
Fair Regression: Quantitative Definitions and Reduction-based Algorithms

A. Proof of Lemma 1

We begin by rewriting the loss `↵ as a cost-sensitive classification loss. First, we use the telescoping trick to obtain

`↵(y, u) = `

⇣

¯
y, buc↵+ ↵

2

⌘

= `(
¯
y,

↵
2) +

X

z2Z

h
`

⇣

¯
y, z + ↵

2

⌘
� `

⇣

¯
y, z � ↵

2

⌘

| {z }
c(
¯
y,z)/N

i
1{u � z}.

Now plugging in u =
¯
f(x) and using the fact that for z 2 Z, we have 1{

¯
f(x) � z} = 1{f(x) � z} = hf (x, z), we obtain

`↵(y,
¯
f(x)) = `(

¯
y,

↵
2) +

1

N

X

z2Z

c(
¯
y, z)hf (x, z). (15)

Thus, ignoring the constant `(
¯
y,

↵
2), the loss `↵ can be viewed as the cost-sensitive error of the classifier hf .

For z 2 Z, we can rewrite �a,z(
¯
f) as

�a,z(
¯
f) = P[

¯
f(X) � z |A = a]� P[

¯
f(X) � z]

= E[hf (X, z) |A = a]� E[hf (X, z)] (16)
= �a,z(hf),

completing the proof of the lemma.

B. Iteration Complexity of Algorithm 1

Theorem 4. Algorithm 1 terminates in at most 16B2 log(2|A|N+1)
⌫2 iterations. Furthermore, if Q is any feasible point of (11)

then the solution bQ returned by Algorithm 1 satisfies:
dcost(bQ) dcost(Q) + 2⌫

��b�a,z(bQ)
�� b"a +

2 + 2⌫

B
for all a 2 A, z 2 Z.

Proof. This result is essentially a corollary of Theorem 1, and Lemmas 2 and 3 of Agarwal et al. (2018). Specifically,
we note that the constraints appearing in our problem (11) can be cast in their general framework along the lines of their
Example 1, with a total of 2|A|N constraints. Following their Example 3, we obtain that the maximal constraint violation ⇢,
needed in their Theorem 1, is at most 2. We further observe that the violation of the i.i.d. structure by explicit averaging over
z values does not impact their optimization analysis in any way. Therefore, their Theorem 1 with ⇢ = 2 implies that our
Algorithm 1 finds a ⌫-approximate saddle point of the Lagrangian in at most 16B2 log(2|A|N+1)

⌫2 iterations as desired.

To bound dcost(bQ) and
��b�a,z(bQ)

�� we appeal to their Lemmas 2 and 3. First note that their approach applies to the objective
of our problem (11) as long as the costs c(y, z) are in [0, 1] (see their footnote 4). However, in our case, these can be in
[�1, 1] (see Eq. 9). This does not affect their Theorem 1 and Lemma 2, but their Lemma 3 now holds with the right-hand
side equal to 2+2⌫

B instead of 1+2⌫
B . Their Lemma 2 immediately yields the bound dcost(bQ) dcost(Q) + 2⌫, whereas the

modified Lemma 3 yields the bound
��b�a,z(bQ)

�� b"a + 2+2⌫
B for all a, z, finishing the proof.

C. Proof of Theorem 2

Before proving the theorem, we recall a standard definition of the Rademacher complexity of a class of functions, which
plays an important role in our deviation bounds. Let G be a class of functions g : U ! R over some space U. Then the
(worst-case) Rademacher complexity of G is defined as:

Rn(G) := sup
u1,...,un2U

E�

"
sup
g2G

�����
1

n

nX

i=1

�ig(ui)

�����

#
, (17)

where the expectation is over the i.i.d. random variables �1, . . . ,�n with P(�i = 1) = P(�i = �1) = 1/2.

The Rademacher complexity of a class G can be used to obtain uniform bounds of any Lipschitz continuous transformations
of g 2 G as follows:

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

Lemma 2. Let D be a distribution over a pair of random variables (S,U) taking values in S ⇥ U. Let G be a class of
functions g : U! [0, 1], and let ' : S⇥ [0, 1]! [�1, 1] be a contraction in its second argument, i.e., for all s 2 S and all
t, t

0 2 [0, 1], |'(s, t)� '(s, t0)| |t� t
0|. Then with probability at least 1� �, for all g 2 G,

���bE
⇥
'(S, g(U))

⇤
� E

⇥
'(S, g(U))

⇤��� 4Rn(G) +
2p
n
+

r
2 ln(2/�)

n
,

where the expectation is with respect to D and the empirical expectation is based on n i.i.d. draws from D. If ' is also
linear in its second argument then a tighter bound holds, with 4Rn(G) replaced by 2Rn(G).

Proof. Let � := {'g}g2G be the class of functions 'g : (s, u) 7! '(s, g(u)). By Theorem 3.2 of Boucheron et al. (2005),
we then have with probability at least 1� �, for all g,

���bE
⇥
'(S, g(U))

⇤
� E

⇥
'(S, g(U))

⇤��� =
���bE['g]� E['g]

��� 2Rn(�) +

r
2 ln(2/�)

n
. (18)

We will next bound Rn(�) in terms of Rn(G). For a fixed tuple (s1, u1), . . . , (sn, un), we have

E�

"
sup
g2G

�����

nX

i=1

�i'(si, g(ui))

�����

#
 E�

"
sup
g2G

�����

nX

i=1

�i

⇣
'(si, g(ui))� '(si, 0)

⌘�����

#
+
p
n

 2E�

"
sup
g2G

�����

nX

i=1

�ig(ui)

�����

#
+
p
n

where the first inequality follows from Theorem 12(5) of Bartlett & Mendelson (2002) and the last inequality follows
from the contraction principle of Ledoux & Talagrand (1991), specifically their Theorem 4.12. Dividing by n and taking a
supremum over (s1, u1), . . . , (sn, un) yields the bound

Rn(�) 2Rn(G) +
1p
n
.

Together with the bound (18), this proves the lemma for an arbitrary contraction '. If ' is linear in its second argument, we
get a tighter bound by invoking Theorem 4.4 of Ledoux & Talagrand (1991) instead of their Theorem 4.12.

Our proof largely follows the proof of Theorems 2 and 3 of Agarwal et al. (2018). We first use Lemma 2 to show that by
solving the empirical problem (11), we also obtain an approximate solution of the corresponding population problem:

min
Q2�(H)

cost(Q) s.t.
���a,z(Q)

�� "a 8a 2 A, z 2 Z. (19)

The theorem will then follow by invoking the equivalence between problem (19) and the discretized fair regression (8), and
adding up various approximation errors.

Bounding empirical deviations in the cost and constraints. To bound the deviations in the cost, we need to be a bit
careful, because the definition of dcost mixes the empirical expectation over the data with the averaging over z 2 Z. For the
analysis, we therefore define

dcostz(h) = bE
⇥
c(
¯
Y, z)h(X, z)

⇤
and costz(h) = E

⇥
c(
¯
Y, z)h(X, z)

⇤
.

Since c(
¯
Y, z) 2 [�1, 1], we can invoke Lemma 2 with S = c(

¯
Y, z), U = (X, z), G = H, and '(s, t) = st to obtain that

with probability at least 1� �/2 for all z 2 Z and all h 2 H

���dcostz(h)� costz(h)
��� 2Rn(H) +

2p
n
+

r
2 ln(4N/�)

n
= eO(n��),

where the last equality follows by Assumption 1 and the setting N / n
� . Taking an average over z 2 Z and a convex

combination according to any Q 2 �(H), we obtain by Jensen’s inequality that with probability at least 1� �/2 for all
Q 2 �(H)

��dcost(Q)� cost(Q)
�� = eO(n��). (20)

To bound the deviations in the constraints, we invoke Lemma 2 with S = 1, U = (X, z), G = H, and '(s, t) = st, but
apply it to the data distribution conditioned on A = a. We thus obtain that with with probability at least 1 � �/2 for all

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

a 2 A, z 2 Z, and h 2 H

���b�a,z(h)� �a,z(h)
��� 2Rna(H) +

2
p
na

+

s
2 ln(4|A|N/�)

na
.

By Jensen’s inequality this also means that with probability at least 1� �/2 for all a 2 A, z 2 Z, and Q 2 �(H)

��b�a,z(Q)� �a,z(Q)
�� 2Rna(H) +

2
p
na

+

s
2 ln(4|A|N/�)

na
. (21)

In the remainder of the analysis, we assume that Eqs. (20) and (21) both hold, which occurs with probability at least 1� �

by the union bound.

Putting it all together. Given the settings of ⌫, B and N , we obtain by Theorem 4 that Algorithm 1 terminates in
O
�
n
4� ln(n� |A|)

�
iterations, as desired, and returns a distribution bQ which compares favorably with any feasible point Q

of the empirical problem (11), meaning that for any such Q, we have
dcost(bQ) dcost(Q) +O(n��) (22)

��b�a,z(bQ)
�� b"a +O(n��) for all a 2 A, z 2 Z. (23)

Now bounding dcost(bQ) and dcost(Q) in Eq. (22) via the uniform convergence bound (20), we obtain

cost(bQ) cost(Q) + eO(n��). (24)

Similarly, bounding b�a,z(bQ) via the bound (21) and b"a "a + eO(n��
a) via Assumption 1 and our setting of C 0, we obtain

���a,z(bQ)
�� "a + eO(n��

a) for all a 2 A, z 2 Z. (25)

Above, we assumed that Q was a feasible point of the empirical problem (11). However, assuming that Eq. (21) holds, any
feasible solution of the population problem (19) is also feasible in the empirical problem (11) thanks to our setting of C 0.
Thus, Eqs. (24) and (25) show that the solution bQ is approximately feasible and approximately optimal in the population
problem (19). It remains to relate bQ to the original fair regression problem (3).

First, by Lemma 1 and Eqs. (24) and (25), we can interpret bQ as a distribution over the set of discretized regressors
¯
F and

obtain that for all Q 2 �(
¯
F) that are feasible in the discretized fair regression problem (8), we have

loss↵(bQ) loss↵(Q) + eO(n��) (26)
���a,z(bQ)

�� "a + eO(n��
a) for all a 2 A, z 2 [0, 1], (27)

where in Eq. (27) we have expanded the domain z 2 Z to z 2 [0, 1] thanks to Eq. (7). Finally, by substituting the solution
Q

⇤ of problem (8) as Q in Eq. (26) and applying Theorem 1, we obtain that for any Q
⇤ 2 �(F) that is feasible in the

discretized fair regression problem (8), we have
loss(bQ) loss(Q⇤) + ↵+ eO(n��) = loss(Q⇤) + eO(n��), (28)

where the last equality follows by our setting ↵ = 1/N = O(n��). The theorem now follows from Eqs. (28) and (27).

D. Algorithm for Fair Regression under Bounded Group Loss

In this section we provide a detailed pseudocode of our algorithm for fair regression under BGL, described at a high level in
Section 5.

E. Proof of Theorem 3

The analysis of Algorithm 2 proceeds similarly to the analysis of Algorithm 1.

Iteration complexity. Similarly to our analysis of Algorithm 1 in Theorem 4, we can appeal to Theorem 1, and Lemmas
2 and 3 of Agarwal et al. (2018). While our objective and constraints are for the distributions Q over [0, 1]-valued
predictors f 2 F, whereas their analysis is for distributions over {0, 1}-valued classifiers, we can still directly use their
Theorem 1, and Lemmas 2 and 3, because they only rely on the bilinear structure of the Lagrangian with respect to
Q and � and the boundedness of the objective and constraints, which all hold in our setting. The maximal constraint
violation, needed in their Theorem 1, is ⇢ 1. Therefore, their Theorem 1 implies that Algorithm 2 terminates in at most
4B2 ln(|A|+1)/⌫2 = O(n4! ln|A|) iterations and finds a ⌫-approximate saddle point bQ of problem (14), albeit sometimes

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

Algorithm 2 Fair regression with bounded group loss

Input: training examples {(Xi, Yi, Ai)}ni=1, slacks in fairness constraint b⇣a 2 [0, 1], bound B, convergence threshold ⌫

Define best-response functions:
BESTf (�) := argminf2F

L
BGL(f,�)

BEST�(Q) := argmax��0, k�k1B L
BGL(Q,�)

1: Set learning rate ⌘ = ⌫/(2B)
2: Set ✓1 = 0 2 R|A|

3: for t = 1, 2, . . . do

4: for all a do // Compute �t from ✓t and find the best response ft

5: �t,a B exp{✓t,a}/ (1 +
P

a exp{✓t,a})
6: end for

7: ft BESTf (�t)

8: bQt 1
t

Pt
t0=1 ft0 ,

b�t 1
t

Pt
t0=1 �t0 // Calculate the current approximate saddle point

9: ⌫ L
BGL

� bQt, BEST�(bQt)
�
� L

BGL(bQt,
b�t) // Check the suboptimality of (bQt,

b�t)

10: ⌫ L
BGL(bQt,

b�t) � L
BGL

�
BESTf (b�t), b�t

�

11: if max{⌫, ⌫} ⌫ then // Terminate if converged

12: if b�BGL(bQt) b⇣a + 1+2⌫
B for all a 2 A then

13: return bQt

14: else

15: return null
16: end if

17: end if

18: Set ✓t+1 = ✓t + ⌘b�BGL(ft)� ⌘b⇣ // Apply the exponentiated-gradient update
19: end for

it ends up returning null instead of bQ. To prove the theorem we consider two cases.

Case I: There is a feasible solution Q
⇤

to the original problem (4). Given the settings of ⌫ and B, and using Lemmas
2 and 3 of Agarwal et al. (2018), we obtain that the ⌫-approximate saddle point bQ of the empirical problem (14) satisfies

dloss(bQ) dloss(Q) + 2⌫ (29)

b�BGL
a (bQ) b⇣a +

1 + 2⌫

B
for all a 2 A, (30)

for any distribution Q feasible in the empirical problem (13). Eq. (30) implies that in this case the algorithm returns
bQ 6= null. It remains to argue that statements similar to (29) and (30) hold for true expectations rather than just empirical
expectations.

To turn the statements (29) and (30) into matching population versions, we use the concentration result of Lemma 2 similarly
as in the proof of Theorem 2. Specifically, we invoke Lemma 2 with S = Y , U = X , G = F, and '(s, t) = `(s, t),
separately for the data distribution (with failure probability �/2) and the data distribution conditioned on each A = a (with
failure probabilities �/(2|A|)). We thus obtain that with probability at least 1� �, for all Q 2 �(F),

��dloss(Q)� loss(Q)
�� 4Rn(F) +

2p
n
+

r
2 ln(4/�)

n

��b�BGL
a (Q)� �

BGL
a (Q)

�� 4Rna(F) +
2
p
na

+

s
2 ln(4|A|/�)

na
for all a 2 A.

By Assumption 2 and our setting of C 0, this implies that with probability at least 1� �, for all Q 2 �(F),
��dloss(Q)� loss(Q)

�� = eO(n�!) (31)
��b�BGL

a (Q)� �
BGL
a (Q)

�� C
0
n
�!
a for all a 2 A. (32)

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

We continue the analysis assuming that the uniform convergence bounds (31) and (32) both hold. Instantiating the bound (31)
for dloss(Q) and dloss(bQ) in Eq. (29) yields, for any Q feasible in the empirical problem (13),

loss(bQ) loss(Q) + 2⌫ + eO(n�!) = loss(Q) + eO(n�!), (33)

where the last equality follows by our setting of ⌫. Similarly, instatianting the bound (32) for b�BGL
a (bQ) in Eq. (30) yields

�
BGL
a (bQ) b⇣a +

1 + 2⌫

B
+ eO(n�!

a) ⇣a + eO(n�!
a) for all a 2 A, (34)

where the last inequality follows by our setting of B, ⌫, and C
0 as well as the bound b⇣a ⇣a + C

0
n
�!
a from Assumption 2.

Above, we assumed that Q was a feasible point of the empirical problem (13). However, assuming that Eq. (32) holds, any
feasible solution of the population problem (4) is also feasible in the empirical problem (13) thanks to our setting of C 0.
Thus, Eqs. (33) and (34) hold for any Q

⇤ feasible in (4), proving the theorem in this case.

Case II: There is no feasible solution Q
⇤

to the original problem (4). In this case, the ⌫-approximate saddle point bQ
that the algorithm finds may still satisfy

b�BGL
a (bQ) b⇣a +

1 + 2⌫

B
for all a 2 A, (35)

in which case the algorithm returns bQ and the theorem holds vacuously since here is no feasible point Q⇤. If the found
approximate saddle point does not satisfy Eq. (35), then the algorithm returns null and the theorem also holds.

F. Details for Efficient Implementation of Algorithm 1

On the high level, Algorithm 1 keeps track of auxiliary vectors ✓+
t ,✓

�
t 2 R|A|N . These are used to obtain the vector

�t 2 R2|A|N played by the �-player. The Q-player responds to �t by playing ht 2 H (Step 7), which is used to update
✓±
t . The average of �t’s and ht’s played so far is the candidate solution for the saddle-point problem

min
Q2�

max
��0, k�k1B

L(Q,�). (36)

The algorithm checks the suboptimality of this solution and terminates once the convergence ⌫ is reached (Steps 9–11).

The updates of ✓+
t and ✓�

t (Step 12) run in time O(|A|N) assuming that �(ht) has already been calculated. Similarly,
the transformation of ✓+

t and ✓�
t to �t (Steps 4–6) runs in time O(|A|N), because the denominator is the same across all

coordinates and so it needs to be computed only once. We next show that the remaining operations, except for the two
BESTh calls, run in time O(n log n+ |A|N).

Computation of dcost(hf) and b�(hf). This computation is implicit in the calculation of Lagrangian in Steps 9–10, and also
in the updates of ✓+

t and ✓�
t in Step 12. By Eq. (15),

dcost(hf) = bE
h
`↵(Y,

¯
f(X))� `

�
Y,

↵
2

�i
,

so it can be calculated in time O(n) in a single pass over examples. To calculate b�(hf), we keep the training examples
partitioned into |A| disjoint sets according to their protected attribute A. Let na be the number of examples with A = a. We
sort these examples according to f(X) in time O(na log na). Now going through these examples from the largest f(X)
value to the smallest allows us to calculate the conditional expectations

bE[hf (X, z) |A = a] = bP[f(X) � z |A = a]

across all z in time O(na+N). Since we need to do this for all a 2 A, the overall runtime is O(n log n+ |A|N). Finally, to
calculate b� we also need expectations bE[hf (X, z)], which can be obtained by taking weighted sums of bE[hf (X, z) |A = a]
in time O(|A|N). Altogether, the running time of computing dcost(hf) and b�(hf) is therefore O(n log n+ |A|N).

Computation of L(hf ,�) and L(bQt,�). Lagrangian is evaluated in Steps 9–10 to determine whether the algorithm has
converged. Note that L(Q,�) depends on Q only through dcost(Q) and b�(Q). If we have already computed these, L(Q,�)
can be evaluated in time O(|A|N). To calculate L(hf ,�) for an arbitrary hf , we first need to calculate dcost(hf) and b�(hf),
so the overall running time is O(n log n+ |A|N). To calculate L(bQt,�), note that dcost(bQt) =

1
t

Pt
t0=1

dcost(ht0), so we
can obtain dcost(bQt) from dcost(bQt�1) at the cost of evaluation of dcost(ht) and similarly for b�(bQt). Therefore, the first
evaluation of the form L(bQt,�) takes time O(n log n+ |A|N) and each consequent evaluation takes time O(|A|N).

Computation of BEST�(bQt). The best response of the �-player is used in Step 9 to determine the suboptimality of the

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

current solution. Given an arbitrary Q, BEST�(Q) returns � maximizing L(Q,�) over � � 0, k�k1 B. By first-order
optimality, the optimizing � is either 0 or puts all of its mass on the most violated constraint among b�a,z(Q) b"a,
b�a,z(Q) � �b"a. In particular, let e+a,z and e�a,z denote the basis vectors corresponding to coordinates �+

a,z and �
�
a,z . The

call to BEST�(Q) first calculates
(a⇤, z⇤) = argmax

(a,z)

⇥
|b�a,z(Q)|� b"a

⇤

and then returns 8
><

>:

Be+a⇤,z⇤ if b�a⇤,z⇤(Q) > b"a⇤

Be�a⇤,z⇤ if b�a⇤,z⇤(Q) < �b"a⇤

0 otherwise.

Thus, BEST�(bQt) can be calculated in time O(|A|N) as long as we have b�(bQt), whose computation we have already
accounted for within the computation of the Lagrangian of the form L(bQt,�).

F.1. Details for Reduction to Cost-sensitive Classification

By definition of b�a,z(h), we have
X

a,z

�a,zb�a,z(h) =
X

a,z

�a,z

✓
1

pa

bE
⇥
h(X, z)1{A = a}

⇤
� bE

⇥
h(X, z)

⇤◆

= bE
"
NEZ

"
X

a

�a,Z h(X,Z)

✓
1{A = a}

pa
� 1

◆##

= bE

NEZ

✓
�A,Z

pA
�
X

a

�a,Z

◆
h(X,Z)

��
. (37)

In particular, Eqs. (10) and (37) imply that the minimization of L(h,�) is indeed equivalent to minimizing the right-hand
side of Eq. (12) as claimed.

F.2. Details for Reduction to Least-squares Regression

The construction of the least-squares regression data set begins with Eq. (12), which states that for hf 2 H

dcost(hf) +
X

a,z

�a,zb�a,z(hf) =
1

n

X

in

X

z2Z

1

N
c�(¯

Yi, Ai, z)hf (Xi, z). (38)

We will now rewrite the inner summation over z as a loss function for the predictor f , parameterized by �. More precisely,
for any a 2 A and ỹ 2 Ỹ, let the “loss” function for a prediction u be defined as

g�(ỹ, a, u) =
X

z2Z,zu

1

N
c�(ỹ, a, z).

Now consider a specific i in Eq. (38). Let X := Xi, A := Ai and Ỹ :=
¯
Yi. Then the summation over z for this specific i

can be written as
X

z2Z

1

N
c�(Ỹ, A, z)hf (X, z) =

X

z2Z

h
g�(Ỹ, A, z)� g�(Ỹ, A, z � ↵)

i
1{f(X) � z}

= g�(Ỹ, A, bf(X)c↵)
= g�(Ỹ, A, f(X)).

Plugging this back into Eq. (38), we see that the minimization of Eq. (38) over h 2 H is equivalent to the minimization of
the empirical loss under g� among f 2 F:

min
f2F

"
1

n

nX

i=1

g�(¯
Yi, Ai, f(Xi))

#
.

Solving this problem directly seems to require access to a generic optimization oracle. We instead use a heuristic, where we
first pick

Ui 2 argmin
u2[0,1]

g�(¯
Yi, Ai, u)

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

and then seek to solve the least-squares regression problem

min
X

in

(Ui � f(Xi))
2
.

To obtain the values Ui we first calculate the values c�(ỹ, a, z) across all ỹ, a, and z in the overall time O(|A||Ỹ|N). Then,
using the definition of g�, the minimizer of g�(ỹ, a, u) over u can be found in time O(N) for each specific value of ỹ and a,
so all the minimizers can be precalculated in time O(|A||Ỹ|N). Thus, preparing the data set for the least-squares reduction
takes time O(|A||Ỹ|N) and the resulting regression data set is of size n.

F.3. Details for Reduction to Risk Minimization under `

The same reasoning that yielded the reduction to the least-squares regression can be used to derive a reduction to risk
minimization under any loss `(y, u) that is convex in u. We again begin with computing the minimizers Ui for each
g�(¯

Yi, Ai, f(Xi)) term. Now suppose that there are two values Ỹi,1, Ỹi,2 2 [0, 1] such that @
@u`(Ỹi,1, Ui) 0 and

@
@u`(Ỹi,2, Ui) � 0 (if ` is non-smooth, we can pick arbitrary elements of the subdifferential set). If no such pair exists, then
it is not possible to obtain f(Xi) = Ui by minimizing ` over any distribution of examples since the gradient can never
vanish at Ui. However, if such a pair exists, we can induce weights Wi,1,Wi,2 2 [0, 1] such that Wi,1 +Wi,2 = 1 and

Wi,1
@
@u`(Ỹi,1, Ui) +Wi,2

@
@u`(Ỹi,2, Ui) = 0.

Hence, we create two weighted examples for each (Xi, Ai, Yi) triple in our dataset, and solve

min
f2F

nX

i=1

h
Wi,1 `(Ỹi,1, f(Xi)) +Wi,2 `(Ỹi,2, f(Xi))

i
.

For instance, for logistic loss, we can always pick Ỹi,1 = 0, Ỹi,2 = 1 and Wi,2 = Ui. The complexity of this reduction is
identical to that of the least-squares reduction above, but the resulting risk minimization problem might be better aligned
with the original problem as the experiments in Section 6 show.

G. Additional Experimental Results

In this section, we include further details on our experimental evaluation.

Evaluation on the training sets. In Figure 2 we include the training performances of our algorithm and the baseline
methods, including the SEO method and the unconstrained regressors. Our method generally dominated or closely matched
the baseline methods. The SEO method provided solutions that were not Pareto optimal on the law school data set.

Implementation of the cost-sensitive oracle. Given an instance of cost-sensitive classification problem, CS oracle
optimizes the equivalent weighted binary classification problem on the data {Wi, X

0
i, Yi}ni=1 with each X

0
i = (xi, zi) (see

Section 3 for the transformation). The oracle aims to solve

min
h2H

nX

i=1

Wi1 {h(X 0
i) 6= Yi} . (39)

where every function h in the class H is parameterized by a vector � and defined as h(x, z) = 1 {h�, xi � z} for any input
(x, z). Instead of optimizing over the objective in (39), we will consider the following minimization problem with hinge
loss. It will be convenient to consider the labels Yi take values {±1} and each predictor h predicts in {±1}. Then the
optimization becomes:

min
�

nX

i=1

Wi max
�
0, ↵

2 � h�, xiiYi

Furthermore, we will optimize over � with `1 norm bounded by 1. Then we can encode the optimization problem as a
linear program:

min
�,t

X

i

ti

for all i 2 [n] : ti � 0,

for all i 2 [n] : ti � ↵
2 � Yi h�, xii,

for all j 2 [d] :� 1 �j 1.

Fair Regression: Quantitative Definitions and Reduction-based Algorithms

Figure 2. Training loss versus constraint violation with respect to DP. For our algorithm, we varied the fairness slackness parameter and
plot the Pareto frontiers of the sets of returned predictors. For the logistic regression experiments, we also plot the Pareto frontiers of the
sets of returned predictors given by fair classification reduction methods.

Oracle Model
class

Runtime per call
(seconds)

CS linear 18.94
LS linear 3.48
LS tree ensemble 3.60
LR linear 3.62
LR tree ensemble 3.69

Table 1. Runtime comparison on the oracles over different model classes. We ran the oracles on a sub-sampled law school data set with
1,000 examples, using a machine with a 2.7 GHz Intel processor and 16GB memory.

Figure 3. Number of oracle calls versus specified value of fairness slackness.

In our experiments, this optimization problem was solved with the Gurobi Optimizer (Gurobi Optimization, 2018).

Runtime comparison. We performed a comparison on the running time of a single call of the three supervised learning
oracles. On a subsampled law school data set with 1,000 examples, we ran the oracles to solve an instance of the BESTh

problem, optimizing over either the linear models or tree ensemble models. The details are listed in Table 1. We also
compare the number of oracle calls for different specified values of fairness slackness.

