
Communication Constraints and Shared Randomness

A. From uniformity to parameterized identity
testing

In this appendix, we explain how the existence of any dis-
tributed protocol for uniformity testing implies the existence
of one for identity testing with roughly the same parameters,
and further even implies one for identity testing in the mas-
sively parameterized sense6 (“instance-optimal” in the vo-
cabulary of Valiant and Valiant, who introduced it (Valiant &
Valiant, 2017)). These two results will be seen as a straight-
forward consequence of (Goldreich, 2016), which estab-
lishes the former reduction in the standard non-distributed
setting; and of (Blais et al., 2017), which implies that mas-
sively parameterized identity testing reduces to “worst-case”
identity testing. Specifically, we show the following:

Proposition A.1. Suppose that there exists an `-bit protocol
π for testing uniformity of k-ary distributions, with number
of players n(k, `, ε) and failure probability 1/3. Then there
exists an `-bit protocol π′ for testing identity against a fixed
k-ary distribution q (known to all players), with number of
players n(5k, `, 1625ε) and failure probability 1/3.

Furthermore, this reduction preserves the setting of random-
ness (i.e., private-coin protocols are mapped to private-coin
protocols).

Proof. We rely on the result of Goldreich (Goldreich, 2016),
which describes a randomized mapping Fq : ∆[k] → ∆[5k]

such that Fq(q) = u[5k] and dTV

(
Fq(p),u[5k]

)
> 16

25ε
for any p ∈ ∆[k] ε-far from q.7 In more detail, this map-
ping proceeds in two stages: the first allows one to assume,
at essentially no cost, that the reference distribution q is
“grained,” i.e., such that all probabilities q(i) are a multiple
of 1/m for some m = O(k). Then, the second mapping
transforms a given m-grained distribution to the uniform
distribution on an alphabet of slightly larger cardinality. The
resulting Fq is the composition of these two mappings.

Moreover, a crucial property of Fq is that, given the knowl-
edge of q, a sample from Fq(p) can be efficiently simulated
from a sample from p; this implies the proposition.

Remark A.2. The result above crucially assumes that every
player has explicit knowledge of the reference distribution q

6Massively parameterized setting, a terminology borrowed
from property testing, refers here to the fact that the sample com-
plexity depends not only on a single parameter k but a k-ary
distribution q.

7In (Goldreich, 2016), Goldreich exhibits a randomized map-
ping that converts the problem from testing identity over do-
main of size k with proximity parameter ε to testing uniformity
over a domain of size k′ := k/α2 with proximity parameter
ε′ := (1− α)2ε, for every fixed choice of α ∈ (0, 1). This map-
ping further preserves the success probability of the tester. Since
the resulting uniformity testing problem has sample complexity
Θ
(√

k′/ε′
2
)

, the blowup factor 1/(α(1− α)4) is minimized by

α = 1/5.

to be tested against, as this knowledge is necessary for them
to simulate a sample from Fq(p) given their sample from
the unknown p. If only the referee R is assumed to know
q, then the above reduction does not go through, although
one can still rely on any testing scheme based on distributed
simulation.

The previous reduction enables a distributed test for any
identity testing problem using at most, roughly, as many
players as that required for distributed uniformity testing.
However, we can expect to use fewer players for specific dis-
tributions. Indeed, in the standard, non-distributed setting,
Valiant and Valiant in (Valiant & Valiant, 2017) introduced
a refined analysis termed the instance-optimal setting and
showed that the sample complexity of testing identity to q is
essentially captured by the 2/3-quasinorm of a sub-function
of q obtained as follows: Assuming without loss of general-
ity q1 ≥ q2 ≥ . . .qk ≥ 0, let t ∈ [k] be the largest integer
that

∑k
i=t+1 qi ≥ ε, and let qε = (q2, . . . ,qt) (i.e., remov-

ing the largest element and the “tail” of q). The main result
in (Valiant & Valiant, 2017) shows that the sample com-
plexity of testing identity to q is upper and lower bounded
by max(‖qε/16‖2/3/ε2, 1/ε) and max(‖qε‖2/3/ε2, 1/ε),
respectively.

However, it is not clear if the aforementioned reduction
between identity and uniformity of Goldreich preserves
this parameterization of sample complexity for identity test-
ing; in particular, the 2/3-quasinorm characterization does
not seem to be amenable to the same type of analysis as
that underlying Proposition A.1. Interestingly, a different
instance-optimal characterization due to Blais, Canonne,
and Gur (Blais et al., 2017) admits such a reduction, en-
abling us to obtain the analogue of Proposition A.1 for this
massively parameterized setting.

To state the result as parameterized by q (instead of k), we
will need the following definition of Φ(p, γ); see Section 6
of (Blais et al., 2017) for a discussion on basic properties of
Φ(p, γ) and how it relates to notions such as the sparsity of
p and the functional ‖p−max

γ ‖ defined in (Valiant & Valiant,
2017). For a ∈ `2(N) and t ∈ (0,∞), let

κa(t) := inf
a′+a′′=a

(‖a′‖1 + t‖a′′‖2)

and, for p ∈ ∆N and any γ ∈ (0, 1), let

Φ(p, γ) := 2κ−1p (1− γ)2 . (4)

It can be seen that, if p is supported on at most k elements,
Φ(p, γ) ≤ 2k for all γ ∈ (0, 1). We are now in a position
to state our general reduction.

Proposition A.3. Suppose that there exists an `-bit protocol
π for testing uniformity of k-ary distributions, with number
of players n(k, `, ε) and failure probability 1/3. Then there
exists an `-bit protocol π′ for testing identity against a fixed
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distribution p (known to all players), with number of players
O
(
n(Φ(q, ε9 ), `, ε18 ))

)
and failure probability 2/5.

Further, this reduction preserves the setting of randomness
(i.e., private-coin protocols are mapped to private-coin pro-
tocols).

Proof. This strengthening of Proposition A.1 stems from
the algorithm for identity testing given in (Blais et al.,
2017), which at a high-level reduces testing identity to
q to three tasks: (i) computing the (ε/3)-effective sup-
port8 of q, Sq(ε), which can be done easily given explicit
knowledge of q; (ii) testing that the unknown distribution
p puts mass at most ε/2 outside of Sq(ε) (which only
requires O(1/ε) players to be done with a high constant
probability, say 1/30); and (iii) testing identity of p and
q conditioned on Sq(ε) with parameter ε/18, which can
be done using rejection sampling and Proposition A.1 with
O
(
n(|Sq(ε)| , `, ε18 )

)
players and success probability, say

2/3 − 1/30, where the additional 1/30 error probability
comes from rejection sampling. See Fig. 1 for an illustra-
tion.

As shown in Section 7.2 of (Blais et al., 2017), we have
|Sq(ε)| ≤ Φ(q, ε9 ), and thereby the claimed result, since
it follows that the approach above indeed yields an algo-
rithm which is instance-optimal. Technically, the claimed
bound is obtained upon recalling that n(Φ(q, ε9 ), `, ε18 )) =
Ω(1/ε) using the trivial lower bound of Ω(1/ε) on uni-
formity testing, so that n(Φ(q, ε9 ), `, ε18 )) + O(1/ε) =

O
(
n(Φ(q, ε9 ), `, ε18 )

)
.

q(i),p(i)

i
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ε

Figure 1. The reference distribution q (in blue; assumed non-
increasing without loss of generality) and the unknown distribution
p (in red). By the reduction above, testing equality of p to q is
tantamount to (i) determining Sq(ε), which depends only on q;
(ii) testing identity for the conditional distributions of p and q
given Sq(ε), and (iii) testing that p assigns at most O(ε) probabil-
ity to the complement of Sq(ε).

8Recall the ε-effective support of a distribution q is the minimal
set of elements accounting for at least 1− ε probability mass of q.

B. Impossibility of perfect simulation when
` < log k

We begin with a proof of impossibility which shows that
any simulation that works for all points in the interior of
the (k − 1)-dimensional probability simplex must fail for a
distribution on the boundary. Our main result of this section
is the following:

Theorem B.1. For any n ≥ 1, there exists no `-bit public-
coin perfect simulation of k-ary distributions using n play-
ers unless ` ≥ log k.

Proof. Let S = (π, δ) be an `-bit perfect simulation for
k-ary distributions using n players. Suppose that ` < log k.
We show a contradiction for any such public-coin simulation
S. Fix a realization U = u of the public randomness. By
the pigeonhole principle we can find a message vector m =
(m1, . . . ,mn) and distinct elements xi, x′i ∈ [k] for each
i ∈ [n] such that

πi(xi, u) = πi(x
′
i, u) = mi.

Note that the probability of declaring ⊥ for a public-coin
simulation must be 0 for every k-ary distribution. There-
fore, since the message m occurs with a positive probability
under a distribution p with pxi

> 0 for all i, the referee
must declare an output x ∈ [k] with positive probability
when it receives m, i.e., there exists x ∈ [k] such that
δx(m,u) > 0. Also, since xi and x′i are distinct for each i,
we can assume without loss of generality that xi 6= x for
each i. Now, consider a distribution p such that px = 0
and pxi

> 0 for each i. For this case, the referee must
never declare px, i.e., Pr

[
X̂ = x

]
= 0. In particular,

Pr
[
X̂ = x

∣∣∣ U = u
]

must be 0, which can only happen if
Pr[M = m | U = u ] = 0. But since pxi > 0 for each i,

Pr[M = m | U = u ] ≥
n∏
i=1

pxi > 0 ,

which is a contradiction.

Note that the proof above shows, as stated before, that any
perfect simulation that works for every p in the interior of
the (k − 1)-dimensional probability simplex, must fail at
one point on the boundary of the simplex. In fact, a much
stronger impossibility result holds. We show next that for
k = 3 and ` = 1, we cannot find a perfect simulation that
works in the neighborhood of any point in the interior of the
simplex.

Theorem B.2. For any n ≥ 1, there does not exist any `-bit
perfect simulation of 3-ary distributions unless ` ≥ 2, even
under the promise that the input distribution comes from an
open set in the interior of the probability simplex.
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Before we prove the theorem, we show that there is no
loss of generality in restricting to deterministic protocols,
namely protocols where each player uses a deterministic
function of its observation to communicate. The high-level
argument is relatively simple: By replacing player j by two
players j1, j2, each with a suitable deterministic strategy,
the two 1-bit messages received by the referee will allow
him to simulate player j’s original randomized mapping.
Lemma B.3. For X = {0, 1, 2}, suppose there exists a
1-bit perfect simulation S′ = (π′, δ′) with n players. Then,
there is a 1-bit perfect simulation S = (π, δ) with 2n play-
ers such that, for each j ∈ [2n], the communication π is
deterministic, i.e., for each realization u of public random-
ness

πj(xj , u) = πj(x), x ∈ X .

Proof. Consider a mapping f : {0, 1, 2}×{0, 1}∗ → {0, 1}.
We will show that we can find mappings g1 : {0, 1, 2} →
{0, 1}, g2 : {0, 1, 2} → {0, 1}, and h : {0, 1} × {0, 1} ×
{0, 1}∗ → {0, 1} such that for every u

Pr[ f(X,u) = 1 ] = Pr[h(g1(X1), g2(X2), u) = 1 ],
(5)

where random variables X1, X2, X are independent and
identically distributed and take values in {0, 1, 2}. We can
then use this construction to get our claimed simulation S
using 2n players as follows: Replace the communication
π′j(x, u) from player j with communication π2j−1(x2j−1)
and π2j(x2j), respectively, from two players 2j − 1 and
2j, where π2j−1 and π2j correspond to mappings g1 and
g2 above for f = π′j . The referee can then emulate the
original protocol using the corresponding mapping h and
using h(π2j−1(x2j−1), π2j(x2j), u) in place of communi-
cation from player j in the original protocol (recall that,
the protocol being known to all parties, the referee knows
the mapping f = π′j and thus can implement this strategy).
Then, since the probability distribution of the communica-
tion does not change, we retain the performance of S′, but
using only deterministic communication now.

Therefore, it suffices to establish (5). For convenience, de-
note αu := 1{f(0,u)=1}, βu := 1{f(1,u)=1}, and γu :=
1{f(2,u)=1}. Assume without loss of generality that αu ≤
βu+γu; then, (βu+γu−αu) ∈ {0, 1}. Let gi(x) = 1{x=i}
for i ∈ {1, 2}. Consider the mapping h given by

h(0, 0, u) = αu, h(1, 0, u) = βu,

h(0, 1, u) = γu, h(1, 1, u) = (βu + γu − αu) .

Then, for every u,

Pr[h(g1(X1), g2(X2), u) = 1 ]

= αu(1− p1)(1− p2) + βu(1− p1)p2

+ γup1(1− p2) + (βu + γu − αu)p1p2

= αu(1− p1 − p2) + βup2 + γup1

= Pr[ f(X,u) = 1 ] ,

which completes the proof.

We now prove Theorem B.2, but in view of our previous
observation, we only need to consider deterministic commu-
nication.

Proof of Theorem B.2. Suppose by contradiction that there
exists such a 1-bit perfect simulation protocol S = (π, δ)
for n players on X = {0, 1, 2} such that π(x, u) = π(x).
Assume that this protocol is correct for all distributions p in
the neighborhood of some p∗ in the interior of the simplex.
Consider a partition the players into three sets S0, S1, and
S2, with

Si := { j ∈ [n] : πj(i) = 1 } , i ∈ X .

Note that for deterministic communication the message M
is independent of public randomness U . Then, by the defini-
tion of perfect simulation, it must be the case that

px = EU
∑

m∈{0,1}n
δx(m,U) Pr[M = m | U ] (6)

= EU
∑
m

δx(m,U) Pr[M = m ]

=
∑
m

EU [δx(m,U)] Pr[M = m ] (7)

for every x ∈ X , which with our notation of S0,S1,S2 can
be re-expressed as

px

=
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(mjpi + (1−mj)(1− pi))

=
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(1−mj + (2mj − 1)pi) ,

for every x ∈ X . But since the right-side above is a polyno-
mial in (p0,p1,p2), it can only be zero in an open set in the
interior if it is identically zero. In particular, the constant
term must be zero:

0 =
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(1−mj)

=
∑

m∈{0,1}n
EU [δx(m,U)]

n∏
j=1

(1−mj) .

Noting that every summand is non-negative, this implies that
for all x ∈ X and m ∈ {0, 1}n, EU [δx(m,U)]

∏n
j=1(1 −

mj) = 0. In particular, for the all-zero message 0n, we
get EU [δx(0n, U)] = 0 for all x ∈ X , so that again by
non-negativity we must have δx(0n, u) = 0 for all x ∈ X
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and randomness u. But the message 0n will happen with
probability

Pr[M = 0n ] =

2∏
i=0

∏
j∈Si

(1− pi)

= (1− p0)|S0|(1− p1)|S1|(1− p2)|S2| > 0,

where the inequality holds since p lies in the interior of the
simplex. Therefore, for the output X̂ of the referee we have

Pr
[
X̂ 6= ⊥

]
=
∑
m

∑
x∈X

EU [δx(m,U)] · Pr[M = m ]

=
∑
m 6=0n

Pr[M = m ]
∑
x∈X

EU [δx(m,U)]

≤
∑
m 6=0n

Pr[M = 0n ]

= 1− Pr[M = 0n ] < 1 ,

contradicting the fact that π is a perfect simulation protocol.

Remark B.4. It is unclear how to extend the proof of Theo-
rem B.2 arbitrary k, `. In particular, the proof of Lemma B.3
does not extend to the general case. A plausible proof-
strategy is a black-box application of the k = 3, ` = 1
result to obtain the general result using a direct-sum-type
argument.

We close this section by noting that perfect simulation is
impossible even when the communication from each player
is allowed to depend on that from the previous ones. Specif-
ically, we show that availability of such an interactivity can
at most bring an exponential improvement in the number of
players.

Lemma B.5. For every n ≥ 1, if there exists an interactive
public-coin `-bit perfect simulation of k-ary distributions
with n players, then there exists a public-coin `-bit perfect
simulation of k-ary distributions with 2`n+1 players that
uses only SMP.

Proof. Consider an interactive communication protocol π
for distributed simulation with n players and ` bits of com-
munication per player. We can view the overall protocol
as a (2`)-ary tree of depth n where player j is assigned all
the nodes at depth j. An execution of the protocol is a path
from the root to the leaf of the tree. Suppose the protocol
starting at the root has reached a node at depth j, then the
next node at depth j+1 is determined by the communication
from player j. Thus, this protocol can be simulated non-
interactively using at most ((2`)n − 1)/(2` − 1) < 2`n+1

players, where players (2j−1 + 1) to 2j send all messages
correspond to nodes at depth j in the tree. Then, the referee
receiving all the messages can output the leaf by following
the path from root to the leaf.

Corollary B.6. Theorems B.1 and B.2 extend to interactive
protocols as well.

C. Distributed Simulation with one bit
Proof of Theorem 4.1. To help the reader build heuristics
for the proof, we describe the protocol and analyze its per-
formance in steps. We begin by describing the basic idea
and building blocks; we then build upon it to obtain a full-
fledged protocol, but with potentially unbounded expected
number of players used. Finally, we describe a simple modi-
fication which yields our desired bound for expected number
of player’s accessed.

The scheme, base version. Consider a protocol with 2k
players where the 1-bit communication from players (2i−1)
and (2i) just indicates if their observation is i or not, namely
π2i−1(x) = π2i(x) = 1{x=i}.

On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal
to one, say the bit M2i−1, and the corresponding bit
M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs ⊥.

In the above, the probability ρp that some i ∈ [k] is declared
as the output (and not ⊥) is

ρp :=

k∑
i=1

(1− pi) · pi
∏
j 6=i

(1− pj) =

k∏
j=1

(1− pj),

so that

ρp = exp

k∑
j=1

ln(1− pj) = exp

(
−
∞∑
t=1

‖p‖tt
t

)

≥ exp

(
−

(
1 +

∞∑
t=2

‖p‖t2
t

))
=

1− ‖p‖2
e1−‖p‖2

which is bounded away from 0 as long as p is far from being
a point mass (i.e., ‖p‖2 is not too close to 1).

Further, for any fixed i ∈ [k], the probability thatR outputs
i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .

The scheme, medium version. The (almost) full protocol
proceeds as follows. Divide the countably infinitely many
players into successive, disjoint batches of 2k players each,
and apply the base scheme to each of these runs. Execute the
base scheme to each of the batch, one at a time and moving
to the next batch only when the current batch declares a ⊥;
else declare the output of the batch as X̂ .

It is straightforward to verify that the distribution of the out-
put X̂ is exactly p, and moreover that on expectation 1/ρp
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runs are considered before a sample is output. Therefore, the
expected number of players accessed (i.e., bits considered
by the referee) satisfies

2k

ρp
≤ 2k · e

1−‖p‖2

1− ‖p‖2
. (8)

The scheme, final version. The protocol described above
can have the expected number of players blowing to infin-
ity when p has `2 norm close to one. To circumvent this
difficulty, we modify the protocol as follows: Consider the
distribution q on [2k] defined by

q2i = q2i−1 =
pi
2
, i ∈ [k] .

Clearly, ‖q‖2 = ‖p‖2/
√

2 ≤ 1/
√

2, and therefore by (8)
the expected number of players required to simulate q using
our previous protocol is at most

4k · e
1−1/

√
2

1− 1/
√

2
≤ 20k.

But we can simulate a sample from p using a sample from
q simply by mapping (2i− 1) and 2i to i. The only thing
remaining now is to simulate samples from q using samples
from p. This, too, is easy. Every 2 players in a batch that
declare 1 on observing symbols (2i−1) and (2i) from q de-
clare 1 when they see i from p. The referee then simply flips
each of this 1 to 0, thereby simulating the communication
corresponding to samples from q. In summary, we modified
the original protocol for p by replacing each player with two
identical copies and modifying the referee to flip 1 received
from these players to 0 independently with probability 1/2;
the output is declared in a batch only when there is exactly
one 1 in the modified messages, in which case the output
is the element assigned to the player that sent 1. Thus, we
have a simulation for k-ary distributions that uses at most
20k players, completing the proof of the theorem.

D. Distributed Simulation for any `

Proof of Theorem 1.2. For simplicity, assume that 2` − 1
divides k. We can then extend the previous protocol by
considering a partition of domain intom = k/(2`−1) parts
and assigning one part of size 2` − 1 each to a player. Each
player then sends the all-zero sequence of length ` when it
does not see an element from its assigned set, or indicates
the precise element from its assigned set that it observed.
For each batch, the referee, too, proceeds as before and
declares an output if exactly one player in the batch sends
a 1 – the declared output is the element indicated by the
player that sent a 1; else it moves to the next batch. To
bound the number of players, consider the analysis of the
base protocol. The probability that an output is declared for

a batch (a ⊥ is not declared in the base protocol) is given by

ρp :=

m∑
i=1

(1− p(Si)) ·
∑
`∈Si

p`
∏
j 6=i

(1− p(Sj))

=

m∏
j=1

(1− p(Sj)) ·
m∑
i=1

∑
`∈Si

p`

=

m∏
j=1

(1− p(Sj)) ,

where {S1, . . . , Sm} denotes the partition used. Then, writ-
ing p(S) for the distribution on [m] given by p(S)(j) =
p(Sj), by proceeding as in the ` = 1 case we obtain

ρp ≥
1− ‖p(S)‖2
e1−‖p

(S)‖2
.

Once again, this quantity may be unbounded and we cir-
cumvent this difficulty by replacing each player with two
players that behave identically and flipping their commu-
nicated 1’s to 0’s randomly at the referee; the output is
declared in a batch only when there is exactly one 1 in the
modified messages, in which case the output is the element
indicated by the player that sent 1. The analysis can be
completed exactly in the manner of the ` = 1 case proof
by noticing that the protocol is tantamount to simulating q
with ‖q(S)‖2 ≤ 1/

√
2 and accesses messages from at most

20m players in expectation.

E. Proof of Theorem 6.3
In this appendix, we prove Theorem 6.3, stating that taking
a random balanced partition of the domain in L ≥ 2 parts
preserves the `2 distance between distributions with constant
probability. Note that the special case of L = 2 was proven
in (Acharya et al., 2018a). In fact, the proof for general L is
similar to the proof in (Acharya et al., 2018a), but requires
some additional work. We provide a self-contained proof
here for easy reference.

We begin by recall the Paley–Zigmund inequality, a key tool
we shall rely upon.

Theorem E.1 (Paley–Zygmund). Suppose U is a non-
negative random variable with finite variance. Then, for
every θ ∈ [0, 1],

Pr[U > θE[U ] ] ≥ (1− θ)2E[U ]
2

E[U2]
.

We will prove a more general version of Theorem 6.3, show-
ing that the `2 distance to any fixed distribution q ∈ ∆[k]

is preserved with a constant probability.9 Let random vari-
ables X1, . . . , Xk be as in Theorem 6.3; in particular, each

9For this application, one should read the theorem statement
with δ := p− q.
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Xi is distributed uniformly on [L] and for every r ∈ [L],∑k
i=1 1{Xi=r} = k

L .

Theorem E.2. Suppose 2 ≤ L < k is an integer dividing
k, and fix δ ∈ Rk such that

∑
i∈[k] δi = 0. For random

variables X1, ..., Xk above, let Z = (Z1, . . . , ZL) ∈ RL
with

Zr :=

k∑
i=1

δi1{Xi=r}, r ∈ [L] .

Then, there exists a constant c > 0 such that

Pr

[
‖Z‖2 >

1

2
· ‖δ‖2

]
≥ c.

Proof of Theorem E.2. As in Theorem 14 of (Acharya et al.,
2018a), the gist of the proof is to consider a suitable
non-negative random variable (namely, ‖Z‖22) and bound
its expectation and second moment in order to apply the
Paley–Zygmund inequality to argue about anticoncentration
around the mean. The difficulty, however, lies in the fact that
bounding the moments of ‖Z‖2 involves handling the prod-
ucts of correlated L-valued random variables Xi’s, which is
technical even for the case L = 2 considered in (Acharya
et al., 2018a). For ease of presentation, we have divided the
proof into smaller results.

Lemma E.3 (Each part has the right expectation). For every
r ∈ [L],

E[Zr] = 0 .

Proof. By linearity of expectation,

E[Zr] =

k∑
i=1

δiE
[
1{Xi=r}

]
=

1

L

k∑
i=1

δi = 0.

Lemma E.4 (The `22 distance to uniform of the flattening
has the right expectation). For every r ∈ [L],

VarZr = E
[
Z2
r

]
=

1

L
‖δ‖22

(
1− 1

L
+

L− 1

L(k − 1)

)
≥ 1

2L
‖δ‖22 .

In particular, the expected squared `2 norm of Z is

E
[
‖Z‖22

]
= E

[
L∑
r=1

Z2
r

]
≥ 1

2
‖δ‖22 .

Proof. For a fixed r ∈ [L], using the definition of Z, the

fact that
∑k
i=1 1{Xi=r} = k

L , and Lemma E.3, we get that

Var[Zr]

= E
[
Z2
r

]
= E

( k∑
i=1

δi1{Xi=r}

)2


=
∑

1≤i,j≤k

δiδjE
[
1{Xi=r}1{Xj=r}

]
=

k∑
i=1

δ2i E
[
1{Xi=r}

]
+ 2

∑
1≤i<j≤k

δiδjE
[
1{Xi=r}1{Xj=r}

]
.

Since the Xi’s – while not independent – are identically dis-
tributed, it is enough by symmetry to compute E

[
1{Xk=r}

]
and E

[
1{Xk−1=r}1{Xk=r}

]
. The former is 1/L; for the

latter, note that

E
[
1{Xk−1=r}1{Xk=r}

]
(9)

= E
[
E
[
1{Xk−1=r}1{Xk=r}

∣∣ 1{Xk=r}
]]

(10)

=
1

L
Pr[Xk−1 = r | Xk = r ]

=
1

L
Pr

[
Xk−1 = r

∣∣∣∣∣
k−1∑
i=1

1{Xi=r} =
k

L
− 1

]
(11)

=
1

L2
· k − L
k − 1

, (12)

where the final identity uses symmetry once again, along
with the observation that
k−1∑
i=1

E

1{Xi=r}

∣∣∣∣∣∣
k−1∑
j=1

1{Xj=r} =
k

L
− 1

 =
k

L
− 1.

Putting it together, we get the result as follows:

Var[Zr] =
1

L

k∑
i=1

δ2i +
1

L2
· k − L
k − 1

· 2
∑

1≤i<j≤k

δiδj

=
1

L
‖δ‖22 −

1

L2

(
1− L− 1

k − 1

)
‖δ‖22

=
1

L
‖δ‖22

(
1− 1

L
+

L− 1

L(k − 1)

)
.

Lemma E.5 (The `22 distance to uniform of the flattening
has the required second moment). There exists an absolute
constant C > 0 such that

E
[
‖Z‖42

]
≤ C‖δ‖42 .

Proof of Lemma E.5. Expanding the square, we have

E
[
‖Z‖42

]
= E

( L∑
r=1

Z2
r

)2
 =

L∑
r=1

E
[
Z4
r

]
+2
∑
r<r′

E
[
Z2
rZ

2
r′
]

(13)
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We will bound both terms separately. For the first term,
we note that using Equation(21) of (Acharya et al., 2018a)
with 1{Xi=r} in the role of Xi there, each term E

[
Z4
r

]
is

bounded above by 19‖δ‖42/L whereby

L∑
r=1

E
[
Z4
r

]
≤ 19‖δ‖42. (14)

However, we need additional work to handle the second
term comprising roughly L2 summands. In particular, to
complete the proof we show that each summand in the
second term is less than a constant factor times ‖δ‖42/L2.

Claim E.6. There exists an absolute constant C ′ > 0 such
that ∑

r<r′

E
[
Z2
rZ

2
r′
]
≤ C ′‖δ‖42 .

Proof. Fix any r 6= r′. As before, we expand

E
[
Z2
rZ

2
r′
]

= E

( k∑
i=1

δi1{Xi=r}

)2( k∑
i=1

δi1{Xi=r′}

)2


=
∑

1≤a,b,c,d≤k

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
.

Using symmetry once again, note that the term
E
[
X̃aX̃bX̃cX̃d

]
depends only on the number of distinct

elements in the multiset {a, b, c, d}, namely the cardinality
|{a, b, c, d}|. The key observation here is that if {a, b} ∩
{c, d} 6= ∅, then 1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′} = 0.
This will be crucial as it implies that the expected value
can only be non-zero if |{a, b, c, d}| ≥ 2, yielding a 1/L2

dependence for the leading term in place of 1/L.

E
[
Z2
rZ

2
r′
]

(15)

=
∑

|{a,b,c,d}|=2

δ2aδ
2
bE
[
1{Xa=r}1{Xb=r′}

]
+

∑
|{a,b,c,d}|=3

δ2aδbδcE
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=3

δaδbδ
2
cE
[
1{Xa=r}1{Xb=r}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
.

(16)

The first term, which we will show dominates, is bounded
as ∑

|{a,b,c,d}|=2

δ2aδ
2
bE
[
1{Xa=r}1{Xb=r′}

]
= E

[
1{Xk−1=r}1{Xk=r′}

]
‖δ‖42 ≤

2

L2
‖δ‖42

where the inequality uses

E
[
1{Xk−1=r}1{Xk=r′}

]
=

1

L2
· k

k − 1
≤ 2

L2
,

which in turn is obtained in the manner of (12).

For the second and the third terms, noting that

E
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
=
∣∣δ2aδbδc∣∣· 1

L3

k(k − L)

(k − 1)(k − 2)
,

and that∑
|{a,b,c,d}|=3

δ2aδbδc =
∑

1≤a,b,c≤k

δ2aδbδc−
∑
a6=b

δ2aδ
2
b−2

∑
a6=b

δ3aδb

with
∑

1≤a,b,c≤k δ
2
aδbδc =

(∑k
a=1 δ

2
a

)(∑k
a=1 δa

)2
=

0,
∑
a6=b δ

2
aδ

2
b ≤

∑
1≤a,b≤k δ

2
aδ

2
b = ‖δ‖42, and∑

a 6=b δ
3
a |δb| ≤

∑
1≤a,b≤k δ

3
a |δb| ≤ ‖δ‖∞‖δ‖

3
3 ≤ ‖δ‖

4
2,

we get

− 6

L3
‖δ‖42

≤
∑

|{a,b,c,d}|=3

δ2aδbδcE
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
≤ 6

L3
‖δ‖42 .

Finally, as E
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
=

1
L4

k2(k−L)2
(k−1)(k−2)(k−3)(k−4) ≤

10
L4 , similar manipulations yield

− α

L4
‖δ‖42

≤
∑

|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
≤ α

L4
‖δ‖42

for some absolute constant α > 0. Gathering all this in (16),
we get that there exists some absolute constant C ′ > 0 such
that ∑

r<r′

E
[
Z2
rZ

2
r′
]
≤ C ′

∑
r<r′

1

L2
‖δ‖42 ≤

C ′

2
‖δ‖42 .

The lemma follows by combining the previous claim with
(14).

We are now ready to establish Theorem 6.3. By Lemmas E.4
to E.5, we have E

[
‖Z‖22

]
≥ 1

2‖δ‖
2
2 and E

[
‖Z‖42

]
≤

C‖δ‖42, for some absolute constant C > 0. Therefore, by
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the Payley–Zygmund inequality (Theorem E.1) applied to
‖Z‖22 for θ = 1/2,

Pr

[
‖Z‖22 >

1

4
‖δ‖22

]
≥ Pr

[
‖Z‖22 >

1

2
E
[
‖Z‖22

] ]

≥ 1

4

E
[
‖Z‖22

]2
E
[
‖Z‖42

] ≥ 1

16C
.

This concludes the proof.


