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Abstract

Neural conversational models are widely used in applications such as personal assistants and chat
bots. These models seem to give better performance when operating on the word level. However,
for fusional languages such as French, Russian, or Polish, the vocabulary size can become infeasible
since most of the words have multiple of word forms. To reduce vocabulary size, we propose a
new pipeline for building conversational models: first generate words in a standard (lemmatized)
form and then transform them into a grammatically correct sentence. In this work, we focus on
the morphological agreement part of the pipeline, i.e., reconstructing proper word forms from
lemmatized sentences. For this task, we propose a neural network architecture that outperforms
character-level models while being twice faster in training and 20% faster in inference. The proposed
pipeline yields better performance than character-level conversational models according to human
assessor testing.

Keywords: morphological agreement, conversational models, morphology, natural language pro-
cessing

1. Introduction

Conversational models appear in a wide range of applications, from simple rule-based chatbots to
complex personal assistants. Over recent years, neural conversational models (Vinyals and Le, 2015)
have almost entirely replaced classical approaches based on information retrieval (Jafarpour and
Burges, 2010). Neural models usually operate on the word level and require plenty of data and
computational resources for training and inference. For fusional languages, the vocabulary size
becomes a bottleneck for both memory and computation: we have to learn and store an embedding
vector for each word and all its morphological forms. Several vocabulary reduction techniques,
such as n-gram level models or byte pair encodings (Sennrich et al., 2015), have been proposed to
mitigate this problem and reduce the vocabulary. Nevertheless, subword-level vocabularies for neural
conversational models usually lead to inferior performance in practice, in part due to inconsistencies
in the generated text: the model not only has to interpret the input question but also to formulate
and spell the generated answer correctly. In practice, character-level models seem to produce only
frequent words, ignoring rare ones due to the risk of misspelling them.

© 2018 D. Polykovskiy, D. Soloviev & S. Nikolenko.



POLYKOVSKIY SOLOVIEV NIKOLENKO

Another technique to reduce the vocabulary size is to lemmatize all words prior to building
the vocabulary. In this case, all word forms of a given word are merged into a single token.
For languages with rich morphology, lemmatization can greatly decrease the vocabulary size and
make the model computationally feasible. While word-level models on normalized vocabularies
can produce diverse, detailed answers, the resulting texts are not yet ready to go to the end user
since they are not grammatically correct. In this work, we propose to train an auxiliary model
to perform morphological agreement, i.e., map a sentence composed of lemmatized words back
to their proper morphological forms. A conversational model on a lemmatized vocabulary with
subsequent morphological agreement provide a new pipeline for conversational systems with reduced
vocabulary size. Thus, our contribution is twofold: we propose a neural network architecture
to perform morphological agreement in languages with rich morphology and introduce a new
approach to building conversational models based on generating normalized text and then performing
morphological agreement with the proposed model.

The paper is organized as follows. In Section 2, we present neural approaches to the mor-
phological agreement problem: a sequence-to sequence character-based model (Section 2.1), a
neural network architecture for morphological agreement (2.2), and the full conversational pipeline
(Section 2.3). Section 3 presents experimental evaluation with experiments in morphologically rich
languages, Section 4 presents related work, and Section 5 concludes the paper.

2. Neural Morphological Agreement

We begin by defining the morphological agreement problem. Consider a grammatically correct

sentence S, represented as a sequence of words w1, wa, ..., wg. Let £L(w) be a function that maps
a word to its standard form, e.g., £L(“went”) = “go”. The morphological agreement problem is
to learn an inverse of £ applied to complete sentences—a mapping that restores wi, wa, . . ., WK

from L(w1), L(w2), ..., L(wk). Lemmatization itself is a well-known problem (Chrupala, 2006);
it can be solved reasonably well even with a simple dictionary lookup, and modern context-sensitive
approaches to lemmatization based on conditional random fields (CRF) or similar models achieve
excellent results (Miiller et al., 2015). The inverse task of learning L1, however, is much harder and
much more context-dependent.

2.1. Sequence-to-sequence character-based model

A straightforward approach to the morphological agreement problem is to train a character-based
sequence-to-sequence model (Sutskever et al., 2014b) to map a normalized sentence

SN = L(wy), L(wa), ..., L(wk) (1)

represented as a single string to the original sentence S = wy, wo, ..., wx. A commonly used
sequence-to-sequence architecture contains two recurrent networks: encoder £ and decoder D. The
encoder generates an embedding vector E(S?V) from the string S”V, character by character. The
decoder then uses the generated embedding to maximize the probability of the correct sentence .S:

max By, 10g Pp (S|E(SY) @

While this model does yield a relevant baseline, this approach has two drawbacks. An encoder
has to compress all relevant information from S* into a single embedding vector of fixed size,
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leading to poor performance on long sentences (see Section 3.3). Also, the generative (decoding)
procedure does not even guarantee that the produced sentence will have the same number of words
as the input sentence. While this constraint seems rather mild, it turns out that incorporating the
knowledge about the correct number of words can improve the overall quality of the model.

Attention mechanisms (Luong et al., 2015; Yao et al., 2015) are often used to reduce the payload
of the embedding vector. For recurrent encoder and decoder architectures, attention operates by
computing a weighted sum of intermediate encoder outputs for each input token. The resulting vector
serves as an additional feature for the decoder at each time stamp. Weights in the sum are computed
dynamically by the decoder and can depend on the input. As a result, a neural architecture with
attention partially avoids the embedding bottleneck, but it still has to pack a lot of information in this
vector and still performs poorly on longer sequences.

2.2. Concorde

To solve both issues with sequence-to-sequence models described above, we propose a neural network
model specifically designed for the morphological agreement task. The main idea of the proposed
model is to decompose morphological agreement for the entire sentence into several tasks of restoring
individual words w; from their normalized forms £(w;). To do so, we assume that for each word in
a sentence we can recover its morphological context Z;, a vector containing all relevant information
about morphology, including tense, case, and plurality. Given this vector and a normalized sentence,
all target words w; become conditionally independent:

K
P(S|1Z,SN) =T P (wil Zi, £(ws)). 3)

i=1

Specifically, we obtain vectors Z; by the following procedure. First, we compute embeddings of
normalized words using a character-based word encoder E*. We then pass these embeddings (one
per word) through a bidirectional LSTM (Graves et al., 2013), producing vectors Z;; note that by
using bidirectional LSTMs, we allow Z; to capture both left and right context of a word, drawing
upon information about the whole sentence. Finally, probabilities P(w;|Z;, £(w;)) are modeled with
a recurrent character-based decoder D" using a context Z; as an initial hidden and cell state along
with attention weights over the corresponding normalized word characters £(w;).

Formally, the model and the corresponding optimization problem can be written as follows:

|S|

Z. B b ES~pua Z; log P(wi|L(w;), Zi) )

We call the proposed model Concorde and illustrate it in Figure 1. The Concorde model
solves both issues with naive sequence-to-sequence models discussed above. The information that
was previously contained in a single embedding vector can now be distributed among multiple
embeddings, one for each word in the sentence. Furthermore, this embedding only has to contain
information about characters of a single word, which is generally a short sequence, significantly
improving the performance on long sentences, as we will see in Section 3.3. Unlike sequence-to-
sequence models, Concorde is constrained to generate the correct number of words, as the decoder
is evaluated separately for each input word. The model is also parallelizable: while sequence-to-
sequence models have to process each token sequentially, Concorde can perform encoding and
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Figure 1: Concorde model.

decoding for each word in parallel. The only sequential part is the bidirectional LSTM that processes
only |S| elements (words) for each sentence.

2.3. Scaling up to neural conversation: Q-Concorde

The proposed Concorde model is a general framework for solving the morphological agreement task.
One possible application of Concorde is to build conversational models. Many languages have rich
morphology, with numerous word forms for many words. Storing all word forms in the dictionary
significantly increases vocabulary size, which makes training conversational models computationally
expensive and requires the training set to contain multiple instances of each word form. We propose
to reduce vocabulary size by lemmatizing all words. Such a model can still produce meaningful
answers, but the generated texts require post-processing to turn them into grammatically correct
forms, and we propose to use the Concorde model for this post-processing, i.e., for morphological
agreement. The model pipeline operates as follows: a user asks a question, words of this question
are normalized and used as input for a conversational model, the conversational model produces
a normalized answer, and finally this answer is transformed into a grammatically correct sentence
using the Concorde model.

This pipeline does not use information about the question’s morphology, leading to various
mistakes. For example, lemmatization loses information about gender, and a morphological agree-
ment cannot infer the correct gender. To solve this issue, we modify the Concorde model to by
adding morphological features from the original, grammatically correct question. We extract relevant
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Figure 2: Q-Concorde model.

information from the question through a character-based encoder (). It produces an embedding
vector which we concatenate with embeddings of all words of the normalized answer. We then map
obtained embeddings through a linear layer to the original embedding dimension (see Figure 2). We
call this model Q-Concorde.

3. Evaluation

In this section, we present the our experimental results. We evaluate Concorde and Q-Concorde
in two steps. First we compare the performance of Concorde and previously developed character-
level models on the morphological agreement task in three languages: French, Polish, and Russian.
We then evaluate the Q-Concorde model on a question answering task based on natural language
dialogues.

3.1. Experimental setup

We constructed training sets by applying lemmatization to texts in three natural languages. For
French and Polish, we used large lemmatization vocabularies (Méchura, 2018), and for Russian
we used the pymorphy?2 library (Korobov, 2015). Both Concorde and Q-Concorde models were
designed as a two-layer LSTM encoder and decoder with a hidden size of 512.

We compared our model to two baselines: unigram CharRNN and a hierarchical model. The
unigram model is a standard sequence-to-sequence model with attention (Luong et al., 2015) that
operates with characters or pairs of characters as tokens. In the CharRNN models, we used a 2-layer
LSTM as the encoder, and the decoder consisted of a 2-layer LSTM followed by an attention layer

411



POLYKOVSKIY SOLOVIEV NIKOLENKO

Table 1: Comparison of four morphological agreement models for three different languages: word
accuracy (WA) and sentence accuracy (SA).

French Russian Polish
WA SA WA SA WA SA
CharRNN 83.10 50.50 75.88 4497 7041 38.02
Hierarchical 83.03 50.52 77.73 46.26 70.71 38.31
Concorde 87.90 56.86 85.18 5397 79.76 44.93

and another recurrent layer. The third baseline was a hierarchical model motivated by Johansen
et al. (2016): we first embed each word using a recurrent encoder and then compute the sentence
embedding by running a word-level encoder on these embeddings. For baselines, the hidden size
was 768, resulting in a comparable number of parameters for all models.

We trained our models with the Adam optimizer (Kingma and Ba, 2014) with batch size 16
and initial learning rate 0.0002, halving it after each 50,000 updates. We terminated training after
300,000 updates, which was sufficient for convergence in our experiments.

3.2. Word and sentence accuracy

We used corpora from the OpenSubtitles database Lison and Tiedemann (2016) for French, Russian,
and Polish languages. We performed morphological agreement for each subtitle independently. The
vocabulary contained words that appeared more than 10 times among the first 10 million tokens, and
we removed sentences longer than 20 words.

We evaluated our model with respect to two metrics: word accuracy and sentence accuracy.
Word accuracy is the fraction of words that were correctly generated by the model. Sentence accuracy
is the fraction of sentences that were reconstructed with no mistakes. Table 1 summarizes our results
on the OpenSubtitles dataset: out of four models, Concorde consistently yields the best performance
across all languages, while the hierarchical model places second.

We also manually inspected our model to compare its performance in different cases. Table 2
shows some examples where Concorde was able to infer the plural form and gender for unseen words.
For the Russian language, we have found that the model was able to learn some rather nonstandard
rules such as changing the letter “s” to “it” in the middle of the stem in the plural form for some
words: “omua 3as17’ (one hare) becomes “iBa 3aiina” (two hares) in plural form rather than “ixBa
zasria’ as might be naively suggested from the majority of other examples, and the model picks up
on this morphological exception without ever seeing any hares in the training set.

Results shown in Table 3 indicate that Concorde is also able to infer gender from words. To
show that we chose feminine, masculine, and neuter words and used the model to predict agreement
with the word “one”, as in “one plate” or “one pie” because “one” changes by gender in all three
languages. As we see in Table 3, the model can indeed solve this task and assign the correct gender
to the numeral.

Table 4 shows results on full sentences. The Russian example, translated literally as “The girl
Alice lives in the adjacent entrance” (“The girl Alice lives next door”) is quite complex for agreement:
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Table 2: Singular and plural forms.

Singular Plural
Normalized Output Normalized Output
Fr un chateau Un chateau deux chateau Deux chateaux
Ru omun 3asi Opun 3as111 JIBa, 3asIIT JBa zaiina

Pl  jeden otéwek Jeden otéwek dwaoléwek  Dwa otdwki

Table 3: Gender agreement: f. — feminine, m. — masculine, n. — neuter.

Normalized Output
French f. un p,erso'nne Une Pergonne
m. un témoin Un témoin
f.  omun Tapeika Opma Tapeika
Russian m. omwn nupor Opun nmpor
n. oxauH pacreane  OJHO pacTeHne
f. jeden kawa Jedng kawa
Polish m. jeden czlowiek  Jeden czlowiek
n. jeden mleko Jedno mleko

e.g., to choose the correct form for the word “cocemmem” (“adjacent”), the network had to use
multiple markers from different parts of the sentence: gender from “nogbe3n” (“entrance”) and case
from “B” (“in”). Results of our manual inspection also indicate that the model works well even on
hard examples that contain words not from the dataset.

3.3. Performance on long sentences

As a motivation for our model, we argued that making shorter input-output paths may reduce the
information load on the embedding vector and thus improve long connections. To test this hypothesis,
we computed average sentence accuracy for different input lengths; Fig. 3 shows sample results for
the French language. The plots clearly show that the performance of all baseline models significantly
deteriorates as the input length increases. This is, however, not the case for Concorde: while charRNN
models drop to virtually 0% accuracy when the input is 100 characters long, Concorde still yields
about the same performance as for short sentences. This result can be explained by the way in which
models use embedding vectors. Baseline models have to share the embedding’s capacity among all
words in a sentence. Concorde, on the other hand, has a separate embedding for each word and does
not need to squeeze the whole sentence into a single vector.

Character-level models perform better for short sentences (about 33% of the test set). This
is probably because the embedding vector has sufficient capacity in these cases. Despite worse
performance for short inputs, Concorde still handles many important cases very well, including those
discussed in Section 3.2. Note that this means that one can easily improve upon the overall accuracy
by using CharRNN for short sentences and Concorde for longer ones: in our experiments, this has
increased sentence accuracy from 56.86 % (for Concorde; see Table 1) to 62.95% for French, from
44.93% to 52.61% for Polish, and from 53.97% to 61.67 % for Russian.
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Table 4: Characteristic examples: N — normalized, O — model output.

Fr N il vouloir d I amour d le joie de le bon humeur
O Je veux d 1 amour d la joie de la bonne humeur
Ru N 1geBouka s/mca »KUTb B COCETHUI IIOIBHE3]
O JleBouka DJHC KUBET B COCETHEM TOIBHE3IE
Pl N on dosta¢ duzo oda nikt inny
O Nie dostaniesz wigcej od nikogo innego
Concorde CharRNN Hierarchical
100 ‘ ‘ 100 ‘
80 80 —
>
g
2 60 60 |- J
2
53
S 40 40 |- .
3
7]
20 20 — —
0 0 .
20 40 60 80 5 10 15
(a) Input length (chars) (b) Input length (words)

Figure 3: Sentence accuracy as a function of sentence length (French).

3.4. Dialogue modeling with Q-Concorde

We also evaluated the proposed two-step conversational model—generate the normalized answer and
then apply Concorde to produce a grammatically correct text—on a corpus of question-answer pairs
that we obtained from otvet .mail. ru web site, a Russian-language service for questions and
answers similar to Quora. Unlike other available datasets, our corpus contains general knowledge
questions where the trained model has to answer questions about movies, capitals, and other common
trivia. This requires the vocabulary to contain many words related to rare entities, making the
vocabulary without normalization extremely large.

We compared the Q-Concorde and Concorde models to show that Q-Concorde can indeed grasp
important morphological features from the context. We also trained baseline models with context
concatenated to the input sentence (with a special delimiter in between). Table 5 shows word and
sentence accuracies: Concorde outperforms baselines even though it does not have access to the
context, and Q-Concorde further improves upon Concorde.

We inspected some cases where Q-Concorde shows better performance than Concorde (Table 6).
In the first example, the question deals with a single object, and Q-Concorde correctly used a singular
form while Concorde used plural. Q-Concorde also successfully carries the correct case (example 2)
and time (example 3) from the question. On the other hand, some mistakes made by Q-Concorde
are shown in Table 7: in the first example, Q-Concorde was not able to decide whether to use the
polite form (plural “you” or singular “thou’) and used a singular verb with plural possessive pronoun,
breaking agreement.
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Table 5: Performance of Q-Concorde and baselines on ot vet .mail . ru dataset.

Model Word Accuracy, % Sentence Accuracy, %
CharRNN 72.83 38.88
Hierarchical 74.99 35.2
Concorde 81.51 43.75
Q-Concorde 83.13 48.10

Table 6: Cases where Q-Concorde is better than Concorde.
Question kaxoil ThI YeJIOBEK CJIOXKHBIN WK C TOOOW BCE MPOCTO
1 Conc. [IPOCTBIE U JOOPBIE
Q-Conc. mpocToit m 70OpHIit

Question YTO HpPAYYT 110 ByaJIbio
2 Conc. TaitHa

Q-Conc.  Taitny

Question Bac MaTepu CKOJBKO HOCHIN MECSIIEB
3 Conc. 10 CTAHIAPTY BBIHOCST

Q-Conc. 110 cTanIapPTy BHIHOCUIIN

Q-Concorde can generate different replies depending on the lexical features of the question.
For example, Table 8 shows grammatical changes in the question and the corresponding answers:
we changed the tense from present to past (“what are you doing?” vs. “what did you do?”) and
gender from masculine to feminine, and the answer used the correct morphological forms in each
case (although in the third example the grammar turned out to be slightly off precisely due to these
changes).

Finally, we applied Q-Concorde in the proposed pipeline for training conversational models.
We compared our model with a 3-layer character-level sequence-to-sequence model trained on
grammatically correct sentences. To generate diverse answers, we trained two models: one to predict
the answer given a question and another to predict the question given its answer, as suggested in (Li
et al., 2015). This allows us to discard answers that are too general.

To compare the two models, we set up an experimental environment where assessors were asked
to choose one of two possible answers to a given question: one generated by the character-based
model and the other generated by our pipeline, shown in a random order. In 62.1% of the cases the
assessors selected the proposed model, preferring the answers from charRNN in the other 37.9%.

3.5. Computational costs

The time needed to process a batch of sentences is much higher for character-level models since
they need to process longer sequences sequentially. Table 9 reports the running time for forward
and backward passes of one batch (16 objects) and other important computational characteristics,
measured on a GeForce GTX TITAN X GPU. It turns out that Concorde and Q-Concorde have
comparable inference time, but train faster than unigram and hierarchical models.
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Table 7: Cases where Q-Concorde is worse than Concorde.

Question KaKoil TapudHbIil m1aH BeIOpaTh
1 Concorde [TO3BOHUTE BAIIIEMY OIEPATOPY
Q-Concorde 1103BOHU BaleMy OLEPATOPY
Question 9TO y Bac Ha 3aBTPaK
2  Concorde TOJIBKO TOTIETYH

Q-Concorde TosibKO TIOIIETY T

Table 8: Examples of Q-Concorde in action.

Question Norm. answer Answer

qero Thl JeJiacIllb A XO0KY TI'yJIdTb
qero Thl AeJiaJjia A XOIUTDH I'yJIATH A XoauJia T'yJIdAThb
qero Thl JeJiadl A XOJMJI TyJIe1

4. Related work

Dialogue and conversation modeling are a characteristic example of sequence-to-sequence problems:
given a sequence of words and/or symbols, the model has to produce a reasonable reply, i.e., another
sequence of words/symbols. The neural conversational model introduced by Vinyals and Le (2015)
uses the seq2seq framework from (Sutskever et al., 2014a); see Figure 4 for an illustration. This direct
seq2seq approach can be easily extended to many applications, including machine translation and
question answering, but unlike machine translation in this case it cannot really be expected to model
the dialogue since human dialogue usually carries over the context for a very long time, pursuing
long-term goals that probably cannot be modeled within seq2seq. Still, experiments in (Vinyals and
Le, 2015) show very reasonable dialogues both in the IT helpdesk context and in the general context
of movie subtitles (Tiedemann, 2009).

Serban et al. (2016) extend the hierarchical recurrent encoder decoder architecture (HRED)
proposed by Sordoni et al. (2015), who used it for context-aware query suggestion for information
retrieval. The basic idea of (Serban et al., 2016) is to view dialogue as a two-level system: a sequence
of utterances, each of which is in turn a sequence of words. To model this two-level system, HRED
trains (1) an encoder RNN that maps each utterance in a dialogue into a single utterance vector;
(2) a context RNN that processes all previous utterance vectors and combines them into the current
context vector; (3) a decoder RNN that predicts the tokens in the next utterance, one at a time,
conditional on the context RNN (see Figure 5). Serban et al. (2016) use bidirectional RNNSs, initialize
the weights with word2vec representations trained on a large dataset (Google News), bootstrap from
a question-answer subtitle corpus with short questions and answers, and perform the main training
with the MovieTriples dataset based on the Movie-DiC dataset (Banchs, 2012). Continuing this,
Serban et al. (2017a,b) developed a variational lower bound for the hierarchical model and optimizes
it; the resulting Variational Hierarchical Recurrent Encoder-Decoder (VHRED) model estimates
latent variables in the dialogue that model the complex dependencies between individual utterances,
and extended the model to piecewise constant priors, which leads to multimodal document modeling,
generating responses to the time and events in the original query.
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Table 9: Computational comparison: time per batch and GPU memory for training and inference.
Uni Hier Concorde Q-Conc.
# params 26M 36M 32M 35M
Training 410ms 379 ms 190 ms 285 ms
2316M  1970M  4290M 4512M
Inference 153 ms 146 ms 128 ms 147 ms
1417M  2025M  3419M 4445M

20 - O
Hoh et

LSTM encoder — — LSTM decoder

I A Al ‘)
bt t t
Figure 4: The seq2seq conversational architecture (Vinyals and Le, 2015).

Other recent developments apply reinforcement learning to improve conversational models, both
directly for response generation (Li et al., 2016b) and with online active reward learning (Su et al.,
2016), model intentionality in dialogue (Yao et al., 2015) or directly model the events of relaying
relevant information (Wen et al., 2016), add extra latent variables to the models to model personas,
so that the dialogue can be more consistent (Li et al., 2016a), improve diversity of responses (Cao
and Clark, 2017), and so on. While it is still a long way to go before actual general-purpose dialogue,
conversational models are a rapidly developing field.

We know of no direct attempts to add morphology to conversational models in a way similar
to Concorde; most works concentrate on English or Chinese languages. Special provisions for
morphology-rich languages have been made, however, in other fields of natural language processing,
usually with character-based models. For example, Ballesteros et al. (2015) improve upon a parser
based on stack LSTMs (Dyer et al., 2015) with bidirectional LSTMs producing character-based
word representations; Chung et al. (2016) construct a machine translation model that augments word
embeddings with a character-level model, and Google’s Neural Machine Translation system breaks
words up into pieces (Wu et al., 2016).

Word inflection is a similar task, but word inflection models generate specified word forms, while
in Concorde the model has to automatically choose the correct form. Durrett and DeNero (2013)
propose a supervised approach to predicting the set of all word forms by generating transformation
rules from known inflection tables, using conditional random fields (CRF) for unseen base forms.
Aharoni et al. (2016) and Faruqui et al. (2015) use bidirectional LSTMs to encode the word; Faruqui
et al. (2015) add different decoders for different word forms, while Aharoni et al. (2016) suggest to
have a single decoder and attach morphological features to its input. Apart from RNNs, convolutional
networks (CNNs) have been applied in (Ostling, 2016; Faruqui et al., 2015), where raw text data
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Figure 5: The HRED architecture for a conversational model (Serban et al., 2016).

first passes through convolutional layers and then goes to a recurrent encoder. Kim et al. (2016) use
character-level encoder and word-level decoder.

In a way, Concorde continues and extends this line of work to conversational models, but we
attack it from a different angle, explicitly separating the problems of producing a good response as a
sequence of words and achieving morphological agreement with this sequence. The morphological
agreement problem has not been well studied in literature. We note the works (Linzen et al., 2016;
Bernardy and Lappin, 2017) that use RNNs to learn syntactic agreement; however, they solve a more
specific problem, e.g., predict the number or tense of a specific verb in a sentence where all other
words are already in their correct forms, while Concorde attempts to reconstruct all correct forms at
once. Thus, to the best of our knowledge Concorde is a novel approach to conversational models and,
moreover, it introduces a novel useful task of full-scale syntactic agreement.

5. Conclusion

In this work, we have considered the conversational modeling problem for fusional languages, where
vocabularies become infeasible due to different morphological forms. We have proposed a novel
pipeline for conversational models where the model first generates normalized replies and then
reconstructs proper agreement, saving memory by reducing vocabulary size with lemmatization. We
have introduced a neural network model, called Concorde, for the morphological agreement problem
that outperforms conventional sequence-to-sequence models on this task, showing that Concorde
significantly outperforms character-based models for morphological agreement. We have also shown
that the proposed conversational pipeline outperforms other conversational models while being faster
in both training and inference.
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