschoren et al., 2013) repositories. We uniformly
and randomly split each dataset into two disjoint halves. The first half is reserved for
training and validation, while the second for testing. To estimate the scores output by
classification models, we used 10-fold cross-validation with the first half of the dataset.
After obtaining the validation scores for H+ and H−, we induced classifiers in the first half.
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Anuran Calls
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Figure 4: Distributions of the HDy distances without concept drifts.

To make the best use of our limited data, we restricted the test set to 1,000 examples
so that there would be enough examples to vary the proportion of the positive class from 0
to 1, and also provide variability across samples in the extremes of this range. We changed
the positive class proportion from 0% to 100%, with increments of 1% at each time. For
each positive ratio, we created 10 random samples of 1,000 events. No event appears more
than once in each sample, even though it can appear on multiple samples.

Considering that the HDy distances are normally distributed, we can define an adequate
threshold, measured in standard deviations from the mean, to flag when two samples A and
B are significantly different. We propose a simple criterion to create a threshold (θ) based
on the distributions of the distances. If the distance reported by HDy differs more than
two standard deviations from the mean, we consider with high probability that there is a

116



On the Need of Class Ratio Insensitive Drift Tests for Data Streams

concept drift. Therefore, we propose a threshold θ as a decision boundary for whether a
drift is reported. According to our proposal, named Concept Distance Threshold (CDT),
θ is defined as follows:

θ = µ+ 2σ (2)

Subsequently, the decision D of whether a drift between two samples A and B is reported
is defined as follows:

D(A,B) =

{
drift, HDy(A,B) ≥ θ
no drift, otherwise

We note that to the purpose of concept drift detection, only distances that significantly
deviate from the mean on the upward side are reported, as they mean a greater measured
distance between the data distributions than it is expected.

In the following section, we present our experimental setup and evaluation procedure to
validate our proposal. We start the next section with a preliminary experiment to check the
viability of our assumptions. Later on, we describe the four real datasets that were used to
evaluate our method.

4. Experimental Evaluation

We preliminarily evaluate our design decision with real-world data gathered with an insect
sensor. According to literature, there is a broad set of factors that influence the flying
behavior of insects (and, therefore, cause concept drifts) such as temperature, humidity, air
pressure, age, availability of water and food and so on (Maletzke et al., 2018). However,
the temperature is a prominent factor. Figure 5 illustrates the influence of temperature on
the wing-beat frequency, one of the features we extract from the signals.
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Figure 5: Influence of temperature on the wing-beat frequency of female Aedes aegypti
mosquitoes (dos Reis et al., 2018b).

The insect data were gathered in the laboratory using insectaries with sensors attached.
Each insectary maintains insects of a single species and sex, leading to labeled data. We
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can also control temperature, humidity, and other ambient conditions maintaining the in-
sectaries in climatized chambers.

We created a scenario to test our threshold. Let the ranges of temperature be the
concepts and consider as current (or known) concept the data collected with under lower
temperature (∼ 24◦C) and as new (or unknown) concept the data gathered under higher
temperature (∼ 34◦C). We split the data described by the known concept (∼ 24◦C) into two
disjoint halves, and we have repeated the same experimental design previously described
(Section 3) to obtain the distribution of the distances. Afterward, we apply the classification
model and get the scores for the positive and negative classes (H+ and H−). In the case
of this experiment, the positive class is composed of events of female Aedes aegypti and the
negative class by male Aedes aegypti mosquitoes.

Figure 6 shows the distributions of the distances when the test set comes from the
known and unknown concepts. There is a clear separation between the distances from
different concepts, and we explore this difference to create a trigger to flag when data of an
unknown concept arrives. The dashed line represents an upper threshold defined according
to Equation 2. We observe that the distances computed between samples of the known
concept remain mostly below the limit set by θ = µ+ 2σ.

0.0 0.5 1.0 1.5 2.0
Distance

Concept
Known
Unknown

Figure 6: Distance distribution obtained from test sets composed by examples from two
different concepts. The known concept is insect data obtained at ∼ 24◦C. The
unknown concept was obtained at ∼ 34◦C. The vertical line represents two stan-
dard deviations from the known concept mean.

This preliminary evaluation indicates that our method is invariant to changes in the
class distributions yet being sensitive to changes in the feature space. We further evaluate
our proposal in the next experiments. For these, we use four real datasets:

Aedes-Culex A modified version of Aedes aegypti-Culex quinquefasciatus dataset, de-
scribed by dos Reis et al. (2018a). This dataset contains 8, 000 events described
by features that register the passage of female Aedes aegypti and female Culex quin-
quefasciatus mosquitoes in front of an optical sensor. Besides wing beat frequency,
there are other 25 numerical features obtained from the signal. Two ranges of tem-
perature define the concepts, and the classification task is to distinguish between the
two species. Wtr = 2, 000 and Wts = 1, 000;
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Aedes-Sex A portion of the dataset Aedes aegypti -sex, described in (dos Reis et al., 2018a)
was used. This version contains only two concepts and 8, 000 entries. Each event is
described by the wing beat frequency, and other 25 numerical features obtained from
the passage of female and male Aedes Aegypti mosquitoes in front of the optical sensor.
Wtr = 2, 000 and Wts = 1, 000;

Arabic-Digit A modified version of the Arabic-Digit dataset (Hammami and Bedda, 2010;
Lichman, 2013), which contains 8, 800 entries described by a fixed number of MFCC
values for the human speech of Arabic digits (among 10). The spoken digit defines the
concept, and the task is to predict the sex of the speaker. Wtr = 400 and Wts = 200;

Wine Wine Quality (Cortez et al., 2009; Lichman, 2013) contains 6, 498 entries described
by 11 features. The classification task is to differentiate between two ranges of quality
of wines. The concept is given by the type of the wine (red or white). Wtr = 800 and
Wts = 300.

Each dataset is divided into two parts of equal size. The examples of one of them
intended exclusively for training a classification model and estimating a drift detection
threshold according to CDT. The other part is intended to create test samples of size Wts.
Each part is composed of two well-known concepts. For each concept, from the training part,
we select Wtr events with balanced class distribution to train the classification model used
throughout our experimental evaluation. Every example in the same test sample belong
to the same concept, and while an example does not appear more than once in the same
sample, it can occur in different samples.

We select one of them to be the known concept (Trkn) and the other one to be the
unknown concept (Trun). For each training set (Trkn and Trun), a classifier is induced
(named δkn and δun, respectively). The rationale for using two training sets (Trkn and Trun)
is straightforward: we want to evaluate at first the accuracy for detecting drifts. Based on
the answer of our trigger, we want to select which classifier is used for the classification
task (δkn or δun), and evaluate the impact of the decision of the trigger on classification
accuracy.

Additionally, we use the Trkn to learn the threshold (θ) according to the procedure
described in Section 3. The only difference from that procedure is that we only use 100
instances to simulate test samples with different class distributions. This change is due to
the limited number of entries in Trkn. Figure 7 (a) shows a schematic representation of
the threshold learning process, and how the classifiers for each concept were created (δkn
or δun).

Given an estimated threshold and the classifier for each concept, we measure the perfor-
mance of our proposal regarding concept identification accuracy. We compare our proposal
with an unsupervised method that applies a hypothesis test over the scores output by the
classifier to identify drifts. For that, we use the Kolmogorov-Smirnov test (KS). This is a
non-parametric test to compare distributions and is a state-of-the-art approach to identify
concept drifts (Kifer et al., 2004; Žliobaitė, 2010; dos Reis et al., 2016, 2018a). We compare,
using the KS test, the distributions of the scores obtained through cross-validation on the
training set with output scores of the classifier δkn for each test sample. Similarly to (dos
Reis et al., 2016), we apply the KS test with a significance level of 0.001 to detect drifts.
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Figure 7: Experimental setup used to evaluate our proposal.

To evaluate the capability of identifying when a concept drift occurs, we randomly
extract test samples of size Wts from the test set, according to Figure 7(b). For each
sample, we vary the positive class proportion from 0% to 100%, with increments of 1%. For
each positive ratio, we create 50 random samples of Wts events (25 per concept). No event
appears more than once in each sample, though it can occur on multiple samples.

Our proposal is suitable for binary classification and quantification problems. We assume
that each processed chunk of data (referred to as sample) is entirely generated by only one
concept. Although the algorithm receives a sample as input, this chunk can represent a
sliding window in a data stream.

All classification models are Random Forests with 200 trees, using randomForest3 pack-
age from R with default parameters.

In our experimental setup, a reliable concept drift trigger will only flag changes in the
feature space and will ignore the simulated imbalanced class test sets.

5. Results

Table 1 presents the accuracy rates for concept drift detection obtained by CDT and KS
algorithms, as well as the classification accuracies.

The CDT algorithm performed consistently better than the KS algorithm regarding
drifts detection. We note that CDT achieved perfect concept identification in three out
of four datasets. Additionally, when our proposal was used as a trigger to detect concept
drifts, we obtained better classification accuracy, except for the Aedes-Culex dataset. This
indicates that for Aedes-Culex dataset the concept has no relevance for the classification
task. On the other hand, for the Aedes-Sex, Arabic-Digit, and Wine datasets, the drift
detection has led to the best accuracy rates with the lowest standard deviations.

As expected, the KS approach has shown to be severely affected by imbalanced class
distributions in the test sets. For all datasets, the drift identification accuracy of the KS

3. https://cran.r-project.org/web/packages/randomForest/index.html
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Table 1: Mean accuracy rates for concept identification and classification. Standard devia-
tions are in parentheses.

Datasets
Drift detection accuracy Classification accuracy

CDT KS CDT KS
Aedes-Culex 0.785 (0.239) 0.601 (0.192) 0.722 (0.158) 0.758 (0.151)
Aedes-Sex 1.000 (0.000) 0.567 (0.167) 0.982 (0.005) 0.802 (0.142)
Arabic-Digit 1.000 (0.000) 0.643 (0.220) 0.981 (0.005) 0.959 (0.019)
Wine 1.000 (0.000) 0.679 (0.222) 0.840 (0.061) 0.669 (0.143)

was lower than our proposal. This evaluation highlights the high sensibility of the KS test
to the class distribution, restricting the KS test applicability. This result corroborates with
the main point argued at the beginning, regarding the sensibility to changes in the class
distribution of the existing unsupervised drifts tests.

Figure 8 (right) shows the sensitivity of the KS to class distribution. The drift detection
accuracy is quite lower for extreme values of class distribution. Conversely, as shown in
Figure 8 (left), the CDT behavior seems to be insensitive regarding the class distribution,
except to the Aedes-Culex dataset.
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Figure 8: Impact of class distribution over the drift detection accuracy. CDT (on the left)
and KS (on the right).

Furthermore, regarding classification accuracy, we note an important relationship with
the drift detection performance. For all datasets, except Aedes-Culex, the classification
accuracy rates were higher when the CDT was used as a trigger. Figure 9 illustrates the
classification accuracy for each positive class proportion.

For the Aedes-Culex dataset, the KS approach presented better classification accuracy
even when the correct concept was not detected. We observed that the classifier δun per-
formed well even on samples from the known concept. Contrarily, when the classifier δkn
was applied to the samples from the unknown concept, the classification rate declined. Ad-
ditionally, for this dataset, KS test chose the classifier δun for all samples, regardless of true
concept. This fact explains the classification rate for the Aedes-Culex dataset.

121



On the Need of Class Ratio Insensitive Drift Tests for Data Streams

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Positive class distribution

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Dataset
Aedes−Culex
Aedes−Sex
Arabic−Digit
Wine

CDT

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Positive class distribution

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Dataset
Aedes−Culex
Aedes−Sex
Arabic−Digit
Wine

KS

Figure 9: Impact of class distribution over the classification accuracy using CDT (on the
left) and KS (on the right).

The CDT results corroborate with the initial assumption argued in Figure 2, except for
the dataset Aedes-Culex, where our proposal has a limited drift detection accuracy. This
can be explained by the lower drift detection accuracy of our proposal for this dataset,
selecting the wrong classifier mainly for the lower positive class distributions.

Two distinct aspects impact the CDT performance. First, our proposal has a high drift
detection accuracy. For this reason, we use the adequate classifier for most of the test
sets (δkn or δun). Second, the CDT provides the class distribution of each test set as a
byproduct, and therefore we can use this information to adjust the decision threshold of
the classifiers dynamically.

Our results suggest that in many real-world applications where concept drifts are ex-
pected, our proposal is the first method to detect drift with class distribution insensitivity.

Finally, our proposal has some limitations that are worth mentioning. The first limita-
tion is that we only address binary problems. This limitation is related to the underlying
method used in our proposal, the HDy algorithm. A second limitation refers to the thresh-
old learning phase, performed to estimate the value of θ for each dataset. This phase may be
time-consuming, and it is a mandatory step for our method. Conversely, given the estimated
threshold our proposal has a straightforward and fast application over data streams.

6. Conclusion

We present a method that accurately flags concept drift occurrences in the feature space.
Our approach is the first unsupervised drift detection method to target at being insensible
to class imbalance explicitly. Additionally, our proposal provides as a byproduct an estimate
for the class distribution, which is used to adjust the decision threshold of the classifiers
dynamically. We have empirically shown that our proposal outperformed the most used
strategy to flag concept drifts in an unsupervised setup.

CDT is limited to binary classification. One possibility of extending our proposal to
multi-class problems consists in aggregating multiple binary models, as is done in the one-
vs-rest approach.
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