A. Concentration bounds

In this section we include a series of well known concentration bounds used in the statistical learning literature. In order to prove this bounds we will use the notion of Rademacher complexity.

Definition 7. Given a sample $z_1, \ldots, z_m \in \mathbb{Z}$ and a class of functions G mapping \mathbb{Z} to [0, 1], we define the empirical Rademacher complexity of G as

$$\Re_m(G) = \mathop{\mathbb{E}}_{\boldsymbol{\sigma}} \Big[\sup_{g \in G} \sum_{i=1}^m g(z_i) \sigma_i \Big],$$

where σ_i are i.i.d. uniform random variables over the set $\{-1, 1\}$.

The Rademacher complexity of a class is closely related to its VC dimension. The following Lemma can be found in (Mohri et al., 2012).

Lemma 3. Let G be a function class with VC dimension VCdim(h) = d then

$$\Re(G) \leq \sqrt{2md\log\frac{em}{d}}$$

Lemma 4. Let *L* be *K*-Lipchitz and let $\delta > 0$. Conditioned on the choice of users belonging to the sample the following bound holds with probability at least $1 - \delta$ for for all $h \in H$

$$\left|\sum_{j}\sum_{i=1}^{n_{\tau j}} L(h(x_{ij}), y_{ij}) - \sum_{j} n_{\tau j} \mathcal{L}_{j}(h)\right|$$
$$\leq 2K \Re_{n_{\tau}}(H) + \sqrt{\frac{n_{\tau} \log \frac{1}{\delta}}{2}}$$

Proof. Relabeling the samples we notice that the left hand side of the above inequality is given by

$$\sum_{i=1}^{n_{\tau}} L(h(x_i), y_i) - \mathbb{E}\left[\sum_{i=1}^{n_{\tau}} L(h(x_i), y_i)\right] \Big|.$$

Let $H_L = \{(x, y) \mapsto L(h(x), y) | h \in H\}$, using the fact that (x_i, y_i) are independent conditioned on the choice of users and a standard learning theory bound (Mohri et al., 2012) we have with probability at least $1 - \delta$

$$\left|\sum_{i=1}^{n_{\tau}} L(h(x_i), y_i) - \mathbb{E}\left[\sum_{i=1}^{n_{\tau}} L(h(x_i), y_i)\right]\right|$$
$$\leq \Re_{n_{\tau}}(H_L) + \sqrt{\frac{n_{\tau} \log \frac{1}{\delta}}{2}}.$$

Finally by Talagrand's contraction lemma (Mohri et al., 2012) we know that $\Re_{n_{\tau}}(H_L) \leq K \Re_{n_{\tau}}(H)$ which concludes the proof.

Lemma 1. Conditioned on the outcomes of $\{J_i\}$, with probability at least $1 - \delta$ the following holds uniformly over $h \in H$:

$$\mathcal{L}_{\mathcal{S}_{\tau}}(h) - \sum_{j} \frac{n_{\tau j}}{n_{\tau}} \mathcal{L}_{j}(h) \right| \leq \sqrt{\frac{2d \log \frac{en}{d}}{\tau_{0} n}} + \sqrt{\frac{\log(1/\delta)}{2\tau_{0} n}}$$

Proof. The proof follows directly from the previous proposition and a standard bound on the Rademacher complexity by the VC dimension (Mohri et al., 2012). \Box

Lemma 2. Fix $\delta > 0$ and let d = VCdim(H). Then with probability at least $1 - \delta$, the following inequality holds uniformly for h in H.

$$\begin{aligned} |\mathcal{L}_{\mathcal{S}_{\tau}}(h) - \mathcal{L}(h)| &\leq \sqrt{\frac{2d\log\frac{en}{d}}{\tau_0 n}} + \sqrt{\frac{\log(2/\delta)}{2\tau_0 n}} \\ &+ \left| \sum_{j} \left(\frac{n_{\tau j}}{n_{\tau}} - \frac{n_j}{n} \right) \mathcal{L}_j(h) \right| + \sqrt{\frac{\log\frac{4}{\delta}}{2n}} \,. \end{aligned}$$

Proof. We begin by decomposing the loss into three parts.

$$\left|\mathcal{L}_{\mathcal{S}_{\tau}}(h) - \mathcal{L}(h)\right| \leq \left|\mathcal{L}_{\mathcal{S}_{\tau}}(h) - \sum_{j} \frac{n_{\tau j}}{n_{\tau}} \mathcal{L}_{j}(h)\right|$$
(7)

$$+\left|\sum_{j} \left(\frac{n_{\tau j}}{n_{\tau}} - \frac{n_{j}}{n}\right) \mathcal{L}_{j}(h)\right| \qquad (8)$$

$$+\left|\sum_{j} \left(\frac{n_j}{n} - p_j\right) \mathcal{L}_j(h)\right| .$$
 (9)

Eq. (7) is the generalization error of our empirical loss, conditioned on the outcomes of $\{J_i\}$. We bound it by applying Lemma 1 with $\frac{\delta}{2}$.

Eq. (8) is the error attributable to differences between the original dataset S and the thresholded data set S_{τ} ; it appears directly in the bound.

Finally, Eq. (9) is the finite sample error due to the randomness in $\{J_i\}$. Observe that

$$\left|\sum_{j} \left(\frac{n_{j}}{n} - p_{j}\right) \mathcal{L}_{j}(h)\right| = \left|\frac{1}{n} \sum_{i=1}^{n} L_{J_{i}}(h) - \sum_{j} p_{j} \mathcal{L}_{j}(h)\right|,$$

which is just the difference between the sample mean of n i.i.d. random variables bounded in [0, 1] and their true mean. Hoeffding's inequality thus bounds (9) by $\sqrt{\frac{\log \frac{4}{\delta}}{2n}}$ with probability $1 - \frac{\delta}{2}$.

Combining these results under a union bound completes the proof. $\hfill \Box$

B. Bias bounds

Proposition 2. Let r_j for $j \in \mathbb{N}$ be such that $r_j \ge 0$ and $\sum_{j=1}^{n} r_j = 1$. Let $0 \le q_j \le r_j$, $Q = \sum_j q_j$. Finally let $q'_j = \frac{q_j}{Q}$. If $|L(h, z)| \le 1$, then the following bound holds for all hypotheses h.

$$\left|\sum_{j} \left(q'_{j} - r_{j}\right) \mathcal{L}_{j}(h)\right| \leq \sqrt{\frac{1}{2} \log\left(\frac{1}{Q}\right)}$$

Proof. Using the fact that $\mathcal{L}_j(h) \leq 1$ we have

$$\left|\sum_{j} (q'_j - r_j) \mathcal{L}_j(h)\right| \le \sum_{j} \left|q'_j - r_j\right| \tag{10}$$

Let **r** and **q'** denote the distributions induced by r_j and q'_j respectively. By Pinsker's inequality we know

$$\sum_{j=1} \left| q_j' - r_j \right| \le \sqrt{\frac{1}{2} \mathsf{KL}(\mathbf{r}||\mathbf{q}')} \;,$$

where $KL(\mathbf{r}||\mathbf{q}')$ denotes the Kullback-Leibler divergence between the two distributions. We can bound this divergence as follows:

$$\begin{split} \mathrm{KL}(\mathbf{r} || \mathbf{q}') &= \frac{1}{Q} \sum_{j} q_{j} \log \left(\frac{q_{j}}{Q r_{j}} \right) \leq \frac{1}{Q} \sum_{j} q_{j} \log \left(\frac{1}{Q} \right) \\ &= \log \left(\frac{1}{Q} \right), \end{split}$$

where we have used the fact that $q_j < r_j$ for the first inequality. Substituting this bound back in (10) yields the statement of the proposition.

We now define a more general version of the variance term introduced in Section 6.

Definition 8. Given a distribution \mathbf{r} over \mathbb{N} and a hypothesis $h \in H$ we define the variance of h with respect to \mathbf{r} as

$$\operatorname{Var}(h, \mathbf{r}) = \sum_{j} r_{j} (\mathcal{L}_{j}(h) - \mathcal{L}_{h})^{2}.$$

Proposition 3. Under the notation and assumptions of Proposition 2, the following bound holds for every h:

$$\left|\sum_{j} (q'_j - r_j) \mathcal{L}_j(h)\right| \le \sqrt{\frac{2 \operatorname{Var}(h, \mathbf{r})}{Q}}$$

Proof. The proof relies on the simple fact that:

$$\sum_{i}\sum_{j}(\mathcal{L}_{j}(h)-\mathcal{L}_{i}(h))r_{i}q_{j}'=\sum_{j}\mathcal{L}_{j}(h)q_{j}'-\sum_{i}\mathcal{L}_{i}(h)r_{i}.$$

This is easy to verify using the fact that $\sum r_i = 1$ and $\sum q'_j = 1$. We can now apply the Cauchy-Schwarz inequality as follows:

$$\begin{split} \left| \sum_{j} (q'_{j} - r_{j}) \mathcal{L}_{j}(h) \right| \\ &= \left| \sum_{i} \sum_{j} (\mathcal{L}_{j}(h) - \mathcal{L}_{i}(h)) q'_{j} r_{i} \right| \\ &= \left| \sum_{i} \sum_{j} (\mathcal{L}_{j}(h) - \mathcal{L}_{i}(h)) \sqrt{r_{i} r_{j}} \frac{q'_{j}}{\sqrt{r_{j}}} \sqrt{r_{i}} \right| \\ &\leq \sqrt{\sum_{i} \sum_{j} (\mathcal{L}_{j}(h) - \mathcal{L}_{i}(h))^{2} r_{i} r_{j}} \sqrt{\sum_{i} \sum_{j} \frac{(q'_{j})^{2}}{r_{j}} r_{i}} \\ &= \sqrt{\sum_{i} \sum_{j} (\mathcal{L}_{j}(h) - \mathcal{L}_{i}(h))^{2} r_{i} r_{j}} \sqrt{\sum_{j} \frac{(q'_{j})^{2}}{r_{j}}} \end{split}$$

A simple calculation shows that the first term in the above expression is in fact equal to $2\text{Var}(h, \mathbf{r})$. Therefore we need only to prove that the second term is bounded by $\frac{1}{Q}$. We have

$$\sum_{j} \frac{(q'_{j})^{2}}{r_{j}} = \frac{1}{Q^{2}} \sum_{j} \frac{q_{j}^{2}}{r_{j}}$$
$$\leq \frac{1}{Q^{2}} \sum_{j} q_{j} = \frac{1}{Q},$$

where we used the fact that $q_j \leq r_j$.

The proof of Proposition 1 is easily derived from Propositions 2 and 3. Indeed, letting $r_j = \frac{n_j}{n}$ and $q_j = \frac{n_{j\tau}}{n}$ we have $q_j \leq r_j$, and thus the result follows.

C. Additional bounds

Proposition 4. Let $\tau \leq n$ be the cap on user contributions. Then $n_{\tau} > \tau$.

Proof. There are only two possibilities: either $n_j < \tau$ for all j or $n_j \ge \tau$ for some j. In the latter case $n_\tau \ge n_j = \tau$ by definition. On the other hand, if $n_j < \tau$ for all j then

$$n_{\tau} = \sum_{j} n_{j\tau} = \sum_{j} n_{j} = n \ge \tau.$$

Proposition 5. Let $1 > \tau_0 > 0$ and $\tau = \tau_0 n$. Let $K(\tau_0) = |\{j \mid p_j > \tau_0\}|$ and let $\delta > 0$. With probability at least $1 - \delta$,

$$\frac{n_{\tau}}{n} \geq \frac{\tau_0 K(\tau_0)}{4} - \sqrt{\frac{\log(1/\delta)}{2n}} \ .$$

Proof. Recall that J_i is the random variable that denotes the user corresponding to example *i*. We know that $n_j = \sum_{i=1}^n \mathbb{1}_{J_i=j}$ and $n_{\tau} = \sum_{i=1}^n \min(n_i, \tau)$. Let $\phi(J_1, \ldots, J_n) = \frac{n_{\tau}}{n}$. We want to bound the change in ϕ as we perturb a single coordinate:

$$|\phi(J_1,\ldots,J_n)-\phi(J'_1,\ldots,J_n)|$$

If we change only one point in the sample then, clearly, we change the contribution of at most two users i_1 and i_2 . Let n'_{i_1} and n'_{i_2} denote the user contributions under the perturbation. Then the above expression is equal to

$$\frac{1}{n} |\min(n_{i_1}, \tau) - \min(n'_{i_1}, \tau) + \min(n_{i_2}, \tau) - \min(n'_{i_2}, \tau)|.$$
(11)

Let us assume w.l.o.g. that $n_{i_1} \ge n'_{i_1}$; this implies that $n_{i_2} \le n'_{i_2}$. Therefore $0 \le \min(n_{i_1}, \tau) - \min(n'_{i_1}, \tau) \le 1$ and $0 \ge \min(n_{i_2}, \tau) - \min(n'_{i_2}, \tau) \ge -1$. This readily implies that (11) is bounded by $\frac{1}{n}$. We can now apply Mc-Diarmid's inequality and see that for any $\eta > 0$

$$P\left(\frac{n_{\tau}}{n} \le \frac{1}{n} \mathbb{E}[n_{\tau}] - \eta\right) \le e^{-2n\eta^2}.$$
 (12)

Now let $Q(\tau_0) = \sum_{j=1}^n \min(p_j, \tau_0)$. It is easy to see that

$$Q(\tau_0) = \sum_{j: p_j > \tau_0} \tau_0 + \sum_{j: p_j \le \tau_0} p_j \ge K(\tau_0).$$

Therefore from Corollary 2 we know that

$$P\left(\frac{n_{\tau}}{n} \leq \frac{\tau_0 K(\tau_0)}{4} - \eta\right) \leq P\left(\frac{n_{\tau}}{n} \leq \frac{Q(\tau_0)}{4} - \eta\right)$$
$$\leq P\left(\frac{n_{\tau}}{n} \leq \frac{1}{n} \mathbb{E}[n_{\tau}] - \eta\right)$$

The result follows from (12) by setting $\delta = e^{-2n\eta^2}$ and solving for η .

Lemma 2. Let $S_n = \sum_{i=1}^N X_i$ be a sum of i.i.d. Bernoulli random variables with $P(X_i = 1) = p$. Then

$$\mathbb{E}[\min(S_n, \tau)] \ge \frac{1}{4}\min(pn, \tau) \tag{13}$$

Proof. First let us assume that $\tau < np$ in that case we have:

$$\mathbb{E}[\min(S_n, \tau)] = \mathbb{E}[S_n \mathbb{1}_{S_n < \tau}] + \tau P(S_n > \tau)$$

$$\geq \tau P(S_n > \tau)$$

$$\geq \tau P(S_n > np) \geq \frac{\tau}{4},$$

where we used the fact that $P(S_n > np) > \frac{1}{4}$ (Greenberg & Mohri, 2013; Vapnik, 1998).

On the other hand if $\tau > np$ then

_ - - -

$$\mathbb{E}[\min(S_n, \tau)] \ge \mathbb{E}[S_n \mathbbm{1}_{S_n < \tau}] \ge \mathbb{E}[S_n \mathbbm{1}_{S_n > np}]$$

$$= \int_0^\infty P(S_n \mathbbm{1}_{S_n > np} > t) dt$$

$$= \int_0^{np} P(S_n > t) dt$$

$$\ge \int_0^{np} P(S_n > np) dt$$

$$\ge \frac{1}{4} np$$

Combining the two cases yields the statement of the proposition. $\hfill \Box$

Corollary 2. Let J_k , k = 1, ..., n be a random variable in \mathbb{N} such that $P(J_k = j) = p_j$. Let $n_j = \sum_{i=1}^n \mathbb{1}_{J_k = j}$, $\tau_0 > 0$ and $\tau = \tau_0 n$. Finally, let $n_\tau = \sum_j \min(n_j, \tau)$; then we have

$$\frac{1}{n} \mathbb{E}[n_{\tau}] \ge \frac{1}{4} \sum_{j} \min(p_j, \tau_0)$$

Proof. By Fubini's theorem,

$$\mathbb{E}[n_{\tau}] = \mathbb{E}[\sum_{j} \min(n_{j}, \tau)] = \sum_{j} \mathbb{E}[\min(n_{j}, \tau)].$$

On the other hand, n_j is a sum of independent Bernoulli random variables with probability p_j . So from the previous proposition we have

$$\frac{1}{n} \sum_{j} \mathbb{E}[\min(n_j, \tau)] \ge \frac{1}{4n} \sum_{j} \min(p_j n, \tau)$$
$$= \frac{1}{4} \sum_{j} \min(p_j, \tau_0)$$