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Abstract

Deep convolutional neural networks provide a powerful feature learning capability for im-
age classification. The deep image features can be utilized to deal with many image un-
derstanding tasks like image classification and object recognition. However, the robustness
obtained in one dataset can be hardly reproduced in the other domain, which leads to
inefficient models far from state-of-the-art. We propose a deep collaborative weight-based
classification (DeepCWC) method to resolve this problem, by providing a novel option to
fully take advantage of deep features in classic machine learning. It firstly performs the
lo-norm based collaborative representation on the original images, as well as the deep fea-
tures extracted by deep CNN models. Then, two distance vectors, obtained based on the
pair of linear representations, are fused together via a novel collaborative weight. This
collaborative weight enables deep and classic representations to weigh each other. We ob-
served the complementarity between two representations in a series of experiments on 10
facial and object datasets. The proposed DeepCWC produces very promising classification
results, and outperforms many other benchmark methods, especially the ones claimed for
Fashion-MNIST. The code is going to be published in our public repository’.

Keywords: Sparse representation, Collaborative Representation, Collaborative Weight,
L2 Regularization, Image Classification

1. Introduction

Machine learning methods have been applied to deal with various multi-media and computer
vision tasks. Traditionally, linear models such as sparse representation (SR) Wright et al.

1. https://github.com/zengsn/research
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(2009) and collaborative representation (CR) Zhang et al. (2012) have drawn much attention
and gained promising results in image classification. Lately, nonlinear deep learning LeCun
et al. (2015) models, e.g., ResNet He et al. (2016a) and VGG Simonyan and Zisserman
(2014), have produced state-of-the-art results in many image-based tasks, including face
recognition, object detection, video tracking, etc. Linear sparse models can be utilized
to improve deep neural networks Xin et al. (2016). On the other hand, more and more
conventional methods took deep features as input to gain more promising classification
results Cai et al. (2016); Zeng et al. (2017c, 2018). However, recent studies showed that
deep features from neural networks are usually designed for SVM-like classifiers Li et al.
(2018). Using deep features as sole input in non-SVM classical models could be dubious. For
this problem, we believe that the technique of linearly representing images can be applied
to enhance nonlinear deep models.

Deep learning shows a very strong capacity to learn discriminative image features. CNN
features off-the-shelf Sharif Razavian et al. (2014) were demonstrated to be powerful for
recognition tasks. Learning deep features can help to obtain state-of-the-art results for dif-
ferent tasks like face recognition Wen et al. (2016b), scene recognition Zhou et al. (2014),
person re-identification Xiao et al. (2016) and general image classification Shao et al. (2017);
Valada et al. (2018). The good news is that many conventional machine learning methods
can also learn credible features from images. In recent years, Sparse Representation (SR)
Wright et al. (2009) via l; regularization has shown huge potential in feature extraction
and image classification. On the other hand, l» regularization-based Collaborative Repre-
sentation (CR) Zhang et al. (2012) can also build a similarly robust linear model. The ls
regularization inside CR helps to create an equally discriminative but faster sparse repre-
sentation Xu et al. (2017b). According to our observation, sparseness plays an important
role in both linear and nonlinear models. It is likely for these two paradigms, deep and
classic representations, to generate a new representation learning model when collaborating
with each other.

In this paper, we propose a Collaborative Weight-based Classification method that
brings deep and classic non-deep representation together, to implement a more promis-
ing image classification. We name it DeepCWC for short. The contribution of this work
includes: 1) proposing a new classifier to integrate features from linear and nonlinear mod-
els, 2) giving an analysis on how black-box deep features work in a sparse classification
model, 3) conducting image classification experiments on different CNN models and convo-
lutional layers inside them, to demonstrate the performance of DeepCWC in a consistent
and comprehensive way. The proposed method produces promising results on face and ob-
ject recognition. In particular, it ranks first in recognition (97.66%) on the Fashion-MNIST
dataset.

2. Related Work

The root inspiration comes from the popular deep residual network (ResNet) He et al.
(2016a). ResNet keeps an identity map learned from the last layer, and applies it to next
layer of learning. Then, it constructs a new building block y = .Z (x, {W;}) + x, as shown in
Fig. 1(a). This explicitly allows these layers to fit a residual mapping, so as to make it easier
for the residual to be zero (sparse) than to fit an identity mapping by a stack of nonlinear
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Figure 1: Collaboratively weighted residuals of CR and ResNet models.

layers. In this way, the discrimination learned in the previous layers will be propagated
layer-by-layer. Also, there would be a linear transformation between some layers, if two
connected blocks have a different dimension, as shown in Fig. 1(b). Denote the linear
projection as Wy, where the building blocks become y = % (x, {W;}) + Wsz.

ResNet attracts great attention and progresses observably He et al. (2016b), while our
main focus is the way how it utilizes the prior information. It is possible to include sparse
learning, as prior information, in deep neural networks as well. For example, grouping mul-
tiple sparse regularizations for simultaneously optimizing deep neural networks Scardapane
et al. (2017). Wen et al. proposed to learn a structured sparsity in deep neural networks to
regularize the inside structures (i.e., filters, channels, filter shapes, and layer depth) Wen
et al. (2016a). Afterwards, a fixed linear sparse filter can be cascaded with a thresholding
nonlinearity to maximize sparsity in deep neural networks Xin et al. (2016). It becomes an
emerging trend to utilize linear sparse models to collaborate with nonlinear neural networks.

As shown in Fig. 1(c), our idea has a similar structure following the building block
of ResNet. The key is fusing the identity map learned from lo-norm collaborative repre-
sentation Zhang et al. (2012) to the result after deep residual learning. To simplify the
implementation structure, the linear model is not injected into the building block of the
neural network. Instead, it performs on the classifier. There are several reasons for this
structure. Firstly, it helps to avoid overheads in the training process of the neural networks.
Furthermore, it creates a more general structure that can be easily extended to other types
of neural networks, which are not limited to ResNet. For example, we also implement this
in Inception Szegedy et al. (2017) and VGG Simonyan and Zisserman (2014), which will be
demonstrated in Sec. 4. The idea behind pairing nonlinear deep learning with an additional
linear representation is to make the network more capable in different classification tasks.

However, the usage of the prior learned information is different in our implementa-
tion. ResNet adds up the learned = in model training, while the proposed DeepCWC will
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introduce a collaborative weight in classification, which is obtained by an element-wise
multiplication instead of addition. The next section explains the detailed implementation.

3. Deep collaborative weight-based classification

The key idea in Deep Collaborative Weight-based Classification is straightforward: using
the model of Collaborative Representation (CR) Zhang et al. (2012) to learn a classifier
from the original images and deep features in pairs. CR is based on /3 normalization and
emphasizes the collaboration among all samples in the representation. However, more and
more evidence points to the fact that the collaboration requires help from the sparseness in
the representation to maintain a high level of performance Akhtar et al. (2017). We believe
that using deep features is one of the possible solutions.

3.1. Pair of residual learning

In CR based classification (CRC), the role of collaboration among classes is stressed, rather
than sparsity in the representation, when representing a test sample. Let A denote the
training samples selected from all C' classes, while y is the test sample. Both A and y
will be normalized to have ls-norm. The representation of y by A can be denoted as
an approximate linear problem y ~ A«, where a = |1, a9,...,a¢] is the representation
coefficient to be solved.

First of all, a regularized least square method Zeng et al. (2018) is used to solve the
problem and perform the collaborative representation of the original image sample as follows

(@) = argming{[ly = A4~ afl; + X a3}, (1)

where A is the regularization parameter, which introduces a certain number of “sparsity”
to the solution. The solution of this linear problem by using regularized least square can
be derived as

a=(ATA+X-T) 1Ay, (2)

Let P = (ATA 4 X\-I)7'A”T | such that P is a projection matrix that can be pre-solved
and independent of the test sample y. The projection makes CR much faster than the
conventional SR. It is noted that this operation may not fit in the memory of a large-scale
dataset Yu et al. (2012). In our implementation, we used an incremental strategy Xiao et al.
(2014); Ristin et al. (2014) to deal with this problem, despite the fact that there are other
potential solutions, e.g., dictionary learning Cai et al. (2016); Xu et al. (2017a).

From this, we can obtain the coefficient vector @; related with the ith class. Typically,
in SRC the coefficient is utilized to solve the representation residual of a specific class
by Hy —A;- o?i‘|2. Besides this, in the original CRC implementation, the lo-norm of the
sparse coefficient HdiHQ was also added to obtain more discrimination when performing
classification Zhang et al. (2012). Finally, the residual is obtained by

T€Simg = Hy_Azdz |2+)‘ HaZH2 (3)

At the same time, a side-by-side CR is performed on deep features. The so-called deep
features are specific to the layer in the deep model. Theoretically, any layer can be utilized
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to extract deep features. For example, the global_pool layer He et al. (2016a,b); Szegedy
et al. (2017) in the ResNet and Inception models. Here, we denote the deep features from
one specific layer (j) of the neural networks for all training samples as

B = fea,,,(A,layer;), (4)
and therefore the query sample becomes
Yenn = feacnn(y7 layerj)- (5)

The size of the feature set is determined by the design of the specific layer, where it is
normally mismatched with the size of the original images. It is hard to simply perform
integration on the feature level. Therefore, fusion of the feature pairs will be performed on
the residuals, which have the size same as the class number.
Then, the representation coefficient obtained from the deep features by a similar CR
process is
B=(BT'B+X-I)"'B yepn. (6)
After that, the residual between the query feature set y.., and each class of training
feature sets can be solved with the same method as Eq. (3)

o+ A 16l (7)

T€Scnn = Hy - Bz . Bz

3.2. Fusion based on collaboratively weighting

Our proposed method manages to retrieve this part of the missed information via a novel
fusion operation. The fusion is performed on two residuals, since both have an equal di-
mension depending on the number of classes. Therefore, fusion on the residuals is not only
straightforward, but also faster.
Let us denote the residuals solved from two groups of samples as

reSimg = [dimg, 15 dimg,2; - - - » dimg,c] and 7€Senn = [denn,1, denn,2, - - - s denn ], Where C' is the
number of classes in the dataset. Then, the fusion via the collaborative weight is performed
on the residual vector via an element-wise multiplication,

T'€S fusion = T€Simg O TeSenn,; (8)

where the residual entry related with the ¢th class is calculated by the collaborative weight.
This weight means that each entry in the residual vector is assigned a weight solved by the
collaborative representation of the original images. The information carried by this weight
compensates the missing part of the abstract higher layers in a neural network. In this way,
we obtain the final fusion residual. Although additional or weighted averages are a more
common approach to perform fusion in many other methods Zeng et al. (2017a,c); Wen
et al. (2018), they require a set of fine-tuned factors to obtain a good result. What is more,
we observed a descending accuracy when adding up two residuals.
Finally, we classify the test sample to a class with minimal residual as follows

identity(y) = arg min,(res fusion,i)- 9)

The idea of our collaborative weight is simplistic and intuitive. The collaborative weights
are determined by the relative contribution of each class from the original samples. Each
residual of the deep features is overlapped by a weight solved using the collaborative repre-
sentation of the original samples, in order to integrate its contribution.
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3.3. Why deep features works in CR

collaborative representation and sparsity are both important

4§ =

deep Feamreqlfmm black box models

(a2)

unpredictable spavsity

Figure 2: The sparsity from deep features in the CR model.

To answer this question, we first need to answer another question: What is the rela-
tionship between collaboration and sparsity? Many had tried to give an answer with some
considering sparsity as being more important Wright et al. (2009); Deng et al. (2013). On
the other hand, others insist that collaboration matters more Zhang et al. (2012); Peng
et al. (2014). However, as for the rest, they treat collaboration and sparsity as equal factors
Zeng et al. (2017b,a); Akhtar et al. (2017). So far, the last viewpoint well explains our
proposed collaboratively weighting deep and non-deep representation.

The subspace occupied by the columns of a sparse dictionary ® can be denoted as a set
of W. Fig. 2 shows the geometrical illustration of this subspace. A test sample y can be
approximately represented by the columns of ®, and the error is ¢ = y — §. In addition,
vector §j can be decomposed to & and &;, as depicted in Fig. 2 (al). According to Zhang
et al. (2012), the angles S and ~ together decide the robustness of the CR model. However,
Fig. 2 (a2) shows that it is likely to have more than one right answer, which is depicted
as the circle. The distances of pz and ¢z are the same. Therefore, CR by itself without
considering sparsity may not be robust enough Akhtar et al. (2017).

Fig. 2 (bl) and (b2) show how the sparsity can help in the CR model. In these two
cases, where (bl) & # & and (b2) & = &, a and b are two paths to points p and ¢. The
distances are also the same ||e;|]2 = ||€;|2 in these two instances, while a # b in (bl)
and a = b in (b2). This means that the class-specific residuals are equal in both cases,
but construction of vectors & and {; may be different. The components consisting of the
path depict the sparsity in the representation, where fewer steps of &; indicates a sparser
collaborative representation coefficient o. Using sparser features in CR can help to produce
a more robust classification, which is the very reason why DeepCWC works.

The black box deep model provides an unpredictable sparsity in the deep features.
Currently, we can only accept this fact according to the largely contracted dimension of
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the deep feature set, with feature learning being the most powerful characteristic of deep
learning. As shown in Fig. 2 (c), the effort of CR on deep features can be painted as a
random and unpredictable curve between o and p. This can be treated as potentially the
most efficient path and is also the result observed in the experiments.

3.4. Why the fusion is positive

(a) ResNet v1 101 (e) VGG 16
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Figure 3: The residuals from the pair of CR representation and the final fusion.

When the deep features are ready and fit well in the CR model, the next problem is
how to consolidate both of them into an united set. This is where the collaborative weight
works. Previous work showed that well constructing the residuals is helpful to generate a
robust sparse model, i.e., the two-phase sparse representation model Xu et al. (2011). To
illustrate the impact of the weight, we captured some runtime data from our experiments,
which is plotted in Fig. 3.

The purpose of the collaborative weight is to expand the more promising residuals, while
restricting the other ones. The target class is selected by a final minimization, hence, we
look for the smallest values. For example, the residuals of classes 1-10 are shown on the
ResNet_v1_101 model in Fig. 3 (a). The correct class label is 1, where the distances of
CRC on images and deep features are both below 1 (0.72). However, the minimal values of
them are 0.65 and 0.62, respectively. This could lead to a wrong classification result (Class
4 and 10). After the fusion, the resultant residual becomes even smaller, resulting in the
correct class being chosen (Class 1). This ensures that the classification will not be affected
by other nearby classes. The same phenomenon can be found on other models, which are
annotated in Fig. 3 (b) - (f). On the other hand, the classes with a larger distance value,
e.g., d; > 1.0, the fusion will make it much larger (m xn > 1.0, if m > 1.0 and n > 1.0).
This in turn helps to avoid negative results.
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Another point to note in the fusion is that the parameters do not need to be tuned. This
is not like other conventional fusion schemas, which usually introduces one or two fusion
factors Zeng et al. (2017a,c); Wen et al. (2018), where more parameters call for more tuning.
The fusion result is determined by the residuals themselves. We barely need to look for an
optimal parameter and maintains the effectiveness of DeepCWC.

4. Experimental results

This section describes the experiments to demonstrate the robustness and performance
of the proposed method. First of all, six facial datasets, including FERET Phillips et al.
(2000), MUCT Milborrow et al. (2010), Yale B Georghiades et al. (2001), Georgia Tech (GT)
Chen et al. (2005), AR Martinez (1998), and ORL Cambridge, are selected to evaluate the
performance of face recognition. These experiments were conducted due to the fact that
CRC is usually applied to face recognition. Secondly, another set of experiments had been
performed on some object datasets, including a leaf dataset Flavia [26], and three object
datasets CIFAR-10 Krizhevsky and Hinton (2009), Fashion-MNIST Xiao et al. (2017) and
COIL-100 Nayar et al. (1996), which are often utilized to evaluate deep learning methods.

Also, in order to evaluate the robustness after introducing the collaborative weight
between the original images and the deep features, we extracted the deep features using
multiple state-of-the-art deep CNN models, including ResNet_v1_101, ResNet_v2_101, In-
ception_v4, Inception_ResNet_v2, VGG_16 and VGG_19. All of these are trained previously
on the ImageNet dataset Deng et al. (2009) in Google TensorFlow?. Our assumption is the
proposed DeepCWC works on different deep CNN models. The feature extraction is per-
formed on the TensorFlow-Slim library. Besides this, another goal is to investigate which
layer of features in a CNN model are more suitable for collaborative weight. Based on
the considerations, we conducted a set of relevant experiments and obtained the following
results.

4.1. Experiments for face recognition

We ran experiments on six popular benchmark facial datasets. These datasets are relatively
small. The smaller datasets do not contain enough samples to train a robust model by CNN,
but we can extract the deep features using pre-trained deep CNN models. Our goal in this
group of experiments is to compare the classification result between our proposed method
and state-of-the-art methods. The best results are shown in Fig. 4 (a).

It is clear that the proposed DeepCWC method outputs a higher recognition accuracy
than normal CRC, CRC using deep features and other state-of-the-art methods, no matter
which CNN model is used to extract the deep features. It is uncertain that using deep
features would generate a higher recognition accuracy than using the original images. For
example, when utilizing the ResNet_v1_101 model to extract features of the AR dataset,
CRC performs better on original images than deep features, as shown in Fig. 4 (a). And
this is also true in some other experimental cases, which shows one of the limitations of a
typical deep learning method. This is the very reason why we proposed the DeepCWC.

2. https://github.com/tensorflow /models/tree/master/research /slim#Pretrained
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Figure 4: Face and object recognition accuracy comparison.

No matter which dataset, performing fusion of two feature sets based on the collaborative
weight generates a higher recognition accuracy. Even in cases that merely use deep features
without collaborative weight, e.g., on FERET, MUCT, Yale B, GT, AR and ORL, the
proposed DeepCWC helps the recognition by fusing features from the original images and
the CNN models.

4.2. Experiments for object recognition

The next set of experiments were performed on some leaf and object datasets, including
Flavia (leaf), COIL-100, CIFAR, and Fashion-MNIST. The results are consistent on all
datasets, as shown in Fig. 4 (b). Incorporating the deep features learned by ResNet_v1_101,
the recognition accuracy (yellow) is much higher than the result on the original images
(blue), except the result on the Flavia. However, DeepCWC further pushes the recognition
up to an even higher level, and the improvements are stable on all datasets.

The highest accuracy is obtained on the COIL-100 dataset when using the first 60
samples in each class (83%) as the training samples. Deep features are beneficial to classi-
fication on this dataset, where DeepCRC (up to 98.83%) outperformed CRC (only 69.0%)
by over 30%. That being said, the proposed DeepCWC still produces the highest accuracy
of 99.42%, which reached a state-of-the-art level in recognition. On the Flavia leaf dataset,
the improvement generated by collaborative weight is remarkable, though the accuracy is
relatively lower, as shown in Fig. 4 (b). The results on the CIFAR-10 dataset get an im-
provement as well. And the improvement (the column Impr) is calculated by the rate of
the accuracy from the DeepCWC over the higher one between CRC on images and deep
features, and the improvements on the Flavia and Fashion-MNIST are up to 21.01% and
12.41%, respectively.

4.3. Experiments on different layers

Two versions of the ResNet pre-trained models, ResNet_v1_101 He et al. (2016a) and
ResNet_v2_101 He et al. (2016b), are tested in this set of experiments. As described above,
we borrowed a similar architecture idea from the deep residual network, as shown in Fig. 1.
For this reason, we design the first implementation of DeepCWC based on ResNet. There
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are 101 layers in the network, and we evaluate the proposed method on the features ob-
tained from three layers, which are global_pool, logits® and spatial_squeeze® from shallower
to deeper. The layer spatial_squeeze is the layer before the last convolutional layer, while
the logits layer is before spatial_squeeze. These two layers have the same feature set size
(1000). However, the global_pool layer is before this layer and has a larger size of 2048. The
classification results are demonstrated in Fig. 5 (a) and (b).

DeepCWC

Tiages Decp foatures  DeepCWC Tmages Deep fentures  DeepCWC Tmages Deep features  DeepCWC
(d) Inception_ResNet_v2 (e) VGG-16 (f) VGG-19

Figure 5: Accuracies with different layers of six deep models.

In both models, performing CRC on deep features obtained from each layer produces
a higher accuracy than using the original images. DeepCWC generates an even higher
accuracy than both of these. We observe exactly the same result (97.26%) in both logits and
spatial_squeeze layers. For classification, the feature maps of the last convolutional layer
are fed into fully connected layers followed by a softmax logistic regression layer Krizhevsky
et al. (2012). The global average pooling Lin et al. (2013) is introduced to avoid overfitting
in the fully connected layers. Using the features maps captured from the global_pool layer
produces a slightly higher accuracy (97.36%). Every result reaches a state-of-the-art level,
and is higher than all current implementations (See subsection 4.4). It is noted that the
computation time increases due to a larger size (double) of the feature maps from layer
global_pool. Therefore, the logits (or spatial_squeeze) layer should be a better choice when
considering the balance between accuracy and speed.

To investigate the performance when using a different CNN model, two Inception models
are evaluated in a similar way. They are Inception_v4 and Inception_ResNet_v2 models pre-
trained on ImageNet. Besides the global_pool layer, the Logits and AuxLogits layers are
also utilized to extract deep features, before being fed into to the linear CR model. A set
of similar results are observed in the experiments, as shown in Fig. 5 (c¢) and (d).

3. resnet_v1.101/logits or resnet_v2_101/logits.
4. resnet_v1_101/spatial_squeeze or resnet_v2_101/spatial_squeeze.
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Table 1: State-of-the-art accuracies on the Fashion-MNIST dataset.

Deep Model (k) Preprocessing Highest Accuracy
CapsNet None 90.6%
VGG16 26M parameters None 93.5%
GoogleNet with cross-entropy loss None 93.7%
MobileNet Yes 95.0%
DenseNet-BC 768K params Yes 95.4%
Dual path wide resnet 28-10 Yes 95.7%
WRN-28-10 + Random Erasing Yes 96.3%
WRN40-4 8.9M params Yes 96.7%
Ours

DeepCWC with Inception_v4 None (global pool) 97.24%
DeepCWC with Inception RN_v2  Yes (global pool) 97.25%
DeepCWC with ResNet_v2_101 Yes (global pool) 97.33%
DeepCWC with ResNet_v1_101 None (global pool) 97.36%
DeepCWC with VGG_19 None (fc6) 97.52%
DeepCWC with VGG_16 None (fc6) 97.66%

« Data claimed in https://github.com/zalandoresearch/fashion-mnist
« CapsNet in https://github.com/naturomics/CapsNet-Tensorflow#results

DeepCWC achieves an accuracy over 97% on deep features obtained from three layers.
The highest result (97.24%) is the one with the largest size (2048) from the global_pool layer.
In this case, the AuzLogits layer, with a smaller size (1001) than global_pool, produced an
approximately equal accuracy of 97.23%. The result from Logits is close to this. In fact,
all of the results in DeepCWC for the three cases are stable and close to each other.

The last set of models are of the VGG implementation. We chose VGG-16 and VGG-19
models, and utilized the feature maps from their fc6, fc7 and fc8 layers. The size of both
fc6 and fc7 is 4096, while the last fc8 layer has a smaller size of 1000. The largest feature
set in this group of experiments produced the most promising classification results. What
is more, the trend is consistent with before. As shown in Fig. 5 (e) and (f), the highest
accuracy is up to 97.66%, using the shallower fc6 layer in VGG-16, which is also the most
promising result we obtained using this dataset and in all cases. The results achieved by
VGG-19 are slightly lower than this, but higher than the other cases. The larger feature
size helps to produce a more accurate classification.

4.4. Comparison to the state-of-the-arts on Fashion-MNIST

The results obtained on the pre-trained models (over 97%) are all state-of-the-art, as shown
in in Tab. 1. According to the description of the current methods, all of them are tuned
and trained on the Fashion-MNIST dataset locally. Also, most of them applied one or
two preprocessing techniques, and used the same deep neutral network architecture, e.g.,
VGG, ResNet, etc. Previously, the most promising accuracy was obtained by the Wide
Residual Networks (WRN) model Zagoruyko and Komodakis (2016), both of which applied
the standard preprocessing (mean/std subtraction/division) and augmentation (random
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Table 2: Classification time and speed on different models.

Model Layer Feature Size Time (sec) Speed (sec/image)
VGG-16 /fc6 4096 16342.347 0.233
VGG-16 /fc8 1000 6826.632 0.098
VGG-19 /fc6 4096 16567.730 0.237
VGG-19 /fc8 1000 6526.632 0.093
Inception_v4 /Logits 1001 7177.612 0.103
Inception_v4 /global_pool 1536 8626.181 0.123
Inception RN_v2  /Logits 1001 6734.609 0.096
Inception RN _v2  /global_pool 1536 7884.362 0.113
ResNet_v1_101 /global_pool 2048 9108.256 0.207
ResNet_v1_101 /logits 1000 7302.812 0.104
ResNet_v2_101 /global_pool 2048 8373.421 0.120
ResNet_v2_101 /logits 1000 7254.657 0.104

crops/horizontal flips). For example, one used the random erasing technique Zhong et al.
(2017) and produced an accuracy of 96.3% °, while the other one with 96.7% accuracy had
8.9 M parameters and utilized freezing layers ©.

Compared to current state-of-the-art methods, the proposed DeepCWC produces a
higher result using multiple CNN models. The classification accuracy ranges from 97.24%
to 97.66%, which are all higher than previous methods. The highest accuracy is generated

on VGG-16 from the fcb6 layer with a size of 4096.

4.5. Discussion

Our experimental machine was configured with the following hardware, including an Intel®
Core™ i7-7820X CPU@3.60GHz x 16, 64 GB RAM, 1.3 TB SSD and one NVIDIA TITAN
Xp GPU. The code was run on TensorFlow 1.6, MATLAB R2016 and Ubuntu 16.04 OS.
The recorded time consumption of each experimental case is shown in Tab. 2.

This time includes the whole training and testing of both the original images and deep
features in CR, but does not count the time for feature extraction by the pre-trained models.
Therefore, the speed (seconds per sample) is calculated by dividing the total time by the size
of dataset (70000). Considering that the running state of the machine may fluctuate, the
speed is between 0.1 - 0.2 seconds per sample. Furthermore, the following can be discussed
about the proposed method.

Linear representation such as CR can improve deep neural networks based
representation learning. Even using a pre-trained model, the proposed DeepCWC
achieved a state-of-the-art classification result on the Fashion-MNIST dataset. The ac-
curacy and performance outperformed current popular methods as well. This gives us a
clue that linear methods have a new way to cooperate with nonlinear models.

The collaborative weight of two diverse representations help produce an
accurate classifier. Currently, more work is focusing on the neural network architecture

5. https://github.com/zhunzhong07/Random-Erasing
6. https://github.com/ajbrock/FreezeOut
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and/or parameter tuning. However, the proposed DeepCWC neither pays much attention
to deep learning model itself, nor tunes any parameters. Fusing multiple representations
creates a robust classifier that works well on multiple deep learning models. The results are
all at a state-of-the-art level.

Multiple layers in a deep CNN model show an effective capacity to extract
discriminative features, including the global average pooling layer Lin et al. (2013) and
the fully connected layer. This is confirmed in the experiments, as shown in Fig. 4.3, and
Tab. 1. However, the size of feature map decides the time consumption.

5. Conclusions

We propose a deep collaborative weight-based classification (DeepCWC) method. It first
performs the linear representation on original images and deep features, extracted from
nonlinear neural networks. Then, both of them collaboratively weight each other to build a
strong discriminative classifier. The method is extensively evaluated using multiple popular
deep CNN models, like ResNet, Inception, and VGG. The experimental results are promising
on more than one layers in these neural networks, with most of the results belonging to a
state-of-the-art level.

The l5-norm based CR model is chosen as the linear constraint in this work to enhance
the classification based on pre-trained CNN models. However, there are still some questions,
for example, whether there are other linear models (like sparse representation, dictionary
learning, etc.), more suitable for the same task, or whether it can bring one more step
of break-through when applied on locally trained and tuned CNN models. We will keep
working on these open topics in the future.
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