
Adaptive Stochastic Natural Gradient Method for One-Shot Neural
Architecture Search

Youhei Akimoto * 1 Shinichi Shirakawa * 2 Nozomu Yoshinari 2 Kento Uchida 2 Shota Saito 2 3 Kouhei Nishida 4

Abstract
High sensitivity of neural architecture search
(NAS) methods against their input such as step-
size (i.e., learning rate) and search space prevents
practitioners from applying them out-of-the-box
to their own problems, albeit its purpose is to au-
tomate a part of tuning process. Aiming at a fast,
robust, and widely-applicable NAS, we develop a
generic optimization framework for NAS. We turn
a coupled optimization of connection weights and
neural architecture into a differentiable optimiza-
tion by means of stochastic relaxation. It accepts
arbitrary search space (widely-applicable) and en-
ables to employ a gradient-based simultaneous
optimization of weights and architecture (fast).
We propose a stochastic natural gradient method
with an adaptive step-size mechanism built upon
our theoretical investigation (robust). Despite its
simplicity and no problem-dependent parameter
tuning, our method exhibited near state-of-the-
art performances with low computational budgets
both on image classification and inpainting tasks.

1. Introduction
Neural architecture search (NAS) is a promising way to
automatically find a reasonable neural network architecture
and one of the most popular research topics in deep learning.
The success of deep learning impresses people from outside
machine learning communities and attracts practitioners
to apply deep learning to their own tasks. However, they
face different difficulties when applying deep learning. One
difficulty is to determine the neural architecture for their
previously-unseen problem. NAS is a possible solution to
this difficulty.

*Equal contribution 1University of Tsukuba & RIKEN
AIP 2Yokohama National University 3SkillUp AI Co., Ltd.
4Shinshu University. Correspondence to: Youhei Akimoto
<akimoto@cs.tsukuba.ac.jp>, Shinichi Shirakawa <shirakawa-
shinichi-bg@ynu.ac.jp>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Work published before 2017 often frames NAS as a hyper-
parameter optimization, where an architecture’s perfor-
mance is measured by the validation error obtained after the
training of the weights under a fixed architecture (Real et al.,
2017; Suganuma et al., 2017; Zoph & Le, 2017). More
recent studies (Brock et al., 2018; Shirakawa et al., 2018;
Pham et al., 2018; Liu et al., 2019; Xie et al., 2019; Cai
et al., 2019), on the other hand, optimize the weights and
the architecture simultaneously within a single training by
treating all possible architectures as subgraphs of a super-
graph. These approaches are called one-shot architecture
search or one-shot NAS. They break through the bottleneck
of the hyper-parameter optimization approaches, namely,
high computational cost for each architecture evaluation,
and enable to perform NAS on a standard personal com-
puter, leading to gathering more potential applications.

Research directions of NAS fall into three categories (Elsken
et al., 2019): performance estimation (how to estimate the
performance of architectures), search space definition (how
to define the possible architectures), and search strategy
(how to optimize the architecture). In the last direction,
promising approaches transform a coupled optimization of
weights and architectures into optimization of a differen-
tiable objective by means of continuous relaxation (Liu
et al., 2019; Xie et al., 2019) or stochastic relaxation (Shi-
rakawa et al., 2018; Pham et al., 2018). A gradient descent
or a natural gradient descent strategy with an existing adap-
tive step-size mechanism or a constant step-size is then em-
ployed to optimize weights and architecture simultaneously.
However, optimization performance is sensitive against its
inputs such as step-size (i.e., learning rate) and search space,
limiting its application to unseen tasks.

To achieve a robust NAS, we develop a generic optimiza-
tion framework for one-shot NAS. Our strategy is based on
stochastic relaxation. We generalize the work by Shirakawa
et al. (2018) to enable arbitrary types of architecture vari-
ables including categorical variables, ordinal (such as real or
integer) variables, and their mixture. We develop a unified
optimization framework for our stochastic relaxation based
on the so-called stochastic natural gradient (Amari, 1998).
Our theoretical investigation derives a condition on the step-
size for our objective value to improve monotonically every
iteration. We propose a step-size adaptation mechanism to

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

approximately satisfy the condition. It significantly relaxes
the performance sensitivity on the inputs and makes the
overall framework rather flexible.

Our contributions are summarized as follows: (i) Our frame-
work can treat virtually arbitrary types of architecture vari-
ables as long as one can define a parametric family of prob-
ability distributions on it; (ii) We propose a step-size adap-
tation mechanism for the stochastic natural gradient ascent,
improving the optimization speed as well as its robustness
against the hyper-parameter tuning. The default values are
prepared for all introduced hyper-parameters, and they need
not be touched even when the architecture search space
changes; (iii) The proposed approach can enjoy parallel
computer architecture, while it is comparable or even faster
than existing approaches even on serial implementation;
and (iv) Our strategy is rather simple, allowing us theoreti-
cal investigation, based on which we develop the step-size
adaptation mechanism.

2. Our Approach
In this paper we address the following optimization problem

max
x∈X , c∈C

f(x, c) , (1)

where f : X × C → R is the objective function that is
differentiable with respect to (w.r.t.) x ∈ X and is black-
box w.r.t. c ∈ C. The domain X of x is a subset of nx
dimensional real space Rnx , whereas C can be either cate-
gorical, continuous, or their product space. Our objective is
to simultaneously optimize x and c by possibly utilizing the
gradient∇xf . In the context of NAS, x, c and f represent
connection weights, architecture parameters, a criterion to
be maximized such as negative loss.

2.1. Stochastic Relaxation

We turn the original optimization problem into an optimiza-
tion of differentiable objective J by means of stochastic
relaxation. For this purpose, we introduce a family of prob-
ability distributions P = {Pθ : θ ∈ Θ ⊆ Rnθ} defined on
C. We suppose that for any c ∈ C the family of probability
distribution contains a sequence of the distributions that
approaches the Dirac-Delta distribution δc concentrated at c.
Moreover, we suppose that any Pθ ∈ P admits the density
function pθ w.r.t. the reference measure dc on C, and the
log-density is differentiable w.r.t. θ ∈ Θ. The stochastic
relaxation of f given P is defined as follows

J(x, θ) :=

∫
c∈C

f(x, c)pθ(c)dc = Epθ [f(x, c)] . (2)

Maximization of J coincides with maximization of f , as
supθ∈Θ J(x, θ) = supc∈C f(x, c) = f(x, c∗), where the

supremum of J(x, θ) is attained by the limit of the sequence
{θ} where Pθ converges to δc∗ .

The stochastic relaxation J inherits nice properties of f . For
example, if f(x, c) is convex and/or Lipschitz continuous
w.r.t. x, then so is J(x, θ) w.r.t. x, respectively. Moreover,
the stochastic relaxation J is differentiable w.r.t. both x and
θ under mild conditions as follows

∇xJ(x, θ) = Epθ [∇xf(x, c)] (3)
∇θJ(x, θ) = Epθ [f(x, c)∇θ ln(pθ(c))] . (4)

Stochastic Relaxation with Exponential Family: An ex-
ponential family consists of probability distributions whose
density is expressed as h(c)·exp(η(θ)TT (c)−ϕ(θ)), where
T : C → Rnθ is the sufficient statistics, η : Θ → Rnθ is
the natural parameter of this family, and ϕ(θ) is the nor-
malization factor. For the sake of simplicity, we limit our
focus on the case h(c) = 1. If we choose the parame-
ter θ so that θ = Epθ [T (c)], it is called the expectation
parameters of this family. Under the expectation parame-
ters, the natural gradient of the log-likelihood reduces to
∇̃ ln(pθ(c)) = T (c) − θ. The inverse of Fisher informa-
tion matrix is F−1(θ) = E[(T (c)− θ)(T (c)− θ)T], and is
typically expressed as an analytical function of θ.

2.2. Alternating Gradient Ascent

Let xt and θt represent the parameter values at iteration t.
We maximize (2) by alternating optimization, namely,

xt+1 = argmaxx∈X J(x, θt) (5)

θt+1 = argmaxθ∈Θ J(xt+1, θ) . (6)

Alternating steepest ascent is a way to avoid repeatedly
solving computationally heavy optimization (5) and (6).

Stochastic Gradient Ascent on X : Update step (5) is
replaced with the gradient ascent w.r.t. a metric A on X
with possibly time-dependent step-size εx,

xt+1 = xt + εxA∇xJ(xt, θt) . (7)

Here A may change over t, leading to (quasi-) second or-
der update. For fixed θt, it has been widely investigated
in literature, and convergence of x to a stationary point
‖∇xJ(x, θt)‖ = 0 is guaranteed under different conditions.

Monotone improvement of J is easily derived under differ-
ent conditions. An example result is as follows.
Proposition 1. Assume that J(x, θt) is ‖·‖A-Lipschitz
smooth w.r.t. x: ‖∇xJ(x′, θt)−∇xJ(x, θt)‖A ≤ L‖x′−
x‖A. (This is satisfied if f(x, c) is so for all c.) Then, for
εx < 2/L, we have the monotone improvement

J(xt+1, θt)− J(xt, θt)

≥ (εx − (L/2)ε2x)‖∇xJ(xt, θt)‖2A > 0 . (8)

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

In our situation, the gradient ∇xJ(xt, θt) is not tractable.
Instead, we estimate it by Monte-Carlo (MC) using
∇xJ(xt, ci) with independent and identically distributed
(i.i.d.) samples ci ∼ Pθt (i = 1, . . . , λx), namely,

Gx(xt, θt) =
1

λx

λx∑
i=1

∇xf(xt, ci) . (9)

The strong law of large numbers shows
limλx→∞Gx(xt, θt) = ∇xJ(xt, θt) almost surely
under mild conditions. The number λx of MC samples
determines the trade-off between the accuracy and the
computational cost.

We replace ∇xJ(xt, θt) with Gx(xt, θt), leading to a
stochastic gradient ascent, for which adaptation mechanisms
for the step-size εx are developed.

Stochastic Natural Gradient Ascent on Θ: Update step
(6) is replaced with the natural gradient ascent with gradient
normalization and step-size εθ,

θt+1 = θt + εθ∇̃θJ(xt+1, θt) (10)

εθ = δθ/‖∇̃θJ(xt+1, θt)‖F(θt) , (11)

where ∇̃θ = F(θt)−1∇θ. It can be approximately under-
stood as the trust region method under the Kullback-Leibler
(KL-) divergence with trust region radius δθ.

As the natural gradient is not analytically obtained, we use
MC to obtain its approximation

Gθ(x
t+1, θt) =

1

λθ

λθ∑
i=1

f(xt+1, ci)(T (ci)− θt) , (12)

where ci are i.i.d. from Pθt . The parameter update follows

θt+1 = θt + εθGθ(x
t+1, θt) (13)

εθ = δθ/‖Gθ(xt+1, θt)‖F(θt) . (14)

2.3. Adaptive Stochastic Natural Gradient

In general, the step-size of a stochastic gradient algorithm
plays one of the most important roles in performance and
optimization time. Different adaptive step-size mechanisms
have been proposed such as Adam (Kingma & Ba, 2015).
However, our preliminary empirical study shows a specific
adaptation mechanism for εθ is required to have robust per-
formance. In the following, we first investigate the theo-
retical properties of the stochastic natural gradient ascent
introduced above, then we introduce an adaptation mecha-
nism for the trust-region radius δθ.

Theoretical Background: For problems without x, i.e.,
fully black-box optimization of f(c), the natural gradient
ascent (10) of the stochastic relaxation (2) of function f(c)

is known as the information geometric optimization (IGO)
(Ollivier et al., 2017) algorithm. For the case of exponential
family with expectation parameters, Akimoto & Ollivier
(2013) have shown that (10) leads to a monotone increase
of J(θ), summarized as follows.1

Proposition 2 (Theorem 12 of (Akimoto & Ollivier, 2013)).
Assume that minc∈C f(c) > 0. Then, (10) satisfies

ln J(θt + εθ∇̃θJ(θt))− ln J(θt)

≥ ((εθJ(θt))−1 − 1)Dθ(θ
t + εθ∇̃θJ(θt), θt) , (15)

where Dθ is KL-divergence on Θ.

Proposition 2 gives us a very useful insight into the step-
size εθ. It says that εθ < 1/J(θt) leads to improvement in
J value as long as the parameter follows the exact natural
gradient. Together with Proposition 1, it implies the mono-
tone improvement of alternating update of x and θ when
the exact gradients are given. However, in our situation, the
natural gradient in (10) is not tractable and one needs to
approximate it with MC. Then, the monotone improvement
is not guaranteed. A promising feature of our framework is
that the MC approximate Gθ(xt+1, θt) of the natural gradi-
ent ∇̃θJ(θt) can be made arbitrarily accurate by taking the
number of MC samples λθ to∞.

The following proposition shows that the loss in J is
bounded if the divergence is bounded. Its proof can be
found in supplementary material.

Proposition 3. Assume that minc∈C f(c) > 0 and let f∗ =

maxc∈C f(c). Then, ln J(θ′)− ln J(θ) ≥ − f∗

J(θ)Dθ(θ
′, θ)

for any θ and θ′.

As a straight-forward consequence of the above two propo-
sitions, we obtain a sufficient conditions for the stochastic
natural gradient ascent to improve J monotonically. This is
the baseline of our proposal.

Theorem 4. Assume that minc∈C f(c) > 0 and let f∗ =
maxc∈C f(c). For any ε > 0, if Dθ(θ, θ

t + ε∇̃θJ(θt)) ≤
ζDθ(θ

t + ε∇̃θJ(θt), θt) holds for some ζ > 0, we have

ln J(θ)− ln J(θt)

≥ 1− ζεf∗ − εJ(θt)

εJ(θt)
Dθ(θ

t + ε∇̃θJ(θt), θt) . (16)

In particular, if ε < (ζf∗ + J(θt))−1 holds, J(θ) > J(θt).

If we replace θ with θt+1 defined in (13), we obtain a suf-
ficient condition for the stochastic natural gradient update

1The statement is simplified so as not to introduce additional
notation. Note that if f(c) is lower bounded, considering f(c)−
minc∈C f(c) in (2) instead of f is sufficient to meet the condition
of Proposition 2. This modification only adds an offset to the J
value without affecting the gradient.

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

(13) to lead to monotone improvement, namely,

Dθ(θ
t+1, θt + εθ∇̃θJ(xt+1, θt))

≤ ζDθ(θ
t + εθ∇̃θJ(xt+1, θt), θt) . (17)

This can be satisfied for any ζ > 0 by taking a suffi-
ciently large λθ as Gθ(xt+1, θt) is a consistent estimator of
∇̃θJ(xt+1, θt) and the left hand side (LHS) is O(λ−1

θ).

However, if εθ (or δθ) is sufficiently small, monotone im-
provement at each iteration is too strict and one might
only need to guarantee the improvement over τ > 0 it-
erations, where τ ∝ 1/δθ. To derive an insightful formula,
we put aside the mathematical rigor in the following. Let
∇̃tλθ = Gθ(x

t+1, θt) for short. We continue to consider a
problem without x (or x is fixed). A common argument bor-
rowed from stochastic approximation (e.g., Borkar (2008))
states that if εθ is so small that the parameter vector stays
near θt and ∇̃t+iλθ

are considered i.i.d. for i = 0, . . . , τ − 1,
the parameter vector after τ steps will be approximated as

θt+τ − θt ≈ εθτE[∇̃tλθ] + εθτ

τ−1∑
i=0

1

τ
(∇̃t+iλθ

− E[∇̃tλθ]) .

If we replace θt+1 with θt+τ and ε with τεθ in (17) and
apply the approximation of the KL-divergence by the Fisher
information matrix, we obtain∥∥∥∥∥

τ−1∑
i=0

∇̃t+iλθ
− E[∇̃tλθ]√
τ

∥∥∥∥∥
2

F(θt)︸ ︷︷ ︸
→Tr(Cov(∇̃tλθ)F(θt)) as τ→∞

≤ ζτ‖E[∇̃tλθ]‖2F(θt) ,

The LHS tends to the variance of ∇̃tλθ measured w.r.t. the
Fisher metric and is upper bounded by (f∗)2nθ/λθ. That is,
λθ and/or δθ should be adapted so that

‖E[∇̃tλθ]‖2F(θt)

Tr(Cov(∇̃tλθ)F(θt))
≥ 1

ζτ
∈ Ω(δθ) . (18)

In words, the signal-to-noise ratio (LHS of (18)) must be
greater than a constant proportional to δθ.

Adaptive Stochastic Natural Gradient: We develop an
algorithm that approximately satisfies the above-mentioned
condition by adapting the trust region δθ. The above con-
dition can be satisfied by increasing λθ while δθ is fixed,
and the same idea as described below can be used to adapt
the number λθ of MC samples. The reason we adapt δθ
rather than λθ is to update connection weights x more
frequently (x is updated after every λθ forward network
processes). If multiple GPUs are available, one can set
λθ = λx = #GPUs and enjoy parallel computation, al-
lowing to keep εx and δθ (hence εθ as well) higher as the
stochastic gradient becomes more reliable.

Algorithm 1 ASNG-NAS

Require: x0, θ0 {initial search points}
Require: α = 1.5, δ0

θ = 1, λx = λθ = 2
1: ∆ = 1, γ = 0, s = 0, t = 0
2: repeat
3: δθ = δ0

θ/∆, β = δθ/n
1/2
θ

4: compute Gx(xt, θt) by (9) and update xt+1 using
Gx(xt, θt)

5: compute Gθ(x
t+1, θt) by (12), update θt+1 with

(13), then force θt+1 ∈ Θ by projection

6: s← (1− β)s +
√
β(2− β)F(θt)

1
2Gθ(xt+1,θt)

‖Gθ(xt+1,θt)‖F(θt)

7: γ ← (1− β)2γ + β(2− β)
8: ∆← min(∆max,∆ exp(β(γ − ‖s‖2/α)))
9: until termination conditions are met

We introduce the accumulation of the stochastic natural
gradient as follows

s(t+1) = (1− β)s(t) +
√
β(2− β)F(θt)

1
2 ∇̃tλθ , (19)

γ(t+1) = (1− β)2γ(t) + β(2− β)‖∇̃tλθ‖2F(θt) , (20)

where s(0) = 0 and γ(0) = 0. To understand the effect of
s and γ, we consider the situation that εx and δθ are small
enough that xt and θt stay at (x, θ). Then, st approaches√

(2− β)/βE[F(θt)
1
2 ∇̃λθ]+ξ, where ξ is a random vector

with E[ξ] = 0 and Cov(ξ) = F(θt)
1
2 Cov(∇̃λθ)F(θt)

1
2 ,

and γt approximates E[‖∇̃λθ‖2F(θt)] = ‖E[∇̃λθ]‖2F(θt) +

Tr(Cov(∇̃tλθ)F(θt)). If we set β ∝ δθ and adapt λθ or δθ
to keep ‖s(t+1)‖2/γ(t+1) ≥ α for some α > 1, it approxi-
mately achieves

‖E[∇̃λθ]‖2F(θt)

Tr(Cov(∇̃tλθ)F(θt))
≥
‖E[∇̃λθ]‖2F(θt)

E[‖∇̃λθ‖2F(θt)]

≈ β

2− 2β

(‖s(t+1)‖2
γ(t+1)

− 1

)
≥ β(α− 1)

2− 2β
∈ Θ(δθ) .

It results in satisfying (18).

The adaptation of δθ is then done as follows:

δθ ← δθ exp
(
β
(
‖s(t+1)‖2/α− γ(t+1)

))
. (21)

This tries to keep ‖s(t+1)‖2/γ(t+1) ≈ α by adapting δθ.

2.4. Adaptive Stochastic Natural Gradient-based NAS

The proposed optimization method for problem (1), called
Adaptive Stochastic Natural Gradient-based NAS (ASNG-
NAS), is summarized in Algorithm 1. Here, we summarize
some implementation remarks. One is that instead of ac-
cumulating F(θt)

1
2 ∇̃tλθ and ‖∇̃tλθ‖2F(θt) separately in (19)

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

and (20), we accumulate F(θt)
1
2 ∇̃tλθ/‖∇̃tλθ‖F(θt) in s and

γ ≈ 1. In our preliminary experiments, we found it more
stable. The other point is that the average function value
is subtracted from the function value in the stochastic nat-
ural gradient computation (12) when λθ = 2. This is a
well-known technique to reduce the estimation variance of
gradient while the expectation is unchanged (e.g., Evans &
Swartz (2000)). Since we normalize the stochastic natural
gradient when the parameter is updated, it is equivalent to
transform f1 = f(xt+1, c1) and f2 = f(xt+1, c2) to (1,
−1) if f1 > f2, (−1, 1) if f1 < f2, and (0, 0) if f1 = f2

(in this case, we skip the update and start the next iteration).
When λθ > 2, we similarly transform fi = f(xt+1, ci) in
(12) to 1 if fi is in top dλθ/4e, −1 if it is in bottom dλθ/4e,
and 0 otherwise. By doing so, we obtain invariance to a
strictly increasing transformation of f , and we observed
significant speedup in many cases in our preliminary study.

To instantiate ASNG-NAS, we prepare an exponential
family defined on C. If C is a set of categorical vari-
ables (C = J1,m1K × · · · × J1,mncK), one can simply
use categorical distribution parameterized by the proba-
bility [θ]i,j = [θi]j of i-th categorical variable to be j
(1 −∑mi−1

j=1 [θ]i,j is the probability of [c]i = mi). Then,
T (c) = (T1([c]1), . . . , Tnc([c]nc)), where Ti : J1,miK →
[0, 1]mi−1 is the one-hot representation without the last el-
ement, and F(θ) = diag(F1(θ1), . . . ,Fnc(θnc)), where
Fi(θi) = diag(θi)

−1 + (1 − ∑mi−1
j=1 [θi]j)

−111T. If C
is a set of ordinal variables, e.g., C ⊆ Rnc , our choice
will be Pθ = N (µ1, σ

2
1) × · · · × N (µnc , σ

2
nc

) and θ =
(µ1, µ

2
1 + σ2

1 , . . . , µnc , µ
2
nc

+ σ2
nc

). Then, we have T (c) =
(T1([c]1), . . . , Tnc([c]nc)) with Ti([c]i) = ([c]i, [c]2i), and
F(θ) is a block-diagonal matrix with block size 2 whose
i-th block is [σ2

i , 2µiσ
2
i ; 2µiσ

2
i , 4µ

2
iσ

2
i + 2σ4

i]−1. Integer
variables can be treated similarly. If C is a product of
categorical and ordinal variable spaces, we can use their
product distribution. A desired θ0 realizes the maximal en-
tropy in Θ unless one has a prior knowledge. Moreover,
Θ should be restricted to avoid degenerated distribution.
E.g., for categorical distribution, we lower bounds [θ]i,j by
θmin
i = (nc(mi − 1))−1. See the supplementary material.

3. Experiments and Results
We investigate the robustness of ASNG on an artificial
test function in §3.1. We then apply ASNG-NAS to the
architecture search for image classification and inpaint-
ing in §3.2 and §3.3. To compare the quality of the ob-
tained architecture and the computational cost, we adopt
the same search spaces as in previous works. The exper-
iments were done with a single NVIDIA GTX 1080Ti
GPU, and ASNG-NAS is implemented using PyTorch
0.4.1 (Paszke et al., 2017). The code is available at
https://github.com/shirakawas/ASNG-NAS.

n−0.0
θ n−0.5

θ n−1.0
θ n−1.5

θ n−2.0
θ

initial step-size δ0
θ

0

2

4

6

8

#
it

er
at

io
ns

/
su

cc
es

s
ra

te

×104 εx = 0.05, α = 1.5

ASNG

SNG

Adam

n−0.0
θ n−0.5

θ n−1.0
θ n−1.5

θ n−2.0
θ

initial step-size δ0
θ

0

2

4

6

8

#
it

er
at

io
ns

/
su

cc
es

s
ra

te

×104 εx = 0.0005, α = 1.5

ASNG

SNG

Adam

Figure 1: Results on the selective squared error function for
εx = 0.05 and 0.0005. Median values over 100 runs are re-
ported. Missing values indicate the setting never succeeded.

3.1. Toy Problem

We consider the following selective squared error func-
tion composed of continuous variable x ∈ RD×K and
categorical variables c. For each i (1 ≤ i ≤ D), we de-
note the one-hot vector of i-th categorical variable in c by
hi(c) ∈ {0, 1}K . The objective function to be minimized is

f(x, c) = Ez

 D∑
i=1

K∑
j=1

hij(c)

(
(xij − zi)2 +

j − 1

K

) ,

where the underlying distribution of z isN (0,K−2I). This
function switches the active variables in x by the cate-
gorical variables c. The global optima locate at hi(c) =
[1, 0, . . . , 0] for i = 1, . . . , D, x1 = [0, . . . , 0], and arbi-
trary variables of xi for i = 2, . . . , D. To mimic NN train-
ing, we approximate the expectation by using a sample z,
which is drawn from N (0,K−2I) every parameter update.

We use the stochastic gradient descent (SGD) with a momen-
tum of 0.9 to optimize x and anneal the step-size εx by co-
sine scheduling (Loshchilov & Hutter, 2017), which we also
use for the latter experiments. We initialize x ∼ N (0, I)
and the distribution parameter θ = (1/K)1. We regard it
successfully optimized if a solution with the actual objec-
tive value less than K−1 + DK−2 is sampled before 105

iterations. We report the number of iterations to sample the
target value divided by the success rate over 100 runs as the
performance measure. We have tested different combina-
tions of D and K and observed similar results. We report
the results for D = 30 and K = 5 as a typical one. Figure
1 compares ASNG, SNG (stochastic natural gradient with
constant step-size), and Adam (Kingma & Ba, 2015)—a
standard step-size adaptation for DNNs—with different ini-
tial step-size. We replace the gradient in Adam with the
normalized natural gradient as it is used in ASNG since we

https://github.com/shirakawas/ASNG-NAS

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

found in our preliminary studies that Adam does not work
properly with its default. For SNG and Adam one needs
to fine tune the step-size, otherwise they fail to locate the
optimum. On the other hand, ASNG relaxes the sensitivity
against δ0

θ . The robustness of ASNG on the choice of α is
evaluated in the supplementary material.

3.2. Architecture Search for Image Classification

Dataset: We use the CIFAR-10 dataset and adopt the stan-
dard preprocessing and data augmentation as done in the
previous works, e.g., Liu et al. (2019); Pham et al. (2018).
During the architecture search, we split the training dataset
into halves as D = {Dx,Dθ} as done in Liu et al. (2019).
The gradients (9) and (12) are calculated using mini-batches
from Dx and Dθ, respectively. We use the same mini-batch
samples among the different architecture parameters in (9)
and (12) to get accurate gradients. Note that we do not
need the back-propagation for calculating (12). Namely, the
computational cost of the θ update is less than that of x.

Search Space: The search space is based on the one in
Pham et al. (2018), which consists of models obtained by
connecting two motifs (called normal cell and reduction
cell) repeatedly. Each cell consists of B (= 5) nodes and
receives the outputs of the previous two cells as inputs.
Each node receives two inputs from previous nodes, applies
an operation to each of the inputs, and adds them. Our
search space includes 5 operations: identity, 3 × 3 and
5 × 5 separable convolutions (Chollet, 2017), and 3 × 3
average and max poolings. The separable convolutions
are applied twice in the order of ReLU-Conv-BatchNorm.
We select a node by 4 categorical variables representing 2
outputs of the previous nodes and 2 operations applied to
them. Consequently, we treat 4B-dimensional categorical
variables for each cell. After deciding B nodes, all of the
unused outputs of the nodes are concatenated as the output
of the cell. The number of the categorical variables is nc =
40, and the dimension of θ becomes nθ = 140.

Training Details: In the architecture search phase, we op-
timize x and θ for 100 epochs (about 40K iterations) with
a mini-batch size of 64. We stack 2 normal cells (N = 2)
and set the number of channels at the first cell to 16. We
use SGD with a momentum of 0.9 to optimize weights x.
The step-size εx changes from 0.025 to 0 following the
cosine schedule (Loshchilov & Hutter, 2017). After the
architecture search phase, we retrain the network with the
most likely architecture, ĉ = argmaxc pθ(c), from scratch,
which is a commonly used technique (Brock et al., 2018;
Liu et al., 2019; Pham et al., 2018) to improve final perfor-
mance. In the retraining stage, we can exclude the redundant
(unused) weights. Then, we optimize x for 600 epochs with
a mini-batch size of 80. We stack 6 normal cells (N = 6)
and increase the number of channels at the first cell so that

the model has the nearly equal number of weight parameters
to 4 million. We report the average (avg.) and standard
deviation (std.) among 3 independent experiments.

Result and Discussion: Table 1 compares the search cost
and the test error of different NAS methods. The bottom
5 methods adopt similar search spaces, hence showing the
performance differences due to search algorithms. The avg.
and std. of ASNG-NAS are those of architecture search
+ retraining (whole NAS process), whereas the values for
the other methods are taken from the references and have
different meanings. E.g., the values for DARTS and SNAS
are the avg. and std. of 10 independent retraining of the
best found architecture among 4 NAS processes.

We clearly see the trade-off between search cost and fi-
nal performance. The more accurate the performance
estimation of neural architecture is (as in NASNet and
NAONet), the better final performance is obtained at the
risk of speed. Among relatively fast NAS methods (ENAS,
DARTS, SNAS, and ASNG-NAS), ASNG-NAS is the
fastest and achieves a competitive error rate. The reason of
speed difference between these algorithms is discussed in §4.
We observed that the probability vector θ of the categorical
distribution converges to a certain category. More precisely,
the average value of the maxj [θ]i,j reaches around 0.9 at
the 50th epoch. The architecture of the best model obtained
by ASNG-NAS is found in supplementary material.

Figure 2 compares the test error w.r.t. elapsed time in the ar-
chitecture search phase. The test accuracy of the most likely
architecture ĉ is plotted for ASNG-NAS. DARTS (mix) and
DARTS (fix) are the architectures obtained by the same
run of DARTS. The former is the one mixing all possible
operations with real-valued structure parameters and is the
one optimized during the architecture search, whereas the
latter is the one that takes the operations with the highest
weights and is the one used after the architecture search.
We see that DARTS (fix) do not improve the test accuracy
during the architecture search phase and the retraining is
a must. DARTS (mix) achieves better performance than
ASNG-NAS in the end, but the obtained architecture is not
one-hot and is computationally expensive. ASNG-NAS
shows the best performance for small time budgets.

3.3. Architecture Search for Inpainting

Dataset: We use the CelebFaces Attributes Dataset
(CelebA) (Liu et al., 2015). The data preprocessing and
augmentation method is the same as Suganuma et al. (2018).
We use three different masks to generate images with miss-
ing regions; a central square block mask (Center); a random
pixel mask where 80% of the pixels were randomly masked
(Pixel), and a half image mask where either the vertical
or horizontal half of the image is randomly selected (Half).
Following Suganuma et al. (2018), we use two standard eval-

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

Table 1: Comparison of different architecture search methods on CIFAR-10. The
search cost indicates GPU days for architecture search excluding the retraining cost.

Method Search Cost Params Test Error
(GPU days) (M) (%)

NASNet-A (Zoph et al., 2018) 1800 3.3 2.65
NAONet (Luo et al., 2018) 200 128 2.11

ProxylessNAS-G (Cai et al., 2019) 4 5.7 2.08
SMASHv2 (Brock et al., 2018) 1.5 16.0 4.03

DARTS second order (Liu et al., 2019) 4 3.3 2.76 (±0.09)
DARTS first order (Liu et al., 2019) 1.5 3.3 3.00 (±0.14)
SNAS (Xie et al., 2019) 1.5 2.8 2.85 (±0.02)
ENAS (Pham et al., 2018) 0.45 4.6 2.89
ASNG-NAS 0.11 3.9 2.83 (±0.14)

0 10 20
elapsed time (hour)

20

40

60

80

te
st

 a
cc

ur
ac

y

ASNG-NAS
ENAS
DARTS (mix)
DARTS (fix)

Figure 2: Transitions of test error
against elapsed time in the architec-
ture search phase.

uation measures: the peak-signal to noise ratio (PSNR) and
the structural similarity index (SSIM) (Wang et al., 2004)
to evaluate the restored images. Higher values of these
measures indicate a better image restoration.

Search Space: The search space we use is based on Sug-
anuma et al. (2018) for comparison. The architecture encod-
ing is slightly different but it can represent the exact same
network architectures. We employ the symmetric convo-
lutional autoencoder (CAE) as a base architecture. A skip
connection between the convolutional layer and the mirrored
deconvolution layer can exist. We prepare six types of lay-
ers: the combination of the kernel sizes {1×1, 3×3, 5×5}
and the existence of the skip connection. The layers with
different settings do not share weight parameters.

We implement two ASNG-NAS algorithms with only cate-
gorical variables (ASNG-NAS (Cat)) and with mixed cate-
gorical and ordinal (integer) variables (ASNG-NAS (Int))
to demonstrate the flexibility of the proposed approach. The
former encodes the layer type, channel size, and connec-
tions for each hidden layer, and the connection for the output
layer using categorical variables. We select the output chan-
nel size of each of 20 hidden layers from {64, 128, 256}.
The latter encodes the kernel size and the channel size by
integers in J1, 3K (corresponding to {1 × 1, 3 × 3, 5 × 5})
and J64, 256K. We employ the Gaussian distribution as
described in §2.4. Sampled variables are clipped to [1, 3]
and [64, 256] and rounded to integers (only for architecture
evaluation). The dimension of θ amounts to nθ = 214 for
ASNG-NAS (Cat) and nθ = 174 for ASNG-NAS (Int).

Training Details: We use the mean squared error (MSE)
as the loss function and a mini-batch size of 16. In the
architecture search phase, we use SGD with momentum
with the same setting in §3.2, while we use Adam in the
retraining phase. We apply gradient clipping with the norm

of 5 to prevent a too long gradient step. The maximum
numbers of iterations are 50K and 500K in the architecture
search and retraining phases, respectively. The setting of
the retraining is the same as in Suganuma et al. (2018).
Differently from the previous experiment, we retrain the
obtained architecture without any change in this experiment.

Result and Discussion: Table 2 shows the comparison of
PSNR and SSIM. The performances of ASNG-NAS are
better than CE, SII, and BASE on all mask types and com-
parable to E-CAE. Suganuma et al. (2018) reported that
E-CAE spent approximately 12 GPU days (3 days with 4
GPUs) for the architecture search and retraining. On the
other hand, the average computational times of ASNG-NAS
were less than 1 GPU days. ASNG-NAS (Cat) took approx-
imately 6 hours for the architecture search and 14 hours for
the retraining on average, whereas the average retraining
time of ASNG-NAS (Int) was reduced to 11 hours. This
is because the architectures obtained by ASNG-NAS (Int)
tended to have a small number of channels compared to
ASNG-NAS (Cat) that selects from the predefined three
channel sizes.

In conclusion, ASNG-NAS achieved practically significant
speedup over E-CAE without compromising the final per-
formance. The flexibility of ASNG-NAS has been shown as
well. The capability of ASNG-NAS to treat mixed categori-
cal and ordinal variables potentially decreases the number
of the architecture parameters (good for speed) and enlarges
the search space (good for performance).

4. Related Work and Discussion
ASNG-NAS falls into one-shot NAS. On this line of the re-
search, three different existing approaches are reported. The
1st category is based on a meta-network. SMASH (Brock
et al., 2018) employs HyperNet that takes an architecture

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

Table 2: Results on the inpainting tasks. CE and SII indicate the context encoder (Pathak et al., 2016) and the semantic image
inpainting (Yeh et al., 2017), which are the human-designed CNN. E-CAE refers to the model obtained by the architecture
search method using the evolutionary algorithm (Suganuma et al., 2018). BASE is the same depth of the best architecture
obtained by E-CAE but having 64 channels and 3× 3 filters in each layer, along with a skip connection. ASNG-NAS (Cat)
encodes all architecture parameters into categorical variables, whereas ASNG-NAS (Int) encodes the kernel and channel
sizes into integer variables. The values of CE, SII, BASE, and E-CAE are referenced from Suganuma et al. (2018).

PSNR [dB] / SSIM

Mask CE SII BASE E-CAE ASNG-NAS (Cat) ASNG-NAS (Int)
(12 GPU days) (0.84 GPU days) (0.75 GPU days)

Center 28.5 / 0.912 19.4 / 0.907 27.1 / 0.883 29.9 / 0.934 29.2 / 0.903 29.3 / 0.911
Pixel 22.9 / 0.730 22.8 / 0.710 27.5 / 0.836 27.8 / 0.887 28.4 / 0.905 28.6 / 0.909
Half 19.9 / 0.747 13.7 / 0.582 11.8 / 0.604 21.1 / 0.771 20.5 / 0.779 20.6 / 0.779

c as its input and returns the weights for the network with
architecture c. The weights of HyperNet is then optimized
by backprop while c is randomly chosen during architec-
ture search. ENAS (Pham et al., 2018) employs a recurrent
neural network (RNN) to generate a sequence of categorical
variables c representing neural architecture. It optimizes
the weights and the RNN weights alternatively. ENAS and
ASNG-NAS are different in that the latter directly intro-
duces a probability distribution behind c while the former
employ RNN. The advantage of ASNG-NAS over meta-
network based approaches is that we do not need to design
the architecture of a meta-network, which may be a tedious
task for practitioners.

The 2nd category is based on continuous relaxation. DARTS
(Liu et al., 2019) extends essentially categorical architecture
parameters (selection of operations and connections) to a
real-valued vector by considering a linear combination of
outputs of all possible operations. This enables gradient
descent both on the connection weights and the weights for
the linear combination. This seminal work is followed by
further improvements (Xie et al., 2019; Cai et al., 2019).
An advantage of ASNG-NAS is that DARTS requires to
compute all possible operations and connections to perform
backprop, whereas we only require to process sub-networks
with sampled architectures c, hence ASNG-NAS is faster.
This advantage is reflected in Table 1. Another advantage is
its flexibility in the sense that the continuous relaxation of
DARTS requires the output of all possible operations to live
in the same domain to add them.

The last category is based on stochastic relaxation, which
is another approach enabling to use gradient descent. Shi-
rakawa et al. (2018) has introduced it to model connections
and types of activation functions in multi-layer perceptrons.
They are encoded by a binary vector c and Bernoulli distri-
bution is considered as the underlying distribution of c. The
probability parameters of Bernoulli distribution is updated

by SNG. We improve their work in the following direc-
tions: generalization to arbitrary architecture parameters
(categorical, ordinal, or their mixture), theoretical investiga-
tion of monotone improvement, robustness against its input
parameter by introducing a step-size adaptation mechanism.

This paper focused on the optimization framework for NAS.
One can easily incorporate a different search space and a dif-
ferent performance estimation method into our framework.
The step-size adaptation mechanism eases hyper-parameter
tuning when different components are introduced. The abil-
ity to treat ordinal variables such as the number and size of
filters and the number of layers accepts more flexible search
space. In existing studies they are modeled by categorical
variables by choosing a few representative numbers before-
hand. Moreover, the ordinal variables potentially decreases
the dimension of architecture parameters. When multiple
GPUs are available, ASNG-NAS can easily enjoy them by
increasing λx and λc and distributing them. In our prelim-
inary study, we found that the larger they are, the greater
step-size are allowed and the step-size adaptation automati-
cally increases it. Our simple formulation allows theoretical
investigation, which we think is missing in the current NAS
research fields. Further theoretical investigation will con-
tribute better understanding and further improvement of
NAS.

One-shot NAS including our method does not optimize pa-
rameters involved in learning process such as the step-size
for weight update. It is because their effects do not appear
in the one-shot loss and will not be optimized effectively. If
we employ hyper-parameter optimizers such as Bayesian op-
timization to optimize these parameters while each training
process is replaced by our method, both architectures and
other hyper-parameters could be optimized. The fast and
robust properties of our method will be useful to combine
one-shot NAS and hyper-parameter optimizer. This is an
important direction towards automation of deep learning.

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

Acknowledgement
This work is partially supported by the SECOM Science
and Technology Foundation.

References
Akimoto, Y. and Ollivier, Y. Objective improvement in

information-geometric optimization. In FOGA XII ’13:
Proceedings of the twelfth workshop on Foundations of
genetic algorithms XII, pp. 1–10. ACM, jan 2013.

Amari, S. Natural Gradient Works Efficiently in Learning.
Neural Computation, 10(2):251–276, 1998.

Borkar, V. S. Stochastic approximation: a dynamical sys-
tems viewpoint. Cambridge University Press, 2008.

Brock, A., Lim, T., Ritchie, J., and Weston, N. SMASH:
One-Shot Model Architecture Search through HyperNet-
works. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct Neural
Architecture Search on Target Task and Hardware. In
International Conference on Learning Representations
(ICLR), 2019.

Chollet, F. Xception: Deep Learning with Depthwise Sep-
arable Convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1800–1807,
2017.

Elsken, T., Metzen, J. H., and Hutter, F. Neural Architec-
ture Search: A Survey. Journal of Machine Learning
Research, 20(55):1–21, 2019.

Evans, M. J. and Swartz, T. Approximating integrals via
Monte Carlo and deterministic methods. Oxford Univer-
sity Press, USA, 2000. ISBN 0198502788.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations (ICLR), 2015.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differen-
tiable Architecture Search. In International Conference
on Learning Representations (ICLR), 2019.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning Face
Attributes in the Wild. In IEEE International Conference
on Computer Vision (ICCV), pp. 3730–3738, 2015.

Loshchilov, I. and Hutter, F. SGDR: Stochastic Gradient
Descent with Warm Restarts. In International Conference
on Learning Representations (ICLR), 2017.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T. Neural
Architecture Optimization. In Advances in Neural In-
formation Processing Systems (NIPS), pp. 7827–7838,
2018.

Ollivier, Y., Arnold, L., Auger, A., and Hansen, N.
Information-Geometric Optimization Algorithms: A Uni-
fying Picture via Invariance Principles. Journal of Ma-
chine Learning Research, 18(1):564–628, 2017.

Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga,
L., and Devito, Z. Automatic differentiation in PyTorch.
In Autodiff Workshop in Thirty-first Conference on Neural
Information Processing Systems (NIPS), 2017.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and
Efros, A. A. Context Encoders: Feature Learning by
Inpainting. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2536–2544, 2016.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient Neural Architecture Search via Parameter Shar-
ing. In The 35th International Conference on Machine
Learning (ICML), volume 80, pp. 4095–4104, 2018.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. Large-Scale Evo-
lution of Image Classifiers. In The 34th International
Conference on Machine Learning (ICML), volume 70, pp.
2902–2911, 2017.

Shirakawa, S., Iwata, Y., and Akimoto, Y. Dynamic Op-
timization of Neural Network Structures Using Proba-
bilistic Modeling. In Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI), pp. 4074–4082, 2018.

Suganuma, M., Shirakawa, S., and Nagao, T. A Genetic Pro-
gramming Approach to Designing Convolutional Neural
Network Architectures. In The Genetic and Evolutionary
Computation Conference (GECCO), pp. 497–504, 2017.

Suganuma, M., Ozay, M., and Okatani, T. Exploiting the
Potential of Standard Convolutional Autoencoders for
Image Restoration by Evolutionary Search. In The 35th
International Conference on Machine Learning (ICML),
volume 80, pp. 4778–4787, 2018.

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image
Quality Assessment: From Error Visibility to Structural
Similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: Stochastic
Neural Architecture Search. In International Conference
on Learning Representations (ICLR), 2019.

Yeh, R. A., Chen, C., Lim, T. Y., Schwing, A. G., Hasegawa-
Johnson, M., and Do, M. N. Semantic Image Inpainting

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search

with Deep Generative Models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
6882–6890, 2017.

Zoph, B. and Le, Q. V. Neural Architecture Search with
Reinforcement Learning. In International Conference on
Learning Representations (ICLR), 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
Transferable Architectures for Scalable Image Recogni-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8697–8710, 2018.

