
Fast Bayesian Inference of Pairwise Interactions

A. Modeling Multi-Way Interactions
In certain applications, we might expect that there are interactions of order greater than two. For example, suppose we are
trying to predict college admissions. Then, we might expect a three-way interaction between a candidate’s SAT score, GPA,
and extracurricular involvement. Individually, these variables might only exhibit moderate association but together they
could have a multiplicative effect. For example, we might expect that candidates who have high SAT scores, high GPAs, and
excellent extracurricular activities will be accepted with near certainty, while candidates who only possess one/two of these
qualities are borderline applicants.

We now show how to extend our results to handle such three-way, or more generally, r-way interactions.

Definition A.1. (r-way interactions) The r-way interactions of a covariate vector x 2 Rp are generated from the feature
map
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To model r-way interactions, we must use degree r polynomial kernels to generate all the necessary interactions. Hence, we
recommend using the following generalized two-way interaction kernel, which we call the r-way interaction kernel.

Definition A.2. (r-way interaction kernel) A kernel k is called an r-way interaction kernel if for some choice of
M1,M2,M3 2 N, ↵, ,�(m) 2 Rp
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it can be re-expressed as
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where � is the Hadamard product and kr�1 is an r � 1 degree interaction kernel. The base case kernel (i.e., when r = 2) is
provided in Definition 4.2.

To select the weights for an r-way interaction kernel, we must solve a system of equations similar to Eq. (9), except for a
target prior covariance matrix ⌃⌧ 2 Rdim(�r)⇥dim(�r).

B. Proofs
B.1. Proof of Proposition 4.1

Let g(·) = ✓T�2(·) and ✓ | ⌧ ⇠ N (0,⌃⌧ ). Then, y(n) = g(x(n)) + ✏(n). The first claim follows by taking � = �2 and
f = g in Rasmussen & Williams (2006, Equation 2.12).

The second claim follows directly from the duality between the weight-space and function-space view of a GP (Rasmussen
& Williams, 2006, Chapter 2).

B.2. Proof of Theorem 4.3

The proof of Theorem 4.3 depends critically on Lemma B.1 below, which characterizes the relation between adding two
kernels and the resulting induced prior covariance matrix.

Lemma B.1. Let k1 and k2 be two kernels such that there exists vectors a(1), a(2) 2 Rdim(�2) for which ki(x, y) =
ha(i) � �2(x), a(i) � �2(y)i. Let k3(x, y) = k1(x, y) + k2(x, y). Then,

k3(x, y) = h⌃
1
2
3 �2(x),⌃

1
2
3 �2(y)i s.t. ⌃3 = diag(a(1) � a(1) + a(2) � a(2)). (12)
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Proof. By the sum property of kernels,

k1(x, y) + k2(x, y) = h[a1 a2]� [�2(x) �2(x)], [a1 a2]� [�2(y) �2(y)]i
= ha(1) � �2(x), a

(1) � �2(y)i+ ha(2) � �2(x), a
(2) � �2(y)i

= ha(1) � a(1) � �2(x),�2(y)i+ ha(2) � a(2) � �2(x),�2(y)i
= ha(1) � a(1) � �2(x) + a(2) � a(2) � �2(x),�2(y)i
= h(a(1) � a(1) + a(2) � a(2))� �2(x),�2(y)i
= �T

2 (x) diag((a(1) � a(1) + a(2) � a(2)) �2(y)

= k3(x, y).

(13)

By Lemma B.1, it suffices to write out the feature map of each kernel in Definition 4.2. The induced feature maps of each
respective kernel term in Definition 4.2 are given by ai � �2(x), 1  i  4 for
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(14)

The first claim follows from Eq. (14) and Lemma B.1.

To prove the second claim, take an arbitrary diagonal prior covariance matrix S 2 Rdim(�2)⇥dim(�2). It suffices to show
that there exists a solution of,
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for some choice of M1,M2 2 N, ↵, ,�(m) 2 Rp
+ (m = 1, . . . ,M1), ⌫(m) 2 R+ (m = 1, . . . ,M2), and A 2 R.

Take ↵2
i = diag(S)(i) and  2

i = diag(S)(ii), for i = 1, · · · , p. Take �(m) = 0. Let M2 = p(p�1)
2 and ⌫(1) =

diag(S)(12), · · · , ⌫(M2) = diag(S)((p�1)p). Finally, letting A = diag(S)(0) �M2 solves the system.
Remark. While we have shown one of the many ways to solve the above system for an arbitrary S, the strategy taken above
is not practically useful; computing the kernel in this fashion will take ⇥(p2) time because M2 = ⇥(p2). In practice, we
must leverage the polynomial kernels (i.e., those in the M1 sum) to avoid making M2 large. We show how such a strategy
works in Appendix C.

B.3. Proof of Theorem 5.1

Define g(Aij) := (g(ei), g(�ei), g(ej), g(eij)). Then,

g(Aij) | D, ⌧ ⇠ N (µgij ,⌃ij) s.t. µgij := K⌧ (A
ij , X)H⌧Y,

⌃ij :=
h
K⌧ (A

ij , Aij)�K⌧ (A
ij , X)H⌧K⌧ (X,Aij)

i
,

(15)

which follows directly from Rasmussen & Williams (2006, Equation 2.21). Notice that,
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where ai = (1/2,�1/2, 0, 0) and aij = (�1/2, 1/2,�1, 1). The proof follows from Eq. (15), Eq. (16), and recalling that an
affine transformation h : x 7! Ax of a multivariate Gaussian distribution Z ⇠ N (µ,⌃) is given by h(Z) ⇠ N (Aµ,A⌃AT ).

B.4. Proof of Corollary 5.2

Corollary 5.2 follows immediately once we can show that K⌧ (Aij , X) takes O(1) time. It suffices to show k⌧ (x(n), ei)
and k⌧ (x(n), ei + ej) take O(1) time. Since k⌧ is a sum of polynomial kernels, k⌧ (x, y) only depends on x, y 2 Rp

through the inner product xT y. Hence, for vectors x̃, ỹ 2 RM , k⌧ (x̃, ỹ) is well-defined and just depends on x̃T ỹ. Now,
k⌧ (x(n), ei) = k⌧ (x

(n)
i , 1) and k⌧ (x(n), ei + ej) = k⌧ ((x

(n)
i , x(n)

j ), (1, 1)). Since k⌧ (x
(n)
i , 1) and k⌧ ((x

(n)
i , x(n)

j ), (1, 1))
do not depend on p, these terms each take O(1) time to compute.

B.5. The General Kernel Interaction Trick

In this section, we generalize the kernel interaction trick, namely show how to access the distribution of arbitrary components
of ✓. First, we require some new notation. For E ✓ {1, · · · , p}, |E| = M , define

✓E := (✓xi1
, · · · , ✓xiM

, ✓xi1xi2
, · · · , ✓xiM�1

xiM
), ij 2 E. (17)

We show how to compute ✓E | ⌧, D from the GP posterior predictive distribution. Without any lost of generality, we may
assume E = {1, · · · ,M} by relabeling the covariates.

Theorem B.2. (General kernel interaction trick) Let H⌧ := (K⌧ + �2IN )�1
and

AM := [e1,�e1, · · · eM ,�eM , e1 + e2, · · · , eM�1 + eM ]T .

Let K⌧ (AM , X) = K⌧ (X,AM )T be the matrix formed by taking the kernel between each row of AM with each row of X .

Let

ai := (0, 0, · · · , 1/2,�1/2, · · · , 0, 0, · · · , 0) 2 R2M+M(M�1)
2

aij := (0, 0, · · · , 1/2,�1/2, · · · ,�1, · · · , 0, 0, · · · , 1, · · · , 0) 2 R2M+M(M�1)
2

(18)

for i < j. That is, ai has non-zero entries at ei and �ei and aij has non-zero entries at ei, �ei, �ej , and ei + ej . Let

RM := [a1 · · · aM a12 · · · a(M�1)M ]T . (19)

Then, ✓E | ⌧, D is a multivariate Gaussian distribution with mean RMK⌧ (AM , X)H⌧Y and covariance matrix

RM
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⇤
RT

M .

Proof. Following the proof of Theorem 5.1,

g(AM ) | D, ⌧ ⇠ N (µgM ,⌃M ) s.t. µgM := K⌧ (A
M , X)H⌧Y,
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i
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Similar to Eq. (16),
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2
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2
= aTi g(A
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2
� g(�e1)

2
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The proof follows from Eq. (20), Eq. (21), and recalling that an affine transformation h : x 7! RT
Mx of a multivariate

Gaussian distribution Z ⇠ N (µ,⌃) is given by h(Z) ⇠ N (RMµ,RM⌃RT
M ).

Corollary B.3. Given K⌧ , the distribution ✓E | ⌧, D takes O(M2) time and memory to compute.

Proof. The proof is identical to the one provided in Appendix B.4.
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B.6. Proof of Proposition 6.1

See Appendix C.2.

C. Example Bayesian Interaction Models
In the following subsections, we show how to solve Eq. (9) for several classes of models.

C.1. Block-Degree Priors

Suppose we would like to set the prior variance of all terms with the same degree equal. That is, we would like to use a prior
of the form,

⌘ 2 R3 ⇠ p(⌘)

✓xi | ⌘ ⇠ N (0, ⌘21)

✓xixj | ⌘ ⇠ N (0, ⌘22)

✓x2
i
| ⌘ ⇠ N (0, ⌘23)

✓0 | ⌘ ⇠ N (0, c2)

(22)

To find the corresponding kernel, let � = ( 1
4p2

p
⌘2, · · · , 1

4p2

p
⌘2), M1 = 1 and M2 = 0. Then, diag(S)(ij) = ⌘22 . Setting

 2
i = ⌘23 � 1

2⌘
2
2 , implies that diag(S)(ii) = ⌘23 . Finally, letting ↵2

i = ⌧21 � 2⌘2p
2

and A = c2� 1 implies that diag(S)(i) = ⌘21
and diag(S)(0) = c2 as desired. We may equivalently re-write the induced kernel as,

kblock,⌘(x, y) =
⌘22
2
k1poly,2(x, y) + (⌘23 �

⌘22
2
)k0poly,1(x� x, y � y) +

⇣
⌘21 � ⌘22

⌘
k0poly,1(x, y) + c2 � ⌘22

2
. (23)

Hence, Eq. (22) admits a kernel that only takes O(p) time to compute.

C.2. Sparsity Priors

By Lemma B.1, the sparsity prior model provided in Eq. (11) equals kblock,⌘(� x,� y).

D. SKIM Model Details
The full hierarchal form of SKIM is provided below, which is based closely on the regularized horseshoe prior (Piironen &
Vehtari, 2017) and the model proposed in Griffin & Brown (2017):

m2 ⇠ InvGamma(↵1,�1) ⇠2 ⇠ InvGamma(↵2,�2)

� :=
s

p� s

�p
N

� ⇠ N+(0,↵3)

i =
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m2 + ⌘21�
2
i

�i ⇠ C+(0, 1)

⌘1 ⇠ C+(0,�) ⌘2 ⇠ ⌘21
m2

⇠

✓xi | ⌘, ⇠ N (0, ⌘21
2
i )

✓xj | ⌘, ⇠ N (0, ⌘21
2
j )

✓xixj | ⌘, ⇠ N (0, ⌘22
2
i

2
j )

✓0 | ⌘ ⇠ N (0, c2)

where s,↵i, and �i are user-specified hyperparameters, C+(0, 1) is a half-Cauchy distribution, and N+ is a half-normal
distribution. More details, such as selecting the hyperparameters, desirable properties, and interpretations of SKIM, are
provided below.
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D.1. SKIM Details

Recall that we are primarily interested in the case when ✓ is sparse and satisfies strong-hierarchy. In order to promote
sparsity in the main effects, we require two ingredients: (1) a prior on the global shrinkage parameter ⌘1 and (2) a prior on
the local shrinkage parameters  2 Rp, which together express the prior variance of ✓xi as (Carvalho et al., 2009; Piironen
& Vehtari, 2017):

✓xi | , ⌘1 ⇠ N (0, ⌘21
2
i ), i = 1, · · · , p. (24)

⌘1 controls the overall sparsity level of the model; in particular, the model becomes more sparse as ⌘1 decreases. If we
expect s non-zero main effects, then setting ⌘1 = s

p�s
�p
N

will yield an expected prior sparsity level of s by Piironen &
Vehtari (2017, Equation 3.12). However, we often do not know exactly how to select s. Hence, Piironen & Vehtari (2017)
instead suggest drawing,

� :=
s

p� s

�p
N

⌘1 ⇠ C+(0,�), (25)

to express our uncertainty of not knowing the true main effect sparsity level.

The prior variance of ✓xi is non-negligible only when i is large enough to escape the global shrinkage of ⌘1. Hence, we
want to draw i from a heavy-tailed distribution so that certain main effects can escape global shrinkage. Carvalho et al.
(2009) suggest drawing i from a half-Cauchy distribution since this distribution has fat tails. However, such a prior often
leads to undesirable numerical stability issues when using NUTS (Piironen & Vehtari, 2017). As a result, Piironen & Vehtari
(2017) instead propose using a regularized horseshoe prior which truncates the half-Cauchy distribution to have support
only on [0,m) instead of [0,1). This truncation (empirically) turns out to lead to better mixing properties, and is equivalent
to the following generative mechanism:

i =
m�ip

m2 + ⌘21�
2
i

�i ⇠ C+(0, 1) (26)

As �i ! 1, i ! m
⌘1

. Hence, as �i ! 1, the prior variance of ✓xi equals m. Since we might not know the scale m of the
non-zero main effects, we place a prior on m, namely,

m2 ⇠ InvGamma(↵1,�1) (27)

for hyperparameters ↵1 and ↵2.

Next, we model the interactions. If strong-hierarchy holds, sparsity comes for free; if there are only s ⌧ p non-zero
main effects, then there are at most s(s�1)

2 ⌧ p2 possible pairwise interactions. We must be careful, however, because
strong-hierarchy trivially holds; our main effect estimates will, with probability one, never equal zero because the prior
variances of the main effects are greater than 0 with probability one by Eq. (24) and our choice of priors. Instead, we aim for
a relaxed version of strong-hierarchy. Namely, that the prior variance of an interaction ✓xixj is large only if ✓xi and ✓xj are
both large. ✓xi and ✓xj are large only when i and j are large. Hence, it suffices to make the prior variance of ✓xixj large
only when i and j are both large. Let ̃2i = ⌘2

1
m22i . Then, 0  ̃2i  1 and ̃i approaches 1 as �i ! 1. Since, ̃2i and ̃2i

are bounded by 1, ̃2i ̃2i will only be close to 1 when each term is close to one. That is, when both �i and �j are large, or
equivalently when i and j are both large. Hence, it suffices to let

✓xixj | ⌘1, ⇠ N (0, ⇠2̃2j ̃
2
j )

= N (0, ⌘22
2
i

2
j ) for ⌘2 :=

⌘21
m2

⇠,
(28)

to promote strong-hierarchy, where ⇠ has the interpretation of the scale of the non-zero interaction effects; as �i and �j tend
to infinity, the prior variance of ✓xixj approaches ⇠2. Again, since we might not now this scale, we draw

⇠2 ⇠ InvGamma(↵2,�2), (29)

for some choice of hyperparameters ↵2 and �2.
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E. Woodbury Identity and the Matrix Determinant Lemma
To compute the determinant in Eq. (5), one can perform a Cholesky decomposition of ⌃N,⌧ 2 Rdim(�2)⇥dim(�2), which
costs O(Np2 + p6) time and O(Np2 + p4) memory. This factorization can be avoided through the Woodbury matrix lemma
and matrix determinant lemma.

The Woodbury matrix identity implies that,

(A�1 + UUT )�1 = A�AU(IK + UTAU)�1UTA, (30)

where A 2 RM⇥M , U 2 RM⇥K , and IK is the K ⇥K identity matrix. The matrix determinant lemma implies that,

det(A�1 + UUT ) = det(I + UTAU) det(A�1) (31)

Then, by the Woodbury identity,

⌃⌧,N = (⌃�1
⌧ +

1

�2
�2(X)T�2(X))�1 = ⌃⌧ � ⌃⌧�2(X)T (IN + �2(X)⌃⌧�2(X)T )�1�2(X)⌃⌧ . (32)

Computing p(D | ⌧) requires computing det(⌃⌧,N ). By the matrix determinant lemma,

det(⌃⌧,N ) = (det(IN + �2(X)⌃⌧�2(X)T ) det(⌃�1
⌧ ))�1. (33)

When ⌃⌧ is diagonal, the determinant equals the product of the diagonal, and its inverse equals one over the diagonal. Both
of these quantities can be computed in O(p2) time. Hence, the time complexity for computing det(⌃⌧,N ) is dominated by
computing det(IN + �2(X)⌃⌧�2(X)T ), which takes O(N2p2 +N3) time and O(Np2) memory to store �2(X).

F. Standard Polynomial Kernel
The feature map induced by the standard degree two polynomial kernel is given by

�c
poly,2(x) := (x2

1, · · · , x2
p,
p
2x1x2, · · · ,

p
2xp�1xp,

p
2cx1, · · · ,

p
2cxp, c)

= apoly,2 � �2(x), apoly,2 := (1, · · · , 1,
p
2, · · · ,

p
2,
p
2c, · · · ,

p
2c, c).

(34)

Hence, Eq. (34) implies that
diag(⌃poly,2) = apoly,2 � apoly,2. (35)

Eq. (35) shows that the prior covariance of the interaction terms are given higher prior variance than the main effects
when c  1, which is often undesirable. Furthermore, this prior does not promote sparsity, which is typically expected in
high-dimensional problems.


