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Abstract

In the past few years, person re-identification (reID) has developed rapidly due to the
success of deep convolutional neural networks. The softmax loss function is an important
component for learning discriminative features. However, the classifier trained by the soft-
max loss is difficult to distinguish the hard samples. In this work, we introduce a new
auxiliary loss function, called batch-contrastive loss, for person relD to further separate
the features of different identities and pulls the features of same identity closer. Further-
more, the proposed loss function does not rely on the pairwise or triplet sampling which is
commonly used in the Siamese model. We test our loss function on two large-scale person
reID benchmarks, Market-1501 and DukeMTMC datasets. Under the combination of the
batch-contrastive loss and the softmax loss, even only employing the generic L2-distance
metric, we can achieve competitive results among the state-of-the-arts.

Keywords: Person re-identification, contrastive loss, softmax loss.

1. Introduction

Given an image/video of a person, re-identification (reID) is the process of identifying
the same identity taken from non-overlapping cameras. A powerful person re-identification
system is useful in some practical applications such as object tracking and video surveillance.
However, person relD is affected by reality situation. The system performance degrades due
to illumination, pose variations, occlusions and poor quality of the images. In a real video
surveillance system, it is hard for cameras to capture human faces clearly. Therefore, person
descriptor is usually based on the whole body.

Since the training identities are different from the test identities, we usually first train a
person relD model using the training data. Then, we extract the features of the test images
using the trained model. Finally, we calculate the similarity between the query images and
the gallery images, and obtain the final ranking. We define people with same identity as
positive samples and people with different identities as negative samples. Theoretically, the
features of positive samples should be close and features of different identities should be
separated from each other. Traditional methods mainly use hand-crafted feature such as
color and texture. However, models based on these features are not robust when different
people have similar appearances or the same person has different poses. In recent years, deep
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Figure 1: Distance between features under the softmax loss and the batch-contrastive loss.
The blue (green) dots represent the intra-class (average inter-class) distance, the
orange dots denote the minimum inter-class distance.

convolutional neural networks (CNN) have achieved great success in many computer vision
fields. The person descriptor learned by the softmax loss function demonstrates strong
semantic. Therefore, the classification models Xiao et al. (2016); Wu et al. (2016); Zheng
et al. (2016b); Lin et al. (2017); Liu et al. (2016) are widely used to learn discriminative
feature for person relD. However, a major drawback of the identification model is the
shortage of training data. Besides, identification model does not account for the similarity
learning between image pairs. Therefore, it is hard for the single softmax loss function to
cluster the hard positive samples and separate hard negative pairs.

In order to further explore the effect of identification model in person relD, we conduct a
tiny experiment to observe the intra-class distance and inter-class distance of person features
under individual softmax loss. We test the experiment on the Market-1501 Zheng et al.
(2016a) dataset. The network structure and parameter settings is the same as the baseline
in section 3.3. Because the input images in a batch are randomly selected, calculating the
intra-class distance in every iteration is ineffective. In the training phase, we choose the
the batch that includes positive pairs. Then we calculate the intra-class distance and all
inter-class distance in the batch. This practice roughly reflects distance relation between
the features. Under the supervision of individual softmax loss function, we plot the intra-
class distance, the minimum inter-class distance and the average inter-class distance as
shown in Fig.1(a). From the green dots and blue dots, the intra-class distance is obviously
smaller than the average inter-class distance, which demonstrates the effective of softmax
loss function. However, from the intersection between orange dots and blue dots, there are
still some hard negative pairs closer than the intra-class distance. Considering that the
minimum inter-class distance is only chosen in a batch, there are more hard negative pairs
when extending to all training samples. Therefore, the individual softmax loss function
can roughly separate from different classes, but it is difficult to distinguish hard inter-class
examples.
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To alleviate this problem, metric learning is introduced to enhance the discrimination
of person descriptor. The Siamese network consists of two/three similar networks that
are supervised by the contrastive/triple distance loss Yi et al. (2014); McLaughlin et al.
(2017); Ding et al. (2015); Cheng et al. (2016); Zheng et al. (2016b). The two losses are
proved to contribute to the discrimination by pulling the features of the same identity close
and pushing the features of different identities far away from each other. In Zheng et al.
(2016b), an identification model and a verification model are combined. The identification
model makes the features from different classes separable. The verification model forces
the features of the same identity closer and the features of different identities far apart.
The triple loss Wang et al. (2016) makes the distance of a positive pair smaller than that
of a negative pair by a suitable margin. However, both pairwise and triplet samples grow
explosively as the training data increases. It is hard for the Siamese network to achieve
optimal because it only uses weak labels (same or different) and does not take all the
annotated information into consideration. Besides, it takes more time and requires more
memory due to the shared branches in the training phase. Some works Ding et al. (2015);
Shi et al. (2016) investigate how to sample the hard triplets and pairs. In Lin et al. (2017);
McLaughlin et al. (2017), auxiliary attribute classification tasks are utilized to enhance the
discrimination of features. However, manual attribute labelling usually costs a lot and some
person relD datasets do not possess attribute labels.

In this paper, we design a new loss function that aims to further reduce the distance of
intra-class features while enlarging the distance of the inter-class features. Note that the
proposed loss function is based on a batch and does not require to sample the image pairs
or triplets as the network input. In a randomly sampled batch, almost all image pairs in
the batch are negative samples, so we utilize the negative pairs to increase the inter-class
distance. However, there are few positive samples to penalize the intra-class loss due to the
random sampling. To address this problem, we introduce the center loss Wen et al. (2016) to
balance the inter-class distance loss. The center loss is firstly proposed in face recognition.
It learns a center for each class and at the same time forces the feature within the same class
close to the center. As a result, the features of the same identity indirectly approach to each
other. Individual center loss only focus on the intra-class distance and does not consider
the inter-class distance. Therefore, we incorporate the center loss into the contrastive loss.
The proposed loss function is based on a batch, so we call it batch-contrastive loss.

The main contributions of this paper are three folds: 1) We propose a new loss function
that enforces the features of the same identity into a cluster while separating the inter-class
features from each other. Different from the Siamese network, our loss function is based on a
batch so that we do not need to sample image pairs or triplets as the network input; 2) The
proposed batch-contrastive loss make full use of the image pairs in every batch. Besides, it
has a hard pairs mining process; 3) With the joint supervision of the softmax loss and the
batch-contrastive loss, we achieve competitive results on two large public Re-ID datasets,
Market-1501 Zheng et al. (2016a) and DukeMTMC-reID Zheng et al. (2017a).

2. Proposed method

In this section, we first describe the network architecture and the softmax loss in details
and then elaborate the proposed batch-contrastive loss.
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Figure 2: The architecture of our network.

2.1. Network Architecture

The network architecture is depicted in Fig.2. In the dotted box, it consists of the layers
from convl to pool5 of ResNet50 He et al. (2016). After the pool5, we add a dropout
layer to avoid overfitting. The fully-connected(FC) layer has n neurons, where n is the
number of identities in the training set. Our network is simultaneously supervised by the
softmax and the batch-contrastive (B-C) loss. Furthermore, we insert a normalization layer
before the batch-contrastive loss for two benefits. On the one hand, the cosine distance is
usually superior to the Euclidean distance in similarity metric, and when the vector is L2-
normalized, the batch-contrastive loss calculates the Euclidean distance that is equivalent
to the cosine distance. On the other hand, after L2-normalization, the inter-class distance
is limited to a small value of 1, which avoids the enormous contrastive loss resulted from
random initialization overwhelming the effect of the softmax loss.

In the case of data shortage, the dropout Srivastava et al. (2014) plays an important role
in alleviating overfitting, typically working on FC layer. It randomly discards the neural
units to enhance sparsity of the network. We utilize the dropout strategy on pool5 layer
because the feature map (1x1) of pool5 is similar to the unit of FC layer, which makes the
discard work on the channel.

2.2. Loss Function

Softmax loss. The softmax loss function is commonly adopted for classification task in
the convolutional neural network Krizhevsky et al. (2012); Simonyan and Zisserman (2014);
Szegedy et al. (2014); He et al. (2016). Given a batch training data of m images, the
predicted probability o(z) = (01(2),...,0,(2)) for each sample is calculated as below:

() = exp(z;)
I Y] .

In Eq.1, z; = WiTx + b; is the linear predicted result of the ith class, where x is the dropout
vector extracted from the dropout layer, and W; and b; are the parameters in FC layer. The
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purpose of the softmax loss is to maximize the value of o,,, which is based on the principle
of maximum likelihood, therefore the cross entropy loss function is formulated as:

L=~ log(oy,(2)) 2)
=1

Batch-contrastive loss. In a batch of m images, there are a total of % xmx (m—1) image
pairs. However, most pairs are easily distinguished by the softmax loss function as shown in
Figure.1(a). It makes no sense to further increase the distance of these easy negative pairs.
Therefore, for each data, we calculate all inter-class distance in the batch, and then choose
the minimal distance to create the hard negative pairs. This is a hard negative mining
process. The hard negative pairs is better to reflect the difference between samples. In
addition, a few positive pairs appear in some batches. We directly penalize the intra-class
distance to further pull the feature of positive pairs close. The batch-based contrastive loss
function is formulated as below:

1 [ ’
Lo=5 3 [ D2 (0 = i) lls = 2;113) + max (077 ~jmin I - %'”3> -0
i=1 \j=1 o

In Eq.3, x represents the feature in pool5 and y is the label (ID) where the index i, j
denotes the ith and the jth image in the batch, respectively. ||-|3 denotes the Euclidean
distance. 0 is the indicator function, that is d(-) = 1 if the condition in the brackets is true,
and otherwise 0(-) = 0. 7 represents the margin controlling the minimum hard negative
distance. When inter-class distance is larger than 7, the inter-class loss is set to 0. Eq.3
takes all image pairs into consideration. The first part penalizes the intra-class distance
loss, and the second part denotes the inter-distance loss. However, there are only few even
no positive pairs in every batch due to the random sampling, which results in the intra-class
loss getting overwhelmed by the inter-class loss significantly. In order to balance the two
mutually exclusive distance losses, we naturally introduce center loss to further reduce the
intra-class distance.

The center loss Wen et al. (2016) aims to minimize the distance between the features
and their centers. It can be formulated as below:

L= S e 2 (4)
c 2'1 7 yillo
1=

In Eq.4, ¢y, represents the center of class y;. Ideally, in each iteration, we should calculate
the new center c,, using all training samples with the label y;, as the update of weights
results in the distribution of features changing. However, computing all new centers will
lead to enormous computation, which is considerably inefficient.

The network updates weights based on the batch data. In this case, we use a small
number of samples to approximate the center. The centers ¢, are learned according to the
samples within the mini-batch as follows:

Ae, — 2im1 0y = J) - (¢j — i)
’ 1"'2?;15(%:]') ’

()
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Cjnew - cjold + 77ch’ (6)
where 7 denotes the learning rate of centers.

Finally, we combine the batch-based contrastive loss with the center loss to enhance the
discrimination. The batch-contrastive loss is finally given in Eq.7.

Lp_oc=Ly+ L. (7)

In the process of backward propagation, according to the batch-contrastive loss function,
the gradients of Lp_¢ with respect to x; is calculate as below:

OLp-c 0L, 0L
8$i N (‘)xl + 8:1;1
m (8)
= (6(yi = yj) (@i — 27)) — (@i — Tmin,) + i —

In Eq.8, the hard negative sample Ty, satisfies ||z — Tmin,ll2 < 7 and ||x; — Tmin, |2 <
|z; — ;]2 for all j with y; # y;.

By jointly using the batch-contrastive loss and softmax loss, the final loss function is
given as follows:

L=Ls+ g . 9)

In Eq.9, the parameter A is to make tradeoff between the softmax loss and batch-contrastive
loss. To learn the discriminative pedestrian descriptor, the parameters updating algorithm
is formulated as below.

Algorithm 1 The network updating algorithm.
Input:

The randomly selected images in current batch;

The parameters in the backbone network W;

The center in the batch-contrastive loss, c;

The learning rate 7, loss weight A and the initial ¢ = 0.
Output:

The updated parameters, W.

1: while iteration < max_iteration do

2: t+—t+1

3:  Compute the forward propagation loss, L.

4:  Compute the backward propagation gradient, g—g = %ﬁ% + A (g—g’ + gﬁf)
5. Compute the new centers cpew = Coig + 1+ Ac

6:  Compute the new parameters Wi, = Woa + 1 - g—g . 832m

7: end while

3. Experiments

Since the auxiliary batch-contrastive loss is based on intra-class distance and inter-class
distance, we mainly verify the proposed method on two large-scale person RelD datasets
Market-1501 and DukeMTMC-relD, which contain multiple samples for each identity.
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3.1. Datasets

Market-1501 consists of 32,668 annotated bounding boxes with a total of 1,501 identities,
captured by 6 cameras from different view points. The images are detected by Deformable
Part Model (DPM). Each identity appears in at least two cameras, which ensures the cross-
camera match can be conducted. Following the setting in Zheng et al. (2016a), all the
annotated bounding boxes are divided into 12,936 training data with 751 identities and
19,732 test data with 750 identities. In testing set, for each identity, it randomly picks an
image in each camera, so that a total of 3,368 images are used as probe. In the gallery set,
it contains“good” images, “junk” images that have no influence to the RelD accuracy, and
“distractor” of false alarms.

DukeMTMC-relID is a subset of the DukeMTMC Ristani et al. (2016), recently re-
ported by Zheng et al. (2017a). It contains 36,411 bounding boxes, cropped from videos
every 120 frames. There are a total of 1,812 identities that are divided into 702 identities
for training, 702 identities for testing, and 408 identities as “distractor”. In the training
set, the number of images for each identity is around 10 to 30. But several identities still
contain hundreds of images. In the test set, it randomly selects an image for each identity in
each camera as Market-1501 does. As a result, the dataset has 16,522 images for training,
2,228 query images and 17,661 gallery images for testing.

3.2. Implementation

Training. We perform our experiments on the deep learning framework Caffe Jia et al.
(2014). The ResNet50 is pre-trained with the ImageNet Krizhevsky et al. (2012). We fine-
tune the ResNet50 model using stochastic gradient descent(SGD). Different from conven-
tional input size of 224x224, it is more suitable to resize the pedestrian image to 256 x128.
In fact, this transformation subtly improves the performance. We use a small batch size of
16 because the larger batch size is prone to fall in local optimum. The initial learning rate
is set to 0.01 and then dropped by 10 times every 20K iterations. The model is trained
up to 50K iterations until convergence. The parameter \ is used to balance the two loss
function. we randomly choose 100 images from training data to verify the the performance
of different values. When A = 10, the batch-contrastive loss quickly converges to a small
value. However, the performance decreases due to excessive weight. And when A is less
than 0.1, it only results in small improvement. Therefore, we set A = 1 in the final loss
function. We choose a very high dropout rate of 0.9 for our model.

Testing. In the test stage, for each image in the probe and the gallery, the model ex-
tracts 2048-dimensional feature from pool5. After L2-normalization, we use the normalized
feature as the pedestrian descriptor. For each query image, we calculate the distance be-
tween the query image and all gallery images using Euclidean distance metric. Then we
rank the distance to obtain the final result. For the evaluation protocols, we choose the
widely adopted Cumulative Matching Characteristic (CMC) curve and the mean average
precision(mAP) Zheng et al. (2016a), which measure the precision and recall, respectively.
The public evaluation code is available in Zheng et al. (2016a, 2017a).
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Table 1: Results on Market-1501. “-” denotes the results are not reported. “SQ” represents
single-query.

Method(SQ) rank-1 rank-5 rank-10 mAP
SpindleNet Zhao et al. (2017) 76.90 91.50  94.60 -
GAN Zheng et al. (2017a) 78.06 - - 56.23
SVDNet Sun et al. (2017) 82.3 - - 62.1
PDC Su et al. (2017) 84.14 9273 94.92  63.41
APR Lin et al. (2017) 84.29 9320  95.19  64.67
JLML Li et al. (2017) 85.1 ; ; 65.5
Verif + Identif Zheng et al. (2016b) | 79.51  90.91 94.09 59.87
TriNet Hermans et al. (2017) 84.92  94.21 - 69.14
Baseline 83.34 93.79 9593  63.20
Ours 86.40 94.45 96.48 67.64

3.3. Baseline

In order to verify the contribution of the batch-contrastive loss, we build a baseline with
the individual softmax loss. We fine-tune the ResNet50 on the two RelD datasets. The
parameters setting is the same as that in section 3.2.

3.4. Performance on Market-1501 and DukeMTMC-relD

We compare the results of our method with several other algorithms on the two datasets.
There are two settings for evaluation: single-query and multi-query. The single-query only
uses the feature of one query image, while the multi-query utilizes the feature mean of
multiple query images of the same identity from the same camera. The multi-query usually
achieve a better result because intra-class variation is taken into account. In this paper, we
only show the single-query result. We repeat the experiment 5 times, and use the average
performance as the final result.

Results on market-1501. Asshown in Table 1, we compare our method with the base-
line and 8 existing models. We achieve the competitive results of rank-1 = 86.40%, rank-5 =
94.45%, rank-10 = 96.48% and mAP = 67.64%. Compared with the baseline that uses only
softmax loss, our method outperforms the baseline by 3.06% in rank-1 accuracy and 4.44%
in mAP, which demonstrates the effectiveness of the proposed loss function. In the Siamese
network, the verification loss Zheng et al. (2016b) achieve rank-1 79.51% and the triplet loss
Hermans et al. (2017) obtains the result of rank-1 84.92%. However, both methods need to
carefully sample the image pairs or triplets. It should also be noted that our method also
outperforms the Siamese network in rank-1 accuracy. Result on DukeMTMC-relD. In
Table 2, we report the rank-1 accuracy and mAP on the DukeMTMC-relD dataset because
most methods only shows the rank-1 accuracy and mAP. Our model achieves 78.19% in
rank-1 accuracy and 58.64% in mAP, which is superior to other current algorithm. Com-
pared with the of result APR Lin et al. (2017) and ACRN Schumann and Stiefelhagen
(2017) that use extra attribute information to enhance the discrimination of feature, our
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Table 2: Results on DukeMTMC-relD.

Method(SQ) Rank-1 mAP

Verif + Identif Zheng et al. (2016b) 68.90  49.30
APR Lin et al. (2017) 70.60  51.88

PAN Zheng et al. (2017b) 7159 51.51

ACRN Schumann and Stiefelhagen (2017) | 72.58  51.96
FMN Ding et al. (2017) 7451 56.88

SVDNet Sun et al. (2017) 76.70  56.80
Baseline 73.31  53.25

Ours 78.19 58.64

model gain an increase of about 5.61% in rank-1 accuracy and 6.68% in mAP. Compared
with the baseline, the auxiliary batch-contrastive loss leads to the improvement of 4.88%
in rank-1 accuracy and 5.39% in mAP, which further verifies the efficiency of the proposed
method. To shed light on effect of the proposed loss function, we repeat the tiny experiment
in the introduction under the joint training. We plot the results in Fig.1(b). Compared with
Fig.1(a) that use individual softmax loss, although there are a few blue dots still mixed in
orange dots, it is obvious that most orange points is gradually separated from blue points.
That demonstrates that the intra-class distance is less than the minimum inter-class dis-
tance. This transformation further indicates that our batch-contrastive loss function indeed
separates the hard negative pairs far apart.

4. Conclusion

In this paper, we proposed an efficient loss function to enhance the discrimination of pedes-
trian feature in person re-identification. The auxiliary batch-contrastive loss function com-
putes the center distance loss, while penalizing the distance of the hard negative pairs. An
advantage of our method is that we do not need to sample the image pairs. Besides, the
proposed loss function has a process of hard samples mining. Finally, we report the perfor-
mance on two large-scale person re-identification datasets, which proves the effectiveness of
the batch-contrastive loss.
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