A. Concentration bounds

In this section we include a series of well known concentration bounds used in the statistical learning literature. In order to prove this bounds we will use the notion of Rademacher complexity.
Definition 7. Given a sample $z_{1}, \ldots, z_{m} \in \mathcal{Z}$ and a class of functions G mapping \mathcal{Z} to $[0,1]$, we define the empirical Rademacher complexity of G as

$$
\Re_{m}(G)=\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{g \in G} \sum_{i=1}^{m} g\left(z_{i}\right) \sigma_{i}\right],
$$

where σ_{i} are i.i.d. uniform random varialbes over the set $\{-1,1\}$.

The Rademacher complexity of a class is closely related to its VC dimension. The following Lemma can be found in (Mohri et al., 2012).
Lemma 3. Let G be a function class with VC dimension $\operatorname{VCdim}(h)=d$ then

$$
\Re(G) \leq \sqrt{2 m d \log \frac{e m}{d}}
$$

Lemma 4. Let L be K-Lipchitz and let $\delta>0$. Conditioned on the choice of users belonging to the sample the following bound holds with probability at least $1-\delta$ for for all $h \in H$

$$
\begin{aligned}
& \left|\sum_{j} \sum_{i=1}^{n_{\tau j}} L\left(h\left(x_{i j}\right), y_{i j}\right)-\sum_{j} n_{\tau j} \mathcal{L}_{j}(h)\right| \\
& \quad \leq 2 K \Re_{n_{\tau}}(H)+\sqrt{\frac{n_{\tau} \log \frac{1}{\delta}}{2}}
\end{aligned}
$$

Proof. Relabeling the samples we notice that the left hand side of the above inequality is given by

$$
\left|\sum_{i=1}^{n_{\tau}} L\left(h\left(x_{i}\right), y_{i}\right)-\mathbb{E}\left[\sum_{i=1}^{n_{\tau}} L\left(h\left(x_{i}\right), y_{i}\right)\right]\right| .
$$

Let $H_{L}=\{(x, y) \mapsto L(h(x), y) \mid h \in H\}$, using the fact that $\left(x_{i}, y_{i}\right)$ are independent conditioned on the choice of users and a standard learning theory bound (Mohri et al., 2012) we have with probability at least $1-\delta$

$$
\begin{gathered}
\left|\sum_{i=1}^{n_{\tau}} L\left(h\left(x_{i}\right), y_{i}\right)-\mathbb{E}\left[\sum_{i=1}^{n_{\tau}} L\left(h\left(x_{i}\right), y_{i}\right)\right]\right| \\
\leq \Re_{n_{\tau}}\left(H_{L}\right)+\sqrt{\frac{n_{\tau} \log \frac{1}{\delta}}{2}}
\end{gathered}
$$

Finally by Talagrand's contraction lemma (Mohri et al., 2012) we know that $\Re_{n_{\tau}}\left(H_{L}\right) \leq K \Re_{n_{\tau}}(H)$ which concludes the proof.

Lemma 1. Conditioned on the outcomes of $\left\{J_{i}\right\}$, with probability at least $1-\delta$ the following holds uniformly over $h \in H$:

$$
\left|\mathcal{L}_{\mathcal{S}_{\tau}}(h)-\sum_{j} \frac{n_{\tau j}}{n_{\tau}} \mathcal{L}_{j}(h)\right| \leq \sqrt{\frac{2 d \log \frac{e n}{d}}{\tau_{0} n}}+\sqrt{\frac{\log (1 / \delta)}{2 \tau_{0} n}}
$$

Proof. The proof follows directly from the previous proposition and a standard bound on the Rademacher complexity by the VC dimension (Mohri et al., 2012).

Lemma 2. Fix $\delta>0$ and let $d=\operatorname{VCdim}(H)$. Then with probability at least $1-\delta$, the following inequality holds uniformly for h in H.

$$
\begin{aligned}
& \left|\mathcal{L}_{\mathcal{S}_{\tau}}(h)-\mathcal{L}(h)\right| \leq \sqrt{\frac{2 d \log \frac{e n}{d}}{\tau_{0} n}}+\sqrt{\frac{\log (2 / \delta)}{2 \tau_{0} n}} \\
& \quad+\left|\sum_{j}\left(\frac{n_{\tau j}}{n_{\tau}}-\frac{n_{j}}{n}\right) \mathcal{L}_{j}(h)\right|+\sqrt{\frac{\log \frac{4}{\delta}}{2 n}}
\end{aligned}
$$

Proof. We begin by decomposing the loss into three parts.

$$
\begin{align*}
\left|\mathcal{L}_{\mathcal{S}_{\tau}}(h)-\mathcal{L}(h)\right| & \leq\left|\mathcal{L}_{\mathcal{S}_{\tau}}(h)-\sum_{j} \frac{n_{\tau j}}{n_{\tau}} \mathcal{L}_{j}(h)\right| \tag{7}\\
& +\left|\sum_{j}\left(\frac{n_{\tau j}}{n_{\tau}}-\frac{n_{j}}{n}\right) \mathcal{L}_{j}(h)\right| \tag{8}\\
& +\left|\sum_{j}\left(\frac{n_{j}}{n}-p_{j}\right) \mathcal{L}_{j}(h)\right| \tag{9}
\end{align*}
$$

Eq. (7) is the generalization error of our empirical loss, conditioned on the outcomes of $\left\{J_{i}\right\}$. We bound it by applying Lemma 1 with $\frac{\delta}{2}$.
Eq. (8) is the error attributable to differences between the original dataset \mathcal{S} and the thresholded data set \mathcal{S}_{τ}; it appears directly in the bound.

Finally, Eq. (9) is the finite sample error due to the randomness in $\left\{J_{i}\right\}$. Observe that

$$
\left|\sum_{j}\left(\frac{n_{j}}{n}-p_{j}\right) \mathcal{L}_{j}(h)\right|=\left|\frac{1}{n} \sum_{i=1}^{n} L_{J_{i}}(h)-\sum_{j} p_{j} \mathcal{L}_{j}(h)\right|
$$

which is just the difference between the sample mean of n i.i.d. random variables bounded in $[0,1]$ and their true mean. Hoeffding's inequality thus bounds (9) by $\sqrt{\frac{\log \frac{4}{8}}{2 n}}$ with probability $1-\frac{\delta}{2}$.
Combining these results under a union bound completes the proof.

B. Bias bounds

Proposition 2. Let r_{j} for $j \in \mathbb{N}$ be such that $r_{j} \geq 0$ and $\sum_{j=1}^{n} r_{j}=1$. Let $0 \leq q_{j} \leq r_{j}, Q=\sum_{j} q_{j}$. Finally let $q_{j}^{\prime}=\frac{q_{j}}{Q}$. If $|L(h, z)| \leq 1$, then the following bound holds for all hypotheses h.

$$
\left|\sum_{j}\left(q_{j}^{\prime}-r_{j}\right) \mathcal{L}_{j}(h)\right| \leq \sqrt{\frac{1}{2} \log \left(\frac{1}{Q}\right)}
$$

Proof. Using the fact that $\mathcal{L}_{j}(h) \leq 1$ we have

$$
\begin{equation*}
\left|\sum_{j}\left(q_{j}^{\prime}-r_{j}\right) \mathcal{L}_{j}(h)\right| \leq \sum_{j}\left|q_{j}^{\prime}-r_{j}\right| \tag{10}
\end{equation*}
$$

Let \mathbf{r} and \mathbf{q}^{\prime} denote the distributions induced by r_{j} and q_{j}^{\prime} respectively. By Pinsker's inequality we know

$$
\sum_{j=1}\left|q_{j}^{\prime}-r_{j}\right| \leq \sqrt{\frac{1}{2} \mathrm{KL}\left(\mathbf{r} \| \mathbf{q}^{\prime}\right)}
$$

where $\operatorname{KL}\left(\mathbf{r} \| \mathbf{q}^{\prime}\right)$ denotes the Kullback-Leibler divergence between the two distributions. We can bound this divergence as follows:

$$
\begin{array}{r}
\mathrm{KL}\left(\mathbf{r} \| \mathbf{q}^{\prime}\right)=\frac{1}{Q} \sum_{j} q_{j} \log \left(\frac{q_{j}}{Q r_{j}}\right) \leq \frac{1}{Q} \sum_{j} q_{j} \log \left(\frac{1}{Q}\right) \\
=\log \left(\frac{1}{Q}\right)
\end{array}
$$

where we have used the fact that $q_{j}<r_{j}$ for the first inequality. Substituting this bound back in (10) yields the statement of the proposition.

We now define a more general version of the variance term introduced in Section 6.
Definition 8. Given a distribution \mathbf{r} over \mathbb{N} and a hypothesis $h \in H$ we define the variance of h with respect to \mathbf{r} as

$$
\operatorname{Var}(h, \mathbf{r})=\sum_{j} r_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{h}\right)^{2}
$$

Proposition 3. Under the notation and assumptions of Proposition 2, the following bound holds for every h :

$$
\left|\sum_{j}\left(q_{j}^{\prime}-r_{j}\right) \mathcal{L}_{j}(h)\right| \leq \sqrt{\frac{2 \operatorname{Var}(h, \mathbf{r})}{Q}}
$$

Proof. The proof relies on the simple fact that:
$\sum_{i} \sum_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h)\right) r_{i} q_{j}^{\prime}=\sum_{j} \mathcal{L}_{j}(h) q_{j}^{\prime}-\sum_{i} \mathcal{L}_{i}(h) r_{i}$.

This is easy to verify using the fact that $\sum r_{i}=1$ and $\sum q_{j}^{\prime}=1$. We can now apply the Cauchy-Schwarz inequality as follows:

$$
\begin{aligned}
& \left|\sum_{j}\left(q_{j}^{\prime}-r_{j}\right) \mathcal{L}_{j}(h)\right| \\
& =\left|\sum_{i} \sum_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h)\right) q_{j}^{\prime} r_{i}\right| \\
& =\left|\sum_{i} \sum_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h)\right) \sqrt{r_{i} r_{j}} \frac{q_{j}^{\prime}}{\sqrt{r_{j}}} \sqrt{r_{i}}\right| \\
& \leq \sqrt{\sum_{i} \sum_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h)\right)^{2} r_{i} r_{j}} \sqrt{\sum_{i} \sum_{j} \frac{\left(q_{j}^{\prime}\right)^{2}}{r_{j}} r_{i}} \\
& =\sqrt{\sum_{i} \sum_{j}\left(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h)\right)^{2} r_{i} r_{j}} \sqrt{\sum_{j} \frac{\left(q_{j}^{\prime}\right)^{2}}{r_{j}}}
\end{aligned}
$$

A simple calculation shows that the first term in the above expression is in fact equal to $2 \operatorname{Var}(h, \mathbf{r})$. Therefore we need only to prove that the second term is bounded by $\frac{1}{Q}$. We have

$$
\begin{aligned}
\sum_{j} \frac{\left(q_{j}^{\prime}\right)^{2}}{r_{j}} & =\frac{1}{Q^{2}} \sum_{j} \frac{q_{j}^{2}}{r_{j}} \\
& \leq \frac{1}{Q^{2}} \sum_{j} q_{j}=\frac{1}{Q}
\end{aligned}
$$

where we used the fact that $q_{j} \leq r_{j}$.

The proof of Proposition 1 is easily derived from Propositions 2 and 3. Indeed, letting $r_{j}=\frac{n_{j}}{n}$ and $q_{j}=\frac{n_{j \tau}}{n}$ we have $q_{j} \leq r_{j}$, and thus the result follows.

C. Additional bounds

Proposition 4. Let $\tau \leq n$ be the cap on user contributions. Then $n_{\tau}>\tau$.

Proof. There are only two possibilities: either $n_{j}<\tau$ for all j or $n_{j} \geq \tau$ for some j. In the latter case $n_{\tau} \geq n_{j}=\tau$ by definition. On the other hand, if $n_{j}<\tau$ for all j then

$$
n_{\tau}=\sum_{j} n_{j \tau}=\sum_{j} n_{j}=n \geq \tau
$$

Proposition 5. Let $1>\tau_{0}>0$ and $\tau=\tau_{0}$ n. Let $K\left(\tau_{0}\right)=$ $\left|\left\{j \mid p_{j}>\tau_{0}\right\}\right|$ and let $\delta>0$. With probability at least $1-\delta$,

$$
\frac{n_{\tau}}{n} \geq \frac{\tau_{0} K\left(\tau_{0}\right)}{4}-\sqrt{\frac{\log (1 / \delta)}{2 n}}
$$

Proof. Recall that J_{i} is the random variable that denotes the user corresponding to example i. We know that $n_{j}=\sum_{i=1}^{n} \mathbb{1}_{J_{i}=j}$ and $n_{\tau}=\sum_{i=1}^{n} \min \left(n_{i}, \tau\right)$. Let $\phi\left(J_{1}, \ldots, J_{n}\right)=\frac{n_{\tau}}{n}$. We want to bound the change in ϕ as we perturb a single coordinate:

$$
\left|\phi\left(J_{1}, \ldots, J_{n}\right)-\phi\left(J_{1}^{\prime}, \ldots, J_{n}\right)\right| .
$$

If we change only one point in the sample then, clearly, we change the contribution of at most two users i_{1} and i_{2}. Let $n_{i_{1}}^{\prime}$ and $n_{i_{2}}^{\prime}$ denote the user contributions under the perturbation. Then the above expression is equal to
$\frac{1}{n}\left|\min \left(n_{i_{1}}, \tau\right)-\min \left(n_{i_{1}}^{\prime}, \tau\right)+\min \left(n_{i_{2}}, \tau\right)-\min \left(n_{i_{2}}^{\prime}, \tau\right)\right|$.
Let us assume w.l.o.g. that $n_{i_{1}} \geq n_{i_{1}}^{\prime}$; this implies that $n_{i_{2}} \leq n_{i_{2}}^{\prime}$. Therefore $0 \leq \min \left(n_{i_{1}}, \tau\right)-\min \left(n_{i_{1}}^{\prime}, \tau\right) \leq 1$ and $0 \geq \min \left(n_{i_{2}}, \tau\right)-\min \left(n_{i_{2}}^{\prime}, \tau\right) \geq-1$. This readily implies that (11) is bounded by $\frac{1}{n}$. We can now apply McDiarmid's inequality and see that for any $\eta>0$

$$
\begin{equation*}
P\left(\frac{n_{\tau}}{n} \leq \frac{1}{n} \mathbb{E}\left[n_{\tau}\right]-\eta\right) \leq e^{-2 n \eta^{2}} \tag{12}
\end{equation*}
$$

Now let $Q\left(\tau_{0}\right)=\sum_{j=1}^{n} \min \left(p_{j}, \tau_{0}\right)$. It is easy to see that

$$
Q\left(\tau_{0}\right)=\sum_{j: p_{j}>\tau_{0}} \tau_{0}+\sum_{j: p_{j} \leq \tau_{0}} p_{j} \geq K\left(\tau_{0}\right)
$$

Therefore from Corollary 2 we know that

$$
\begin{aligned}
P\left(\frac{n_{\tau}}{n} \leq \frac{\tau_{0} K\left(\tau_{0}\right)}{4}-\eta\right) & \leq P\left(\frac{n_{\tau}}{n} \leq \frac{Q\left(\tau_{0}\right)}{4}-\eta\right) \\
& \leq P\left(\frac{n_{\tau}}{n} \leq \frac{1}{n} \mathbb{E}\left[n_{\tau}\right]-\eta\right)
\end{aligned}
$$

The result follows from (12) by setting $\delta=e^{-2 n \eta^{2}}$ and solving for η.

Lemma 2. Let $S_{n}=\sum_{i=1}^{N} X_{i}$ be a sum of i.i.d. Bernoulli random variables with $P\left(X_{i}=1\right)=p$. Then

$$
\begin{equation*}
\mathbb{E}\left[\min \left(S_{n}, \tau\right)\right] \geq \frac{1}{4} \min (p n, \tau) \tag{13}
\end{equation*}
$$

Proof. First let us assume that $\tau<n p$ in that case we have:

$$
\begin{aligned}
\mathbb{E}\left[\min \left(S_{n}, \tau\right)\right] & =\mathbb{E}\left[S_{n} \mathbb{1}_{S_{n}<\tau}\right]+\tau P\left(S_{n}>\tau\right) \\
& \geq \tau P\left(S_{n}>\tau\right) \\
& \geq \tau P\left(S_{n}>n p\right) \geq \frac{\tau}{4}
\end{aligned}
$$

where we used the fact that $P\left(S_{n}>n p\right)>\frac{1}{4}$ (Greenberg \& Mohri, 2013; Vapnik, 1998).

On the other hand if $\tau>n p$ then

$$
\begin{aligned}
\mathbb{E}\left[\min \left(S_{n}, \tau\right)\right] \geq \mathbb{E}\left[S_{n} \mathbb{1}_{S_{n}<\tau}\right] & \geq \mathbb{E}\left[S_{n} \mathbb{1}_{S_{n}>n p}\right] \\
& =\int_{0}^{\infty} P\left(S_{n} \mathbb{1}_{S_{n}>n p}>t\right) d t \\
& =\int_{0}^{n p} P\left(S_{n}>t\right) d t \\
& \geq \int_{0}^{n p} P\left(S_{n}>n p\right) d t \\
& \geq \frac{1}{4} n p
\end{aligned}
$$

Combining the two cases yields the statement of the proposition.

Corollary 2. Let $J_{k}, k=1, \ldots, n$ be a random variable in \mathbb{N} such that $P\left(J_{k}=j\right)=p_{j}$. Let $n_{j}=\sum_{i=1}^{n} \mathbb{1}_{J_{k}=j}$, $\tau_{0}>0$ and $\tau=\tau_{0} n$. Finally, let $n_{\tau}=\sum_{j} \min \left(n_{j}, \tau\right)$; then we have

$$
\frac{1}{n} \mathbb{E}\left[n_{\tau}\right] \geq \frac{1}{4} \sum_{j} \min \left(p_{j}, \tau_{0}\right)
$$

Proof. By Fubini's theorem,

$$
\mathbb{E}\left[n_{\tau}\right]=\mathbb{E}\left[\sum_{j} \min \left(n_{j}, \tau\right)\right]=\sum_{j} \mathbb{E}\left[\min \left(n_{j}, \tau\right)\right]
$$

On the other hand, n_{j} is a sum of independent Bernoulli random variables with probability p_{j}. So from the previous proposition we have

$$
\begin{aligned}
\frac{1}{n} \sum_{j} \mathbb{E}\left[\min \left(n_{j}, \tau\right)\right] & \geq \frac{1}{4 n} \sum_{j} \min \left(p_{j} n, \tau\right) \\
& =\frac{1}{4} \sum_{j} \min \left(p_{j}, \tau_{0}\right)
\end{aligned}
$$

