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Appendix A. Projections for discrete
distributions
We have introduced so far a set of projections to help solve
optimization problems involving Gaussian distributions.
The projections allow one to tackle the maximization of
an objective function under entropy and (I-projection) KL
constraint. While finding an appropriate projection for a
constraint is not trivial, the advantage of our approach to con-
strained optimization is that the projection is independent
of the objective and can be used to optimize any objective
function. We discuss in this section how projections can be
used to add entropy and KL constraints to discrete action
RL algorithms.

For discrete action spaces, a usual choice is for π to be a soft-
max distribution π(ai|s) ∝ exp(f iω(s)) where f iω is the i-th
output of parameterized function fω . From here on we term
fω the ’logits’ of π, and letH(fω(s)) be the entropy of the
associated soft-max distribution. For a given s, let ri be the
probability of action i according to fω , i.e. ri ∝ exp(f iω(s)).
To ensure satisfaction of the entropy constraint, we derive
a projection gβ such thatH(gβ ◦ fω(s)) ≥ β for all s. The
resulting policy π of logits gβ ◦ fω is given by

π(ai|s) =

{
ri, ifH(fω) ≥ β
αri + (1− α) 1

|A| , otherwise

where α = log(|A|)−β
log(|A|)−H(fω) . This policy will always comply

with the constraint H(π(.|s)) ≥ β for all s. It is true by
definition for H(fω) ≥ β and can easily be verified when
H(fω) < β since

H
(
αr + (1− α)

1

|A|

)
≥ αH(fω) + (1− α) log (|A|) ,

(1)

= β.

The inequality follows from the fact that the entropy of
a mixture is greater than the mixture of entropies (Cover
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Figure 1. Sampled objective functions to be optimized by the DPS
algorithms.

& Thomas, 2006). The mixture being between the proba-
bility distribution defined by r which has entropy H(fω)
and the uniform distribution which has entropy log (|A|).
The equality to β in the above set of equations follows
from the definition of α. This projection is for the con-
straint H(gβ ◦ fω(s)) ≥ β for all s. If one desires to have
IEs [H(gβ ◦ fω(s))] ≥ β instead, applying the expectation
to the lower bound of inequality (1) indicates that the ap-
propriate interpolation parameter is obtained by replacing
H(fω) by its expectation over s in the definition of α. The
projection for the KL follows a similar principle, simply
replacing the uniform distribution in the interpolation with
q, and using the same argument of mixture to obtain a linear
equation in the interpolation parameter.

Appendix B. DPS experiment
We evaluate Alg. 1 for solving DPS search distribution up-
date introduced in Sec. 2.1. The algorithm is tasked to
optimize randomly generated smooth functions, two sample
of which are shown in Fig. 1. We compare the optimization
of L ◦ g with g as defined in Alg. 1 to two baselines from
the literature relying on the method of Lagrange multipliers.

State-of-the-art baselines

The considered baseline algorithms to our projection method
are REPS (Peters et al., 2010) and MORE (Abdolmaleki
et al., 2015) that both rely on the method of Lagrange mul-
tipliers to obtain a closed form solution to the constrained
problem. REPS (Peters et al., 2010; Deisenroth et al., 2013)
solves the same DPS update problem bar the entropy con-
straint which it lacks. The closed form solution of the update
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Figure 2. Optimization of smooth objective functions with varying number of samples per iteration, with values of 27, 9, 6, and 3 from
left to right columns. First row shows the average return at each iteration averaged over 11 runs. Second and third row show the KL
divergence between successive policies of two runs.

is given by

π(θ) ∝ q(θ) exp

(
R̄(θ)

η∗

)
,

where R̄(θ) = IE [R(θ)] and η∗ is a dual variable that is
computed using gradient descent. However, π is not nec-
essarily Gaussian and an additional weighted maximum
likelihood step is necessary to obtain the next search distri-
bution. This final step can cause large violations of the KL
constraint.

MORE (Abdolmaleki et al., 2015) solves the same DPS
update problem, but uses R̂, a quadratic approximation of
R learned by linear regression. The resulting policy is

π(θ) ∝ q(θ)η
∗/(η∗+ω∗) exp

(
R̂(θ)

η∗ + ω∗

)
.

As R̂ is quadratic and q Gaussian the resulting search distri-
bution remains Gaussian and the KL and entropy constraints
are never violated.

Experiment

We compare our approach to the two baselines of the previ-
ous section for the optimization of randomly generated and
smooth two dimensional objective functions, illustrated in

Fig. 1. The results are reported in Fig. 2 on 11 independent
runs and varying number of samples per iteration. The 11
randomly generated functions are sampled once and kept
fixed for all the algorithms and varying hyper-parameters.
For each function, the reported results are mapped to [0, 1]
after computing the minimal and maximal values reached
for this function across all algorithms and hyper-parameters.

First row of Fig. 2 shows the average return at each iteration
for the three direct policy search algorithms. The number
of samples per iteration takes values 27, 9, 6 and 3 from
left to right column respectively while the dimensionality of
the problem is d = 2. Our approach, termed ’ProjectionPS’
is very robust to reduction in sample count and changes
moderately across scenarios. While REPS exhibits signs of
premature convergence as the sample count drops, caused
by large KL constraint violations as seen in Fig. 2, second
and third row. MORE never violates the KL constraint but
the quadratic models are of poor quality using only 3 and
6 samples which deteriorates performance. Our algorithm
nearly always returns a solution with maximum allowed
KL constraint ε = .1 apart from a single run with a sample
count of 3 as seen in Fig. 2.
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Appendix C. Extended proofs of the
propositions
We extend the proofs of the propositions of the main paper
in this appendix. Starting with the entropy projection, we
recall the definition of h,

h(λ, c) =

(
d

2
log(2πe) +

∑
i

λi

)
− β. (2)

Proposition 1. Optimizing any function L(π) w.r.t. mean
vector µ and diagonal matrix Σ of a Gaussian π = N (µ,Σ)
under entropy equality constraintH(π) = β is equivalent
to the unconstrained optimization of L(π) w.r.t. mean vector
µ and the real valued parameter vector λ such that Σi,i =
exp2(λi − 1

dh(λ, β)) with h as define in Eq. (2).

Proof. We show that any value of λ will yield a Gaussian
distribution that satisfies the entropy equality constraint and
that for any Gaussian distribution N (µ,Σ) satisfying the
entropy constraint there is a parameter vector λ representing
it. The first implication is verified through straightforward
computation, using the definition of h to conclude that the
resulting Gaussian has entropy of exactly β; while for any
Σ such thatH(Σ) = β, setting λi = 1

2 log(Σi,i) will yield
back Σ since h(λ, β) = 0. Hence optimizing L(π) w.r.t.
Σ under constraint H(π) = β is equivalent to the uncon-
strained optimization of L(π) w.r.t. λ.

Proposition 2. Optimizing any function L(π) w.r.t. mean
vector µ and diagonal matrix Σ of a Gaussian π = N (µ,Σ),
under entropy inequality constraintH(π) ≥ β is equivalent
to the unconstrained optimization of L(π) w.r.t. mean vector
µ and the real valued parameter vector λ such that Σi,i =
exp(2 max(λi, λi − 1

dh(λ, β))) with h defined in Eq. (2).

Proof. If Σi,i = exp(2 max(λi, λi− 1
dh(λ, β))) and Σ′i,i =

exp(2λi − 1
dh(λ, β)) then H(Σ) ≥ H(Σ′) and we have

shown that H(Σ′) = β. Now let a diagonal Gaussian dis-
tribution π = N (µ,Σ) such that H(Σ) ≥ β and let λ
be the parameter vector such that λi = 1

2 log(Σi,i), then
h(λ, β) ≥ 0 implying that max(λi, λi − 1

dh(λ, β)) = λi.
Hence the parameter vector λ will yield Σ. As a result,
optimizing L(π) w.r.t. Σ under constraint H(π) ≥ β is
equivalent to the unconstrained optimization of L(π) w.r.t.
λ.

Proposition 3. Optimizing any function L(π) w.r.t. mean
vector µ and covariance Σ of a Gaussian π = N (µ,Σ),
under entropy inequality constraint H(π) ≥ β and KL
constraint KL(π ‖ q) ≤ ε for Gaussian q such thatH(q) ≥
β is equivalent to the unconstrained optimization of L(π)
w.r.t. the parameterization given by Alg. 1.

Algorithm 1 DPS Gaussian policy projection
Input: µ, λ, λoff diag, q = N (µq,Σq), ε and β
Output: π = N (µ,Σ) complying with KL and entropy
constraints
Σ = Entropy projection(λ, λoff diag, β)
if KL(N (µ,Σ) ‖ q) > ε then
ηg = ε

mq(µ)+rq(Σ)+eq(Σ)

Σ = ηgΣ + (1− ηg)Σq
end if
if KL(N (µ,Σ) ‖ q) > ε then
ηm =

√
ε−rq(Σ)−eq(Σ)

mq(µ)

µ = ηmµ+ (1− ηm)µq
end if

Proof. The assumption that H(q) ≥ β ensures that the
optimization problem admits a valid solution that satisfies
both KL and entropy constraint. Let us first show that Alg. 1
returns Gaussian distributions satisfying both constraints
irrespective of the input values. Alg. 1 starts by using the
entropy projection which from Prop. 2 will result inH(Σ) ≥
β. The remainder of the algorithm simply interpolates the
current covariance and mean with that of q to ensure that
KL(π ‖ q) ≤ ε. Letting Ση = ηΣ + (1 − η)Σq, for
η ∈ [0, 1], the value of ηg and ηm are derived by trying to
upper bound rq + eq and mq respectively. For eq(Ση)

|Ση|
1
d ≥ |ηΣ| 1d + |(1− η)Σq|

1
d ,

(Minkowski determinant inequality)

log |Ση| ≥ η log |Σ|+ (1− η) log |Σq|,
(concavity of log)

eq(Ση) ≤ ηeq(Σ).

Exploiting linearity of the trace operator, one can straighfor-
wardly show the same property for rq(Ση). As a result we
have that rq(Ση) + eq(Ση) ≤ η(rq(Σ) + eq(Σ)). Note that
the entropy constraint is satisfied by Ση for any η ∈ [0, 1]
since the second inequality derived from the concavity of
the log shows that the entropy of Ση cannot be lower than
the entropy of the covariances it interpolates. Similarly for
the mean, letting µη = ηµ + (1 − η)µq for η ∈ [0, 1], we
have mq(µη) = η2mq(µ). As a result, using the property
that the KL is non-negative—which implies non-negativity
of mq and rq + eq—one can verify that ηg and ηm are both
in [0, 1] and by direct computation using the value of ηg and
ηm in the above inequality and equality, that Alg. 1 returns
a distribution satisfying both KL and entropy constraint.
Conversely, if N (µ,Σ) satisfies the KL constraint then it
will be unaltered by the KL projection part of Alg. 1 while
we know from Prop. 2 that there is a set of parameters to
represent any Σ satisfying the entropy constraint.

Proposition 4. Optimizing any function L(π) w.r.t. pa-
rameters A′ and Σ of linear in feature Gaussian pol-
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Algorithm 2 API linear-Gaussian policy projection
Input: A′, λ, λoff diag, q(.|s) = (ATq ψq(s),Σq), AT , ψ,
ε and β
Output: π(.|s) = N (A′Tψ(s),Σ) complying with KL
and entropy constraints
Σ = Entropy projection(λ, λoff diag, β)
if IEsKL(N (A′Tψ(s),Σ) ‖ q(.|s)) > ε then
ηg =

ε−mq(A)
mq(A′)+rq(Σ)+eq(Σ)

Σ = ηgΣ + (1− ηg)Σq
end if
if IEsKL(N (A′Tψ(s),Σ) ‖ q(.|s)) > ε then
a = .5IEs||A′Tψ(s)−ATψ(s)||2

Σ−1
q

b = .5IEs[(A
′Tψ(s)−ATψ(s))T

Σ−1
q (ATψ(s)−ATq ψq(s))]

c = mq(A) + rq(Σ) + eq(Σ)− ε
ηm = −b+

√
b2−ac
a

A′ = ηmA
′ + (1− ηm)A

end if

icy π(.|s) = N (A
′Tψ(s),Σ), under entropy con-

straint IEs∼q [H(π(.|s))] ≥ β and KL constraint
IEs∼q [KL(π(.|s) ‖ q(.|s))] ≤ ε to linear in feature Gaus-
sian policy q(.|s) = N (ATq ψq(s),Σq) such that i)H(q) ≥
β and ii) there exist A such that mq(A) ≤ ε, is equiva-
lent to the unconstrained optimization of L(π) w.r.t. the
parameterization given by Alg. 2.
Proof. The additional assumption (ii) on q compared to
Prop. 3 ensures that the feature change from ψq to ψ does
not preclude the existence of a solution to the optimization
problem. In Alg. 2 the mean projection requires an ηm such
that mq (ηmA

′ + (1− ηm)A)+rq(Σ)+eq(Σ) = ε in case
of KL violation, i.e. to solve f(η) = aη2 + 2bη + c = 0
with coefficients given in Alg. 2. The solution is given by
ηm ∈ [0, 1] as defined in Alg. 2. Indeed, f(0) ≤ 0 from the
definition of ηg and f(1) > 0 because the KL is violated
and since f is continuous and convex (a ≥ 0) then the
quadratic function f accepts a root in [0, 1] and is given by
the greater root as in Alg. 2. The rest of the proof follows
as for Prop. 3.
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