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Abstract
The problem of explaining the behavior of deep
neural networks has recently gained a lot of atten-
tion. While several attribution methods have been
proposed, most come without strong theoretical
foundations, which raises questions about their
reliability. On the other hand, the literature on
cooperative game theory suggests Shapley values
as a unique way of assigning relevance scores
such that certain desirable properties are satisfied.
Unfortunately, the exact evaluation of Shapley val-
ues is prohibitively expensive, exponential in the
number of input features. In this work, by lever-
aging recent results on uncertainty propagation,
we propose a novel, polynomial-time approxima-
tion of Shapley values in deep neural networks.
We show that our method produces significantly
better approximations of Shapley values than ex-
isting state-of-the-art attribution methods.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated enor-
mous potential in solving a variety of problems, growing the
sophistication and impact of machine learning. On the other
hand, while machine learning models are being employed
on an increasing number of fields, the black-box nature of
DNNs is still a barrier to the adoption of these systems for
those tasks where interpretability is a requirement. Recently,
European regulators introduced the legal notion of a right
to explanation (Goodman & Flaxman, 2016), demanding
transparency for any automated decision having a deep im-
pact on the life of the people involved, which affects the
adoption of black-box models like DNNs on some domains.

Since the notion of interpretability is complex, multi-faceted
and not yet fully defined (Doshi-Velez & Kim, 2017; Lip-
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ton, 2016), several works have focused on investigating
methods for local interpretability. Contrarily to global in-
terpretability, which aims at explaining the general model
behavior, local interpretability scope is restricted at explain-
ing a particular decision for a given model and input instance
(Doshi-Velez & Kim, 2017).

In the realm of local interpretability, attribution methods
have received particular attention in the last years (Ras et al.,
2018). Consider a model that takes an N-dimensional input
x = [x1, ..., xN ] ∈ RN and produces a C-dimensional
output f(x) = [f1(x), ..., fC(x)] ∈ RC , like a DNN with
C output neurons. Depending on the application, the input
features x1, ..., xN can have a different nature, like pixels for
images or components of a multi-dimensional word vector
representation for natural language processing. Similarly,
each output of the network can represent either a numerical
predicted quantity (regression task) or the probability of a
corresponding class (classification task).

Formally, attribution methods aim at producing explana-
tions by assigning a scalar attribution value, sometimes
also called “relevance” (Bach et al., 2015) or “contribu-
tion” (Shrikumar et al., 2017), to each input feature of
a network for a given input sample. In particular, for a
single target output indexed with c, the goal of an attribu-
tion method is to determine the contribution Rc(x; fc) =
[Rc

1(x; fc), ..., R
c
N (x; fc)] ∈ RN of each input feature xi

to the output fc(x). For clarity of notation, in the remainder
of the paper, we will simply use Rc whenever possible. For
a classification task, the target output can be chosen to be
the one associated with the highest output probability (to un-
derstand which part of the input was mostly relevant for the
prediction) or the one associated with a different class (to
assess whether the input contains evidence that supports or
rejects a different class). Over the last decade, several attri-
bution methods have been specifically developed for neural
networks (Simonyan et al., 2014; Zeiler & Fergus, 2014;
Springenberg et al., 2014; Bach et al., 2015; Ribeiro et al.,
2016; Selvaraju et al., 2016; Shrikumar et al., 2017; Sun-
dararajan et al., 2017; Montavon et al., 2017; Zintgraf et al.,
2017; Lundberg & Lee, 2017; Kindermans et al., 2018).

When an explanation is generated, it should be a natural
requirement to have a clear understanding of how the expla-
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nation method works, a condition necessary to make sure
the explanation itself is a reliable and unbiased representa-
tion of the network behavior. In fact, some recent works
showed that attribution methods can actually produce un-
reliable or misleading results, despite these being visually
appealing to humans (Kindermans et al., 2017; Ghorbani
et al., 2019; Adebayo et al., 2018; Nie et al., 2018). This
problem is fueled by the limited theoretical understanding
of some of these methods and lack of reliable quantitative
metrics to evaluate explanations in the absence of a ground-
truth (Adebayo et al., 2018). To overcome these limitations,
some authors have recently endorsed an axiomatic approach
(Sun & Sundararajan, 2011; Sundararajan et al., 2017; Mon-
tavon et al., 2017; Lundberg & Lee, 2017; Kindermans et al.,
2017). In this context, an axiom is a self-evident property
of the attribution method that should be satisfied for any
explanation generated by the method itself. By leveraging
these properties, attribution methods with stronger theoreti-
cal guarantees can be designed (Sundararajan et al., 2017).

Along with this research direction, the literature on coopera-
tive game theory suggests Shapley values (Shapley, 1953)
as a unique way of assigning attributions such that certain
desirable axioms are satisfied. Shapley values are a classic
game theory solution for the distribution of credits to play-
ers participating in a cooperative game. Notably, the unique
set of properties of Shapley values, discussed in the next
section, seems to fit naturally in the setting of attributions as
well (Strumbelj & Kononenko, 2010; Sun & Sundararajan,
2011; Datta et al., 2016; Lundberg & Lee, 2017).

On the other hand, computing the exact Shapley value is, in
general, NP-hard (Matsui & Matsui, 2001) and only feasible
for less than 20-25 players (i.e. input features for our case).
Some previous works proposed sampling-based methods
to approximate Shapley values (Castro et al., 2009; Strum-
belj & Kononenko, 2010; Datta et al., 2016). While these
methods are unbiased estimators, as the number of input
features grows they require thousands of model evaluations,
which is expensive for DNNs. KernelSHAP (Lundberg &
Lee, 2017) combines sampling with lasso regression to re-
duce the number of samples but it also introduces a bias
from the regularizer. Other fast approximations designed
for DNNs exist but these are based on the strong assump-
tions of model linearity (Lundberg & Lee, 2017). At the
best of our knowledge, there is no exhaustive evaluation of
the empirical accuracy of these methods as Shapley value
approximators in DNNs.

The contribution of this work is threefold: 1) endorsing an
axiomatic approach, we compare Shapley values to existing
state-of-the-art attribution methods, motivating the use of
the former to explain non-linear models; 2) we formulate
a novel, polynomial-time approximation of Shapley values
specifically designed for DNNs; 3) we assess empirically

the approximation power of our algorithm compared to other
attribution methods on three datasets and architectures.

2. Attribution Methods
Attribution methods can be partitioned into two broad cate-
gories: backpropagation-based methods and perturbation-
based methods (Ancona et al., 2018). In this section, we
define Shapley values and briefly review some popular attri-
bution methods that will be later used in our experimental
comparison. We focus on methods that can be applied to a
variety of architectures and that are not restricted to some
particular input type (eg. images).

2.1. Backpropagation-based methods

Methods in this category compute attributions running only
one or a few backward passes through the network. Many
such methods have been proposed in the last years. The pro-
totypical example is Saliency maps (Simonyan et al., 2014)
where attributions are computed as the absolute gradient of
the target output with respect to each input feature. Gradient
× Input (Shrikumar et al., 2016) introduces an element-wise
multiplication between the input and the (signed) gradient,
producing more sharp results:

Rc
i = xi ·

∂fc(x)

∂xi
(1)

While the gradient provides information about which fea-
tures can be locally perturbed the least in order for the output
to change the most, applied to a highly non-linear function
only provides local information and it does not help to com-
pute the marginal contribution of a feature. To overcome
this limitation, other methods have been proposed such as
Layer-wise Relevance Propagation (LRP) in several variants
(Bach et al., 2015; Montavon et al., 2017), DeepLIFT (in its
two variants, Rescale and RevealCancel) (Shrikumar et al.,
2016; 2017), and Integrated Gradients (Sundararajan et al.,
2017). Compared to Gradient × Input, these methods are
characterized by different propagation rules for non-linear
operations in the network than the instant gradient. In the
case of Integrated Gradients, DeepLIFT Rescale, and ε-LRP,
the propagation rule can be seen as computing a form of
average gradient (Ancona et al., 2018). In the other cases,
the propagation rule is designed on specific heuristics.

2.2. Perturbation-based methods

This category includes methods that estimate the contribu-
tion of input features by removing or perturbing them and
measuring the variation of the network target output as a
consequence of this operation (Ribeiro et al., 2016; Zintgraf
et al., 2017; Fong & Vedaldi, 2017). The simplest perturba-
tion method computes attributions by setting each feature
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sequentially to zero (Zeiler & Fergus, 2014):

Rc
i = fc(x)− fc(x \ {xi}) (2)

In the remainder of the paper, we will refer to this method
simply as “Occlusion”.

Remark Notice that the procedure of replacing features
with a zero value implicitly defines a baseline that can be
used to indicate features that are toggled off. Many attribu-
tion methods require the definition of a baseline to indicate
the absence of information. This is further discussed in
Appendix C of the supplementary material.

Most often perturbation-based methods are simple to imple-
ment but very slow, as several evaluations of the network are
necessary. Additionally, the number of features perturbed at
each iteration and the choice of the perturbation itself are
hyper-parameters of these methods that can heavily affect
the resulting explanations, making it difficult to interpret the
results (Ancona et al., 2018).

2.3. Shapley values

Shapley values can be considered a particular example of
perturbation-based methods where no hyper-parameters, ex-
cept the baseline, are required.

Consider a set of N players P and a function f̂ that maps
each subset S ⊆ P of players to real numbers, modeling the
outcome of a game when players in S participate in it. The
Shapley value is one way to quantify the total contribution of
each player to the result f̂(P ) of the game when all players
participate. For a given player i, it can be computed as
follows:

Ri =
∑

S⊆P\{i}

|S|!(|P | − |S| − 1)!

|P |!
[̂f(S ∪ {i})− f̂(S)]

(3)
The Shapley value for player i defined above can be inter-
preted as the average marginal contribution of player i to
all possible coalitions S that can be formed without it.

While f̂ is a set function, the definition can be adapted
for a neural network function f by defining a baseline as
discussed above. Then we can replace f̂(S) in Eq. 3 with
f(xS), where xS indicates the original input vector x where
all features not in S are replaced with the baseline value.

It has been observed (Lundberg & Lee, 2017) that attribu-
tions based on Shapley values better agree with the human
intuition empirically. Unfortunately, computing Shapley
values exactly requires us to evaluate all 2N possible feature
subsets as in Eq. 3. This is clearly prohibitive for more than
a couple of dozens of variables.

For certain simple functions f , it is possible to compute
Shapley values exactly in polynomial time. For example,

the Shapley values of the inputs to a max-pooling layer can
be computed with O(N2) function evaluations (Lundberg
& Lee, 2017). When this is not possible, Shapley values
sampling (Castro et al., 2009) can be used to estimate ap-
proximate Shapley values based on sampling of Eq. 3. For
specific games, other approximate methods have been de-
veloped. In particular, (Fatima et al., 2008) proposed a
polynomial time approximation for weighted voting games
(Osborne & Rubinstein, 1994) based on the idea that, instead
of enumerating all coalitions, it might suffice to estimate
their expected contributions. The same idea is used as the
first step of our approximation algorithm for deep neural
networks in Sec. 4. Before going into the details of the
derivations, we present a review of theoretical properties of
Shapley values and other attribution methods.

3. Axiomatic comparison of attribution
methods

We start our theoretical analysis by observing the follow-
ing connection between existing attribution methods and
Shapley values for linear models.

Proposition 1. Occlusion, Gradient × Input, Integrated
Gradients and DeepLIFT produce exact Shapley values
when applied to a linear model and a zero baseline is used.

The proof (provided in Appendix A of the supplemen-
tary material) comes directly from the observation that all
these methods are equivalent for linear models (Ancona
et al., 2018). For non-linear models, instead, these meth-
ods produce different attributions. DeepLIFT RevealCancel
(Shrikumar et al., 2017) and its variant DeepSHAP (Lund-
berg & Lee, 2017) approximate Shapley values at each layer
independently and use the chain rule to compose these into
attributions. Unfortunately, the chain rule does not hold
in general for Shapley values. Integrated Gradients (Sun-
dararajan et al., 2017), on the other hand, can be shown
to compute Aumann-Shapley values (Aumann & Shapley,
1974), an extension of Shapley values for infinite games
where each individual player has a negligible contribution.
While this method has better theoretical properties, it is not
yet clear how well these assumptions apply to real scenar-
ios where the number of input features is limited and the
individual features may have a significant impact.

In order to better understand the relations among methods
and their advantages, it is essential to evaluate them with
respect to desirable theoretical properties. We thus compare
different attribution methods according to the following ax-
ioms already established in the literature: (1) conservation,
(2) null player, (3) symmetry, (4) linearity, (5) continuity
and (6) implementation invariance.

Axiom 1: Completeness. An attribution method satisfies
completeness when attributions sum up to the difference
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between the value of the function evaluated at the input,
and the value of the function evaluated at the baseline, i.e.∑n

i=1R
c
i = fc(x) − fc(0). This property, also called ef-

ficiency (Shapley, 1953), summation to delta (Shrikumar
et al., 2017) or conservation (Montavon et al., 2017), has
been recognized by previous works as desirable to ensure
the attribution method is comprehensive in its accounting.

Axiom 2: Null player. If the function implemented by a
DNN does not depend on some variable, then the attribution
to that variable should always be zero.

Axiom 3: Symmetry. If the function implemented by a
DNN depends on two variables x1 and x2 but not on their
order (i.e. f(x1, x2) = f(x2, x1)), then the attribution
assigned to these variables should be the same every time
the input and the baseline provides the same values for
these variables. This axiom, also called anonymity (Sun &
Sundararajan, 2011), is arguably a desirable property for
any attribution method: if two variables play the exact same
role in the DNN, they should receive the same attribution.

Axiom 4: Linearity. If the function f implemented by a
DNN can be seen as a linear combination of the functions
of two sub-networks (i.e. f = a× f1 + b× f2), then any at-
tribution should also be a linear combination, with the same
weights, of the attributions computed on the sub-networks,
i.e. Rc

i (x|f) = a×Rc
i (x|f1)+b×Rc

i (x|f2), whereRc
i (x|f)

denotes the attributions for the DNN that implements the
function f . Intuitively, this is justified by the need for pre-
serving linearities within the network (Sundararajan et al.,
2017).

Axiom 5: Continuity Attributions generated for two nearly
identical inputs should be nearly identical, i.e. Rc

i (x) ≈
Rc

i (x + ε). This axiom assumes the attribution is generated
for a continuous prediction function f(x), which is always
the case for DNNs built by combining continuous functions.
In this case, the prediction for two nearly identical inputs
is also nearly identical, which motivates a nearly identical
explanation (Montavon et al., 2017).

Axiom 6: Implementation Invariance. Two networks are
said to be functionally equivalent if their outputs are equal
for all inputs, despite having (possibly very) different imple-
mentations (Sundararajan et al., 2017). Attribution methods
should produce identical results when applied to any func-
tionally equivalent network provided with the same input.
The importance of this property relies on the observation
that any explanation should only depend on the input and
the function implemented by the DNN, not its implemen-
tation. This property is satisfied by all perturbation-based
methods (that only relies on the function evaluation) as well
as by all backpropagation-based methods relying purely on
the gradient (which is itself implementation-invariant). This
axiom was proposed in a previous work (Sundararajan et al.,

2017) where it is shown that it can be violated when other
propagation rules are used, like in DeepLIFT and LRP.

It is trivial to see that Gradient× Input and Occlusion do not
satisfy Completeness, while it has been showed that LRP
and DeepLIFT do not satisfy Implementation Invariance
(Sundararajan et al., 2017). Instead, the following notable
result can be shown for Shapley values.

Proposition 2. Shapley values is the only possible attribu-
tion method that satisfies Axioms 1-5.

The proposition is a direct consequence of previous results
(Sun & Sundararajan, 2011) and the proof is provided in
Appendix B of the supplementary material. Clearly, being
a perturbation-based method, Shapley values satisfies Ax-
iom 6 as well. This unique set of sought after properties
motivates the use of Shapley values for attributions.

4. Deep Approximate Shapley Propagation
Despite the theoretical guarantees, Shapley values have one
big flaw: computing them is NP-hard, as elaborated on in
the previous sections. In this section, we introduce Deep
Approximate Shapley Propagation (DASP), a perturbation-
based method that can reliably approximate Shapley values
in DNNs with a polynomial number of perturbation steps.

Consider a feed-forward neural network, composed of layers
equipped with a non-linear function σ, each performing

f (i)(x(i−1)) = σ(W(i)x(i−1) + b(i)) (4)

where i indicates a layer index, 1 ≤ i ≤ l.

We are interested in computing the Shapley values with
respect to one output unit of a neural network whose overall
function f(x) = (f (1)◦f (2)◦ ...◦f (l))(x) is the composition
of several of such layers.

Our approximation is based on the following intuition. Ac-
cording to the definition given by Eq. 3, the Shapley value
of an input feature is given by its marginal contribution to all
possible 2N−1 coalitions that can be made out of the remain-
ing features. Since we are interested in an average value, we
can compute the expected contribution to a random coali-
tion instead of enumerating each of them. In particular, we
consider the distribution of coalitions of size k, for each
0 ≤ k ≤ N − 1, that do not include the feature xi, and com-
pute the expected contribution of that feature with respect
to these distributions. The average of all these marginal
contributions gives the feature’s approximate Shapley value
(Fatima et al., 2008):

E
[
Rc

i

]
=

1

N

N−1∑
k=0

Ek

[
Rc

i,k

]
, (5)
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where the expectations Ek are over the distribution of sets
of size k, and Rc

i,k denotes the contribution of feature xi
to any random coalition of size k. More explicitly, we can
write the expected contribution of a feature xi for a given
coalition size as the expected target output difference with
and without it, i.e.

Ek

[
Rc

i,k

]
= E

S⊆P\{i}
|S|=k

[fc(xS∪{i})]− E
S⊆P\{i}
|S|=k

[fc(xS)].

(6)

The proof of Eq. 5 is based on the observation that there
exists the same number of coalitions (where order matters)
of size k for all values of k. We refer the reader to (Fatima
et al., 2008) for the complete derivation.

So the main problem is approximating these expected values
for all coalitions of size 0 ≤ k ≤ N − 1. As we will
elaborate on in the next sections, these expected values can
be computed and propagated along with variances from
layer to layer in a DNN. Such a propagation can be achieved
by transforming the architecture of a given DNN to replace
the point activations at all layers by probability distributions.
This problem has been previously studied in the scope of
uncertainty propagation in DNNs (Abdelaziz et al., 2015;
Gast & Roth, 2018; Thiagarajan et al., 2018), where the
goal is to analyze how the uncertainty of the input data or of
the network parameters propagates through the linear and
non-linear operations up to the output layer. We adapt such
a framework for our use case by i) considering the network
parameters fixed and hence no source of uncertainty, and
ii) introducing input uncertainty based on sampling of input
coalitions. Then, we employ a Lightweight Probabilistic
Network (Gast & Roth, 2018), and show that the expected
values can be propagated in a practical fashion through the
entire network.

4.1. Input distribution from random coalitions

Each coalition of size k is represented with a vector xS of
inputs, where the set S of k components of the vector con-
tain their actual values, and the others contain the baseline
value of zero. All such vectors with k non-zero elements
can be thought of as drawn from an underlying distribution
of a random variable Xk.

The first operation in a typical DNN is a weighted sum of
the inputs. Each hidden unit thus takes a weighted sum of
the network input zj =

∑N
i=1 xi · wij . As Xk is a random

variable, a weighted sum of its components is also a random
variable. It can be shown (Von Bahr, 1972) that, under mild
assumptions, the distribution of Zj is given by

Zj ∼ N

(
kµj , kσ

2
j

N − k
N − 1

)
, (7)

where we set

µj =
1

N

N∑
i=1

xi ·wij , σ2
j =

1

N

N∑
i=1

(xi ·wij)
2−µ2

j , (8)

with the sums computed over all components xi of the input
vector x. We provide a study of the accuracy of this form of
the distribution by comparing it to the empirical counterpart
in Appendix D of the supplementary material.

The random vector Z with the components Zj is thus dis-
tributed with an isotropic Gaussian of the means µj and
variances σ2

j . Note that if we assume that this weighted sum
is the only layer in the network, then the means here already
provide the expected values we need to compute Shapley
values. As this random variable is fed into the further op-
erations of the later layers in a DNN, the distribution and
hence the means will change. The next task is thus to derive
how the distribution of Z will change as it is fed through.

4.2. Distribution propagation

Given the probabilistic input Z at the first hidden layer, we
propagate this distribution to the target unit by employing
Lightweight Probabilistic Deep Networks (LPNs) (Gast &
Roth, 2018). LPN is an architecture for uncertainty propaga-
tion through a feed-forward DNN where each input sample
is modeled using an independent univariate Gaussian distri-
bution. Contrary to other Bayesian formulations, the model
parameters are considered deterministic, as in our case. The
propagation of uncertainties is carried out using assumed
density filtering (Boyen & Koller, 1998; Gast & Roth, 2018),
where each layer is implemented as filtering of the input
distribution to obtain a transformed Gaussian distribution
with diagonal covariance. While it was originally developed
to propagate the intrinsic uncertainty of the input, LPN can
be easily adapted to our scenario, where the uncertainty
given by random coalitions induces a probability distribu-
tion for the input of the first hidden layer. On the other hand,
notice that DASP is not coupled to any particular probabilis-
tic framework and can extend to general architectures (eg.
RNNs) given a probabilistic framework that supports them.

In order to propagate the activation distribution through
linear and non-linear operations, LPN converts any layer
with point activations into an uncertainty propagation layer
by matching first and second-order central moments, i.e.

µ
(i)
X = EX(i−1)

[
f (i)(x(i−1))

]
(9a)

σ2(i)
X = VX(i−1)

[
f (i)(x(i−1))

]
, (9b)

where E[·] and V[·] denote expectation and variance. This
procedure can be proven to perform a greedy (layer-wise)
optimization of the KL-divergence of p(x(0:l)) towards the
actual distribution (Minka, 2001). As a result, our original
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network function f(x) is transformed into a probabilistic net-
work function f̂(µ,σ2) = [f̂1(µ,σ2), ..., f̂C(µ,σ2)] that
takes as inputs the first and second moments of a (Gaussian)
distribution and returns the parameters of the distribution
at the output layer, after the original distribution is sequen-
tially filtered by all hidden layers. Moment matching for
several commonly employed layers and operations in neural
network architectures can be derived in closed-form:

Affine transformation. A fully-connected layer with
weights W and bias b takes the input Z ∼ N (µ,σ2) and
filters it by applying f(Z) = WZ + b. The output is a new
Gaussian with mean and variance:

µlin = Wµ + b; σ2
lin = W2σ2, (10)

where by W2 we indicate the element-wise square. This
notation will be used for any matrix or vector in the remain-
der of the paper. With minor adaptations, this also holds
for the convolution and the mean pooling, which are linear
layers. Notice that mean and variance do not interact with
each other on linear operations.

ReLU activation. The output of a ReLU activation that
receives a Gaussian input Z ∼ N (µ,σ2) is a rectified
Gaussian distribution (Socci et al., 1998) whose mean and
variance can be derived analytically (Frey & Hinton, 1999).
For details, see Appendix E of the supplementary material.

Max Pooling. Max pooling can be seen as returning the
maximum response of n random variables Z1, ...Zn. For
two independent inputsA ∼ N (µA, σ

2
A),B ∼ N (µB , σ

2
B),

the maximum is not normally distributed anymore. Never-
theless, it has been shown that the univariate normal is an
effective approximation (Gast & Roth, 2018) and the first
and second moments, provided also in Appendix E, can be
derived analytically (Jacobs & Berkelaar, 2000).

4.3. Computing approximate Shapley values

Having transformed the distribution of inputs from coali-
tions to output activation uncertainties, we can finally com-
pute approximate Shapley values. Algorithm 1 describes
the procedure in pseudo-code. For the sake of clarity, we
have listed all the operations of the first weighted sum as
explained in Sec. 4.1 explicitly, and wrapped all other oper-
ations in subsequent layers into f̂c.

Computing Deep Shapley values requires N network evalu-
ations for each input feature, if we test all possible coalition
sizes (i.e. k = 0, ..., N − 1). As a result, the algorithm
approximates Shapley values for N input features inO(N2)
network evaluations, compared to O(2N ) of the exact com-
putation. In order to further reduce the computational cost,
we can perform a secondary approximation by reducing
the number of coalition sizes that we consider. If K is the
number of coalition sizes tested, we need O(KN) evalua-

Algorithm 1 Deep Shapley algorithm (dense layers only)
1: Input: input x, coalitions sizes k1, ..., kK , first layer

weights w, LPN without first linear layer f̂c
2: Initialize result vector Rc at zero
3: for i = 1, ..., N do
4: for k = k1, ..., kK do
5: x̄ = x
6: x̄[i] = 0
7: // Compute statistics of features excluding i
8: µ = 1

N−1 (Wx̄)

9: σ2 = 1
N−1 (W2x̄2)− µ2

10: // Compensate for current coalition size
11: µ = kµ
12: σ2 = k k−1

N−1σ
2

13: // Compute bias introduced by i
14: µ̄ = µ + x[i]w(1)

15: // Propagate distributions up to the output layer
16: µ(l), σ2(l) = f̂c(µ,σ

2)

17: µ̄(l), σ̄2(l) = f̂c(µ̄,σ
2)

18: // Compute marginal contribution of i to coalitions
of size k

19: Rc[i] = Rc[i] + 1
K (µ̄(l) − µ(l))

20: end for
21: end for
22: Output: Approximate Shapley values Rc

tions. In the next section, we show empirically that K can
be much lower than N . In order to ensure as much diversity
as possible, we pick coalition sizes k = [k1, ..., kK ] equally
apart from each other.

5. Experiments
In this section, we report experiments running DASP1 along-
side Integrated Gradients, DeepLIFT Rescale, DeepLIFT,
RevealCancel, Occlusion, Shapley sampling and Ker-
nelSHAP using three datasets and different network archi-
tectures. Instead, we omit the comparison with DeepSHAP
as this method is equivalent to DeepLIFT Rescale when used
with a (fixed) zero baseline. Our main goal is to demonstrate
how DASP can be effectively used to approximate Shap-
ley values and compare it with state-of-the-art attribution
methods on this task. Notice that Shapley sampling and Ker-
nelSHAP (without regularizer) are guaranteed to converge
to exact Shapley values, given enough samples. This is not
the case for DASP, which is not a sampling-based method.
In this case, our goal is to show that sampling-based meth-
ods require significantly more model evaluations than DASP
to reach the same approximation error.

All experiments are run in Keras (Chollet et al., 2015). De-

1DASP implementation: http://bit.ly/DASPCode
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Figure 1. Comparison of attribution methods on three datasets according to RMSE and Spearman correlation, with respect to the number
of network evaluations. For each method, we report the mean and standard deviation computed over at least 50 samples on each dataset.
The ground truth is approximated using Shapley sampling for DNA Sequences and MNIST. DeepLIFT and Occlusion call for a fixed
number of network evaluations. To enable a direct comparison, we project their performance on the x-axis using dashed lines. DASP
evaluations are adjusted to reflect the doubled number of evaluations to propagate both mean and variance. KernelSHAP is run with no
regularizer. Vertical scales adjusted for the sake of readability. Best seen in electronic form.

tails about the architectures used are in Appendix F of the
supplementary material.

5.1. Evaluation metrics

When the size of the input allows it, we compute exact
Shapley values using Eq. 3, and use it as the ground-truth.
When the exact computation is not feasible, we run Shap-
ley sampling until convergence as an approximation of the
ground-truth. Since Shapley sampling is an unbiased esti-
mator, this is a faithful approximation.

For the quantitative comparison, we report both the root
mean squared error (RMSE) and the Spearman rank correla-
tion over several input samples extracted from each test set.
While the RMSE is useful to quantify the absolute average
error of each attribution score, the Spearman rank corre-
lation is used as a metric to assess whether two methods
agree on the ranking of features based on their impact on
the model output. When discussing performance, we always
compare the attribution methods by the number of network
evaluations they require, as the wall-clock time is influenced
by the efficiency of the different implementations. How-
ever, we do take into account that our probabilistic layers
require about twice the number of operations of a normal
layer (to propagate mean and variance), therefore we double
the number of evaluations for DASP in all our results.

5.2. Parkinsons disability assessment

As a first test, we trained a fully-connected DNN on the
Parkinsons Telemonitoring Data Set (Tsanas et al., 2010).

The goal of this regression task is to predict the Parkinsons
disease rating scale (UPDRS) that reflects the presence and
severity of symptoms starting from 18 input features: sub-
ject age, subject gender, and 16 biomedical voice measures.
UPDRS spans the range 0-176, with 0 representing healthy
state and 176 representing total disabilities.

Figure 2. Explanation for the UPDRS prediction (= 23.29) of a
single subject according to DASP. The explanation is displayed
as force plot (Lundberg et al., 2018), where red(blue) indicates
features that contributed making the score higher(lower). For
example, sex (male) causes the output score to increase while age
causes the output score to decrease. Best seen in electronic form.

Fig. 2 shows the explanation of the network prediction gen-
erated by our method for a single subject. An explanation,
in this case, can tell the user which features the model
has used for a certain prediction. The natural question is
whether the generated explanation is a reliable represen-
tation of the network behavior. Notice that the network
behavior and the human intuition about how a certain task
should be solved might not coincide in general (for example,
the network might have learned patterns that the human
expert was not aware of, or the network might mistakenly
exploit correlations that have no causality). For this rea-
son, we believe any qualitative comparison is dangerous.
Instead, we have a clear ground truth against which we
can evaluate our technique and others in this case. As the
number of input features is limited to 18, we can compute
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the exact Shapley values for 100 samples from the test set,
each requiring 218 = 262′144 network evaluations. Fig. 1
shows that DASP produces a better approximation of Shap-
ley values than other biased methods, even when a small
number of coalition sizes is tested (i.e. K � N ). Unbiased,
sampling-based methods, instead, require significantly more
evaluations before outperforming DASP.

5.3. Classifying regulatory DNA sequences

To test if the result holds on different architectures, we con-
sider a classification task over DNA sequence inputs. A
DNA sequence can be seen as a string over the alphabet
A,C,G,T. We are interested in detecting short patterns (eg.
GATAA or GATTA) within these sequences by employing
a neural network with two 1D convolutional layers, global
average pooling, and one fully-connected layer. This setup,
which also includes some synthetically generated DNA se-
quences, was previously proposed as a benchmark for attri-
bution methods (Shrikumar et al., 2017). Since the DNA
sequences have a length of 200 tokens, it is prohibitive to
compute exact Shapley values. To approximate the ground-
truth and enable a direct comparison of all methods against
it, we run about 800’000 iterations of Shapley sampling
on each of the 50 input samples until convergence. This
process took about 45 minutes on our machine.

The results are reported in Fig. 1. The original authors of
the experiment suggest a specific combination of DeepLIFT
propagation rules (Rescale for the two convolutional lay-
ers and RevealCancel for the dense layer) to obtain the
best results on this dataset. This combination, identified
as DeepLIFT (Mix) in Fig. 1, also gives the best results
among backpropagation-based methods in our experiment,
outperformed only by DASP and sampling methods. On
the other hand, KernelSHAP requires a significantly more
evaluations than DASP to reach the same rank correlation.

5.4. Digits classification (MNIST)

Figure 3. Attributions maps produced by different methods on
MNIST images. Red(blue) color indicates features (pixels) that
positively(negatively) impact the network output score. Ker-
nelSHAP (not reported) converges to the same result of Sampling.

Finally, we train a convolutional neural network on MNIST
(LeCun et al., 1998) to perform digit classification. We
use the LeNet-5 architecture (LeCun et al., 1998), which

consists of two convolutional layers, each followed by a
max-pooling layer, and three final dense layers. Again, we
use Shapley sampling to approximate the ground-truth for
the 784 features (pixels) of 50 test images, which took about
4 hours for 6M evaluations on our machine.

Fig. 3 shows an example of the resulting attribution maps.
Notice that backpropagation-based methods tend to produce
more noisy explanations than perturbation-based methods.
We speculate that this happens because backpropagation-
based methods are more sensitive to local (and noisy) gra-
dient information. Furthermore, Occlusion seems to under-
estimate or over-estimate the importance of some areas of
the image, as compared to DASP. These are reflected in
the quantitative comparison in Fig. 1. As in the previous
experiments, we see a significant gap between the accuracy
of DASP and other biased approximators, as well as a sig-
nificant gap in the number of samples required by Shapley
sampling and KernelSHAP to reach DASP performance.
Notice that, in this case, KernelSHAP performs worse than
simple sampling. We speculate this happens because of
the linearity assumption of KernelSHAP, affecting more the
more complex models.

6. Conclusions
In this work, we discussed Shapley values as an attribution
method for DNNs. First, we showed that several existing
attribution methods reduce to computing Shapley values
when applied to linear models. On the other hand, when the
model is non-linear, Shapley values remain the only method
that satisfies a number of desirable theoretical properties,
which strongly motivates their use for reliable explanations.

As computing Shapley values is often unfeasible, we then
proposed Deep Approximate Shapley Propagation (DASP),
a novel perturbation-based method that approximates Shap-
ley values using uncertainty propagation in DNNs. DASP re-
quires a polynomial number of network evaluations. While
it is not guarantee to recover exact Shapley values, we
showed empirically that other sampling-based methods re-
quire significantly more evaluations to achieve the same
approximation error. We have also shown that DASP out-
performs state-of-the-art backpropagation-based methods,
which are fast but coarse Shapley values approximators.

DASP can be considered a novel application for the field of
uncertainty propagation in DNNs, although we would like
to remark how it is not constrained to LPN for this purpose.
As research on this area continues, we expect to be able to
extend DASP for recurrent neural networks, and we hope
that new probabilistic frameworks will enable the derivation
of theoretical guarantees and even better approximations.
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