
Proceedings of Machine Learning Research 96:1–21, 2018. 1st Symposium on Advances in Approximate Bayesian Inference

Likelihood-free inference with emulator networks

Jan-Matthis Lueckmann1,2 jan-matthis.lueckmann@caesar.de
Giacomo Bassetto1,2 giacomo.bassetto@caesar.de
Theofanis Karaletsos3 theofanis@uber.com
Jakob H. Macke1,2,4 macke@tum.de

Abstract
Approximate Bayesian Computation (ABC) provides methods for Bayesian inference in
simulation-based models which do not permit tractable likelihoods. We present a new ABC
method which uses probabilistic neural emulator networks to learn synthetic likelihoods
on simulated data – both ‘local’ emulators which approximate the likelihood for specific
observed data, as well as ‘global’ ones which are applicable to a range of data. Simulations
are chosen adaptively using an acquisition function which takes into account uncertainty
about either the posterior distribution of interest, or the parameters of the emulator. Our
approach does not rely on user-defined rejection thresholds or distance functions. We
illustrate inference with emulator networks on synthetic examples and on a biophysical
neuron model, and show that emulators allow accurate and efficient inference even on
problems which are challenging for conventional ABC approaches.

1. Introduction

Many areas of science and engineering make extensive use of complex, stochastic, numerical
simulations to describe the structure and dynamics of the processes being investigated
(Karabatsos and Leisen, 2017). A key challenge in simulation-based science is linking
simulation models to empirical data: Bayesian inference provides a general and powerful
framework for identifying the set of parameters which are consistent both with empirical
data and prior knowledge. One of the key quantities required for statistical inference, the
likelihood of observed data given parameters, L(θ) = p(xo|θ), is typically intractable for
simulation-based models, rendering conventional statistical approaches inapplicable.

Approximate Bayesian Computation (ABC) aims to close this gap (Beaumont et al.,
2002), but classical algorithms (Pritchard et al., 1999; Marjoram et al., 2003) scale poorly to
high-dimensional non-Gaussian data, and require ad-hoc choices (i.e., rejection thresholds,
distance functions and summary statistics) which can significantly affect both computational
efficiency and accuracy. In synthetic likelihood approaches to ABC (Wood, 2010; Ong et al.,
2016; Price et al., 2018), one instead uses density estimation to approximate the likelihood
p(s(xo)|θ) on summary statistics s(·) of simulated data. A recent proposal by Järvenpää et al.
(2017), Gutmann and Corander (2016) uses a Gaussian process (GP) to approximate the

1. Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical Univer-
sity of Munich, Germany

2. Neural Systems Analysis, Research Center caesar, an associate of the Max Planck Society, Bonn, Germany
3. Uber AI Labs, Uber Technologies, Inc., San Francisco, CA
4. Part of this work was done while J.H.M was at the Centre for Cognitive Science, Technische Universität

Darmstadt, Germany

c© 2018. J.-M. Lueckmann, G. Bassetto, T. Karaletsos & J.H. Macke.



Likelihood-free inference with emulator networks

Figure 1: Likelihood-free inference with emulator networks. Our goal is to perform
approximate Bayesian inference on simulator-models, i.e. models from which we
can generate samples, but for which we can not evaluate likelihoods. We learn
a tractable probabilistic emulator q(x j� ; � ) approximating the simulator p(x j� ).
The emulator then serves as a synthetic likelihood to obtain an approximate
posterior. To train the emulator using a low number of simulations, we use active
learning to select informative samples: The acquisition rule is either based on the
current posterior estimate (if observed dataxo is given, `local' learning), or on our
uncertainty about the weights of the emulator network (`global' learning).

distribution of the discrepancy d(s(x); s(xo)) as a function of � , and Bayesian Optimization
to propose new parameters. While this approach can be very e�ective even with a small
number of simulations, it still requires summary statistics, choice of a distance functiond(�; �),
and relies on assuming a homoscedasticGP.

The goal of this paper is to scale synthetic-likelihood methods to multivariate and
(potentially) non-Gaussian, heteroscedastic data. We use neural-network based conditional
density estimators (which we call `emulator networks', inspired by classical work on emulation
methods; Kennedy and O'Hagan, 2002), to develop likelihood-free inference algorithms which
are e�cient, �exible, and scale to high-dimensional observations. Our approach does not
require the user to specify rejection thresholds or distance functions, or to restrict oneself to
a small number of summary statistics.

2. Likelihood-free inference with emulator networks

Our goal is to obtain an approximation to the true posterior p(� jxo) of a black-box simulator
model, i.e. models from which we can generate samplesx � p(x j� ), but for which we cannot
evaluate likelihoodsL (� ). To solve this task, we learn a synthetic likelihood functionL̂ (� ) by
training a conditional density estimator on simulated data. We actively propose parameters
for simulations, since simulations are often the dominant cost in ABC: Therefore, we want to
keep the number of calls to the simulator as low as possible (Fig. 1).

Core to our approach is an emulatorq(x j� ; � ), a conditional density estimator with
parameters� that approximates the simulator p(x j� ). Having collected an initial simulated
dataset D, e.g. by repeatedly drawing from the priorp(� ) and simulating data, the emulator
is trained. We actively select new locations� � for which to simulate new data points
D � = f (� � ; x � )g to keep the number of calls to the (potentially computationally expensive)
simulator low. D � is appended to the dataset, the emulator is updated, and the active learning
loop repeats. The emulator de�nes a synthetic likelihood functionL̂ (� ) = q(x = xoj� ; � )

2



Likelihood-free inference with emulator networks

that we use to �nd an approximate posterior, which is proportional to ~p(� jxo) := L̂ (� )p(� ).
This approach is summarized in Appendix A in form of an algorithm.

Thus, our approach requires (1) an emulator, i.e., a �exible conditional density estimator,
(2) an approach for learning the emulator on simulated data and expressing our uncertainty
about its parameters, (3) an acquisition rule for proposing new sampling locations, and (4)
an inference procedure for obtaining the posterior distribution from the synthetic likelihood
and the prior. We will describe these steps in the following.

2.1. Choice of emulator

We use neural network based emulatorsq(x j� ; � ): parameters � are given as inputs to
the network, and the network is trained to approximate p(x j� ). In contrast to traditional
synthetic likelihood approaches (Wood, 2010), we are not restricted to using a (multivariate)
normal distribution to approximate the conditional density p(x j� ). The output form of
the emulator is chosen according to our knowledge regarding the conditional density of the
simulator. In our second example application, we e.g. modelx j� as a binomial distribution
over 8-bit integer pixel values, and in the third example we model a categorical distribution. If
the noise model of the simulation process is unknown, �exible conditional density estimators
such as conditional autoregressive models (Oord et al., 2016; Papamakarios et al., 2018) can
be readily used in our approach.

2.2. Inference on the parameters of the emulator

We use probabilistic neural networks, i.e. we represent uncertainty about the parameters
� of the emulator q(x j� ; � ). We then use these uncertainties to guide the acquisition of
training data for the emulator using active learning (as discussed in the next section).

In the Bayesian framework, uncertainty is represented through the posterior distribution.
Multiple approaches for estimating the posterior distributions over neural network parameters
have been proposed, including MCMC methods to draw samples from the full posterior
(Welling and Teh, 2011; Chen et al., 2014) and variational methods, e.g. using factorising
posteriors (Blundell et al., 2015) or normalizing �ows (Louizos and Welling, 2017). Finally,
deep ensemble approaches (Lakshminarayanan et al., 2017) represent predictive distributions
through ensembles of networks. They have the advantage of not requiring the choice of a
functional form of the approximation, and are simple to set up.

Our approach can be applied with any method that represents uncertainty over network
parameters. In our experiments, we use deep ensembles to represent uncertainty about� , as
we found them to combine simplicity with good empirical performance. Instead of training
a single emulator network and inferring its posterior distribution, we train an ensemble
of M networks with parameters f � m gM

m=1 . From here on, we treat � m as if they were
samples fromp(� jD ), the posterior over network parameters given data. (In practice, these
samples will describe local maxima of the posterior.) The posterior-predictive distribution is
approximated by E� jD

�
q(x j� ; � )

�
� 1

M

P M
m=1 q(x j� ; � m ).

Networks are trained supervised with dataD =
�

(� n ; xn )
	 N

n=1 . During training, the

parameters of the networks are optimized subject to the loss�
P M

m=1
P N

n=1 logq(xn j� n ; � m )
w.r.t. � (a proper scoring rule as discussed in Lakshminarayanan et al., 2017). Networks in
the ensemble are initialized di�erently, and data points are randomly shu�ed during training.

3



Likelihood-free inference with emulator networks

2.3. Acquisition rules

We use active learning to selectively acquire new samples. We distinguish between two
scenarios: In the �rst, we have particular observed dataxo available, and train a local
emulator which approximates the likelihood nearxo. This approach requires learning a new
emulator for each new observed dataxo.

We also consider a second scenario, in which we learn aglobal emulator � which approxi-
mates p(x j� ) globally. Learning a global emulator is more challenging and may potentially
require more �exible density estimators. However, once the emulator is learned, we can
readily approximate the likelihood for any xo, therefore amortizing the cost of learning the
emulator.

The two scenarios call for di�erent acquisition functions for proposing new samples, which
we will discuss next.

2.3.1. Acquisitions for local emulator learning

With given xo, we want to learn a local emulator that allows us to derive a good approximation
to the (unnormalized) posterior ~p(� jxo) / E� jD

�
q(x = xoj� ; � )

�
p(� ).

As we are interested in increasing our certainty about the posterior, we target its variance,
V � jD [~p(� jxo; � )], whereV � jD denotes that we take the variance with respect to the posterior
over network weights given dataD. Thus, we use an acquisition rule which targets the region
of maximum variance in the predicted (unnormalized) posterior,

� � = arg max
�

V � jD [~p(� jxo; � )] = arg max
�

logp(� ) + log
q

V � jD [L̂ (� )]: (1)

We approximate V � jD with the sample variance across� m drawn from the posterior over
networks. We refer to this rule as theMaxVar rule (Järvenpää et al., 2017). We optimize
this acquisition rule by using gradient descent, making use of automatic di�erentiation to
take gradients with respect to � through the synthetic likelihood speci�ed by the emulator.

2.3.2. Acquisitions for global emulator learning

A global emulator may be used to do inference oncexo becomes available. Here, the goal
for active learning is to bring the emulator q(x j� ; � ) close to the simulatorp(x j� ) for all � s
using as few runs of the simulator as possible. We use a rule based on information theory
from the active learning literature (Houlsby et al., 2011; Gal et al., 2017; Depeweg et al.,
2017). We refer to the rule

� � = arg max
�

I [x ; � j� ; D] = arg max
�

H[xj� ; D] � E� jD
�
H[x j� ; � ]

�
(2)

as the maximum mutual information rule (MaxMI ). See Appendix B for details.

2.4. Deriving the posterior distribution from the emulator

Once we have learned the emulator, we use Hamiltonian Monte Carlo (HMC, Neal, 2010) to
draw samples from our approximate posterior, using the emulator-based synthetic likelihood.
We generate samples of� drawn from the distribution ~p(� jxo) = E� jD

�
q(xoj� )

�
p(� ). In

practice, we sample� from each ensemble member individually and use the union of all

4



Likelihood-free inference with emulator networks

Figure 2: Inference on simulator with Gaussian noise . a. Data is generated from
x � N (x jf (� ); � ) with cubic non-linearity. We illustrate posterior inference p(� jxo)
given xo = 2 (red line at xo). b. In 1-D, emulator-based inference withMaxVar
acquisitions leads to faster convergence to true posterior than uniform sampling, or
BOLFI. Total variation (TV) is measured between true and approximate posteriors.
100 acquisitions starting from N initial = 10 initial points. Lines are means and
SEMs from 20 runs. c. Same problem, butx and � 2 R2, non-linearity applied
point-wise, starting from N initial = 25 points.

samples as a draw from the approximate posterior. We could also obtain the posterior
through variational inference, but here prefer to retain full �exibility in the shape of the
inferred posterior.

3. Results

We demonstrate likelihood-free inference with emulator networks on three examples: i) we
show that emulators are competitive with state-of-the-art on an example with Gaussian
observations; ii) we demonstrate the ability of emulators to work with high-dimensional
observations while learning to amortize the simulator; iii) we show an application from
neuroscience, and infer the posterior over parameters of a biophysical neuron model.

i) Low-dimensional example: Simulator with Gaussian observations

We �rst demonstrate emulator networks on a non-linear model between parameters and
data, corrupted by additive Gaussian observation noise: data is generated according to
x i � N (�j f (� ); � ), i = 1 : : : n, where f (� ) is cubic in � , � is �xed, and � is distributed
uniformly (see Appendix D for complete speci�cation). The goal is to approximate the
posterior p(� j �xo) from a small number of draws from the generative model (Fig. 2a). We
parameterize q(x j� ; � ) using a Gaussian distribution whose mean and precision are the
output of a neural network with one hidden layer consisting of 10tanh units.

We will compare our method to BOLFI (Bayesian Optimization for Likelihood-free
Inference, Gutmann and Corander, 2016), an ABC method which � given a user-speci�ed
discrepancy measure � learns aGP that models the distribution of discrepancies between
summary statistics of x and xo. Järvenpää et al. (2017) proposed multiple acquisition rules
for BOLFI. The most principled (but also most costly) rule minimizes the expected integrated
variance (ExpIntVar ) of the approximate posterior after acquiring new data. BOLFI is a
state-of-the-art method for simulation-e�cient likelihood-free inference, and substantially

5




	Introduction
	Likelihood-free inference with emulator networks
	Choice of emulator
	Inference on the parameters of the emulator
	Acquisition rules
	Acquisitions for local emulator learning
	Acquisitions for global emulator learning

	Deriving the posterior distribution from the emulator

	Results
	Discussion
	
	Acquisition rule for global emulator learning
	Additional related work
	Gaussian simulator example
	Model
	Evaluation
	Network architecture and training
	BOLFI

	Image example
	Model
	Evaluation
	Network architecture and training

	Hodgkin-Huxley example
	Model
	Evaluation
	Network architecture and training

	BOLFI convergence
	Posteriors and samples for image example
	MaxMI acquisition for Hodgkin-Huxley model

