
Supplementary Material
Stochastic Gradient Push for Distributed Deep Learning

A. Communication Topology
Directed exponential graph. For the SGP experiments we use a time-varying directed graph to represent the inter-node
connectivity. Thinking of the nodes as being ordered sequentially, according to their rank, 0, . . . , n − 1,3 each node
periodically communicates with peers that are 20, 21, . . . , 2blog2(n−1)c hops away. Fig. A.1 shows an example of a directed
8-node exponential graph. Node 0’s 20-hop neighbour is node 1; node 0’s 21-hop neighbour is node 2; and node 0’s 22-hop
neighbour is node 4.

1

2

3

0

4

6

5

7

(a) Directed Exponential Graph highlighting
node 0’s out-neighbours

Figure A.1: Example of an 8-node exponential graph used in experiments

In the one-peer-per-node experiments, each node cycles through these peers, transmitting, only, to a single peer from this list
at each iteration. E.g., at iteration k, all nodes transmit messages to their 20-hop neighbours, at iteration k + 1 all nodes
transmit messages to their 21-hop neighbours, an so on, eventually returning to the beginning of the list before cycling
through the peers again. This procedure ensures that each node only sends and receives a single message at each iteration.
By using full-duplex communication, sending and receiving can happen in parallel.

In the two-peer-per-node experiments, each node cycles through the same set of peers, transmitting to two peers from the list
at each iteration. E.g., at iteration k, all nodes transmit messages to their 20-hop and 21-hop neighbours, at iteration k + 1
all nodes transmit messages to their 21-hop and 22 neighbours, an so on, eventually returning to the beginning of the list
before cycling through the peers again. Similarly, at each iteration, each node also receives, in a full-duplex manner, two
messages from some peers that are unknown to the receiving node ahead of time. Thereby performing the send and receive
operations in parallel.

Definition of P (k). We choose the mixing matrices such that they are column stochastic (all columns sum to 1), and
conform to the graph topology described above. Recall that each node i can choose its mixing weights (ith column of P (k)),
independently of the other nodes in the network. To minimize the number of floating point operations in each iteration,
we choose to use uniform mixing weights, meaning that nodes assign uniform message weights to all neighbours. In
the one-peer-per-node experiments, each node sends a message to one neighbor, and “sends a message” to itself at every
iteration, and so each column of P (k) has exactly two non-zero entries, both of which are equal to 1/2. The first set of
non-zero entries corresponds to the diagonals. At all time steps k, the diagonal entries satisfy p(k)

i,i = 1/2 for all i. The

3We use indices 0, . . . , n− 1 rather than 1, . . . , n only in this section, to simplify the discussion.

Stochastic Gradient Push for Distributed Deep Learning

second set of non-zero entries correspond to the neighbor indices. At time step k, each node sends to a neighbor that is
hk := 2k mod blog2(n−1)c hops away. That is, at each time step k, each node i sends a message to node (i+ hk) mod n. Thus,
we get that

p
(k)
j,i =

{
1/2, if j = (i+ hk) mod n
0, otherwise.

Note that, with this design, in fact each node sends to one peer and receives from one peer at every iteration, so the
communication load is balanced across the network.

In the two-peer-per-node experiments, the definition is similar, but now there will be three non-zero entries in each column
of P (k), all of which will be equal to 1/3; these are the diagonal, and the entries corresponding to the two neighbors to
which the node sends at that iteration. In addition, each node will send two messages and receive two messages at every
iteration, so the communication load is again balanced across the network.

Undirected exponential graph. For the D-PSGD experiments we use a time-varying undirected bipartite exponential
graph to represent the inter-node connectivity. Odd-numbered nodes send messages to peers that are 21 − 1, 22 −
1, . . . , 2blog2(n−1)c − 1 (even-numbered nodes), and wait to a receive a message back in return. Each odd-numbered node
cycles through the peers in the list in a similar fashion to the one-peer-per-node SGP experiments. Even-numbered nodes
wait to receive a message from some peer (unknown to the receiving node ahead of time), and send a message back in return.

We adopt these graphs to be consistent with the experimental setup used in Lian et al. (2017) and Lian et al. (2018).

Note also that these graphs are all regular, in that all nodes have the same number of in-coming and out-going connections.

Decentralized averaging errors. To further motivate our choice of using the directed exponential graph with SGP, let us
forget about optimization for a moment and focus on the problem of distributed averaging, described in Section 2, using the
PUSHSUM algorithm. Recall that each node i starts with a vector y(0)

i , and the goal of the agents is to compute the average
y = 1

n

∑
i y

(0)
i . Then, since y(k+1)

i =
∑n
j=1 p

(k)
i,j y

(k)
j , after k steps we have

Y (k) = P (k−1)P (k−2) · · ·P (1)P (0)Y (0),

where Y (k) is a n× d matrix with y(k)
i as its ith row.

Let P (k−1:0) = P (k−1)P (k−2) · · ·P (1)P (0). The worst-case rate of convergence can be related to the second-largest
singular value of P (k−1:0) (Nedić et al., 2018). In particular, after k iterations we have

∑

i

‖y(k)
i − y‖22 ≤ λ2(P (k−1:0))

∑

i

‖y(0)
i − y‖22,

where λ2(P (k−1:0)) denotes the second largest singular value of P (k−1:0).

For the scheme proposed above, cycling deterministically through neighbors in the directed exponential graph, one can
verify that after k = blog2(n− 1)c iterations, we have λ2(P (k−1:0)) = 0, so all nodes exactly have the average. Intuitively,
this happens because the directed exponential graph has excellent mixing properties: from any starting node in the network,
one can get to any other node in at most log2(n) hops. For n = 32 nodes, after 5 iterations averaging has converged using
this strategy. In comparison, if one were to cycle through edges of the complete graph (where every node is connected to
every other node), then for n = 32, after 5 consecutive iterations one would have still have λ2(P (k−1:0)) ≈ 0.6; i.e., nodes
could be much further from the average (and hence, much less well-synchronized).

Similarly, one could consider designing the matrices P (k) in a stochastic manner, where each node randomly samples
one neighbor to send to at every iteration. If each node samples a destination uniformly from its set of neighbors in the
directed exponential graph, then Eλ2(P (k−1:0)) ≈ 0.4, and if each node randomly selected a destination uniformly among
all other nodes in the network (i.e., randomly from neighbors in the complete graph), then Eλ2(P (k−1:0)) ≈ 0.2. Thus,
random schemes are still not as effective at quickly averaging as deterministically cycling through neighbors in the directed
exponential graph. Moreover, with randomized schemes, we are no longer guaranteed that each node receives the same
number of messages at every iteration, so the communication load will not be balanced as in the deterministic scheme.

The above discussion focused only on approximate distributed averaging, which is a key step within decentralized optimiza-
tion. When averaging occurs less quickly, this also impacts optimization. Specifically, since nodes are less well-synchronized

Stochastic Gradient Push for Distributed Deep Learning

Algorithm 2 Overlap Stochastic Gradient Push (SGP)

Require: Initialize τ ≥ 0, count since last = 0, γ > 0, x(0)
i = z

(0)
i ∈ Rd and w(0)

i = 1 for all nodes i ∈ {1, 2, . . . , n}
1: for k = 0, 1, 2, · · · ,K, at node i, do
2: Sample new mini-batch ξ(k)i ∼ Di from local distribution
3: Compute mini-batch gradient at z(k)

i : ∇Fi(z(k)
i ; ξ

(k)
i)

4: x
(k+ 1

2
)

i = x
(k)
i − γ∇Fi(z

(k)
i ; ξ

(k)
i)

5: if k mod τ = 0 then
6: Non-blocking send

(
p
(k)
j,i x

(k+ 1
2
)

i , p
(k)
j,i w

(k)
i

)
to out-neighbors

7: x
(k+1)
i = pi,ix

(k+1/2)
i

8: w
(k+1)
i = pi,iw

(k)
i

9: else
10: x

(k+1)
i = x

(k+1/2)
i

11: w
(k+1)
i = w

(k)
i

12: end if
13: if count since last = τ then
14: Block until

(
p
(k−τ)
i,j x

(k−τ+ 1
2
)

j , p
(k−τ)
i,j w

(k−τ)
j

)
is received for all in-neighbors j

15: count since last← 0
16: else
17: count since last← count since last +1
18: end if
19: if Receive buffer non-empty then
20: for

(
p
(k′)
i,j x

(k′+ 1
2
)

j , p
(k′)
i,j w

(k′)
j

)
in the receive buffer do

21: x
(k+1)
i ← x

(k+1)
i + p

(k′)
i,j x

(k′+ 1
2
)

j

22: w
(k+1)
i ← p

(k′)
i,j w

(k′)
j

23: end for
24: end if
25: z

(k+1)
i = x

(k+1)
i /w

(k+1)
i

26: end for

(i.e., further from a consensus), each node will be evaluating its local mini-batch gradient at a different point in parameter
space. Averaging these points (rather than updates based on mini-batch gradients evaluated at the same point) can be seen as
injecting additional noise into the optimization process, and in our experience this can lead to worse performance in terms of
train error.

B. Overlap SGP
Although SGP does not use network-wide collective communication primitives like ALLREDUCE, the implementation of
Alg. 1 requires using blocking sends and receives; i.e., nodes do not proceed to until they have received messages from
all neighbors at that iteration. In this section we present the pseudocode of Overlap-SGP (OSGP) in Alg. 2 that overlaps
gradient computation with communication to hide the communication cost. In line 25 in Algorithm 2, nodes compute the
de-biased estimate of their model parameters. In lines 19 to 24, nodes aggregate all messages received in that iteration. Lines
13 to 18 ensure that the message delays are bounded, and that the nodes remain synchronized. In particular, Algorithm 2 is
synchronous because of lines 13 to 18. If a node hasn’t received a message from its in-neighbours in τ iterations, it will
block and wait to received said messages. Note that if τ = 0, vanilla SGP, then nodes block and wait to receive all incoming
messages in each iteration. In lines 5 to 6, nodes send messages to their neighbours every τ iterations. Once again, note
that if τ = 0, vanilla SGP, then nodes send messages to their neighbours every iteration. In lines 2 to 4 the nodes take a
stochastic gradient step. If τ = 1 (1-overlap SGP), nodes transmit messages to their neighbours in every iteration, but don’t
wait to receive messages until the subsequent iteration.

We provide a lot of detail in Algorithm 2 to make it easier to implement the method; however, in essence, τ -overlap SGP
is simply vanilla SGP with delayed communication. i.e., where nodes only send a message to their neighbours every τ
iterations, and can receive messages at any time in-between communication intervals.

3We define (k mod 0) := 0.

Stochastic Gradient Push for Distributed Deep Learning

C. Implementation Details
In all of our experiments, we minimize the number of floating-point operations performed in each iteration, k, by using the
mixing weights

p
(k)
j,i = 1/

∣∣∣N out
i

(k)
∣∣∣

for all i, j = 1, 2, . . . , n. In words, each node assigns mixing weights uniformly to all of its out-neighbors in each iteration.
Recalling our convention that each node is an in- and out-neighbor of itself, it is easy to see that this choice of mixing-weight
satisfies the column-stochasticity property. It may very well be that there is a different choice of mixing-weights that lead to
better spectral properties of the gossip algorithm; however we leave this exploration for future work. We denote node i’s
uniform mixing weights at iteration k by p(k)

i — dropping the other subscript, which identifies the receiving node.

To leverage the highly efficient NVLink interconnect within each server, we treat each machine as one node in all of our
experiments. In our implementation of SGP, each node computes a local mini-batch in parallel using all 8 GPUs via a local
ALLREDUCE, which is efficiently implemented via the NVIDIA Collective Communications Library. Then inter-node
averaging is accomplished using PUSHSUM either over Ethernet or InfiniBand. In the InfiniBand experiments, we leverage
GPUDirect to directly send/receive messages between GPUs on different nodes and avoid transferring the model back to
host memory. In the Ethernet experiments this is not possible, so the model is transferred to host memory after the local
ALLREDUCE, and then PUSHSUM messages are sent over Ethernet.

To maximize the utility of the resources available on each server, each node (occupying a single server exclusively) runs two
threads, a gossip thread and a computation thread. The computation thread executes the main logic used to train the local
model on the GPUs available to the node, while the communication thread is used for inter-node network I/O. In particular,
the communication thread is used to gossip messages between nodes. When using Ethernet-based communication, the nodes
communicate their parameter tensors over CPUs. When using InifiniBand-based communication, the nodes communicate
their parameter tensors using GPUDirect RDMA, thereby avoiding superfluous device to pinned-memory transfers of the
model parameters.

Each node initializes its model on one of its GPUs, and initializes its scalar push-sum weight to 1. At the start of training,
each node also allocates a send- and a receive- communication-buffer in pinned memory on the CPU (or equivalently on a
GPU in the case of GPUDirect RDMA communication).

In each iteration, the communication thread waits for the send-buffer to be filled by the computation thread; transmits the
message in the send-buffer to its out-neighbours; and then aggregates any newly-received messages into the receive-buffer.

In each iteration, the computation thread blocks to retrieve the aggregated messages (in the non-overlap case) in the
receive-buffer; directly adds the received parameters to its own model parameters; and directly adds the received push-sum
weights to its own push-sum weight. The computation thread then converts the model parameters to the de-biased estimate
by dividing by the push-sum weight; executes a forward-backward pass of the de-biased model in order to compute a
stochastic mini-batch gradient; converts the model parameters back to the biased estimate by multiplying by the push-sum
weight; and applies the newly-computed stochastic gradients to the biased model. The updated model parameters are then
multiplied by the mixing weight, p(k)

i , and asynchronously copied back into the send-buffer for use by the communication
thread. The push-sum weight is also multiplied by the same mixing weight and concatenated into the send-buffer.

In short, gossip is performed on the biased model parameters (push-sum numerators); stochastic gradients are computed
using the de-biased model parameters; stochastic gradients are applied back to the biased model parameters; and then
the biased-model and the push-sum weight are multiplied by the same uniform mixing-weight and copied back into the
send-buffer.

C.1. Hyperparameters

For the ImageNet experiments, we follow the experimental protocol described in (Goyal et al., 2017). When we “apply the
stochastic gradients” to the biased model parameters, we actually carry out an SGD step with nesterov momentum (see
Alg. 3). For the 32, 64, and 128 GPU experiments we use the same exact learning-rate, schedule, momentum, and weight
decay as those suggested in (Goyal et al., 2017) for SGD. In particular, we use a reference learning-rate of 0.1 with respect
to a 256 sample batch, and scale this linearly with the batch-size; we decay the learning-rate by a factor of 10 at epochs
30, 60, 80; we use a Nesterov momentum parameter of 0.9, and we use weight decay 0.0001.

Stochastic Gradient Push for Distributed Deep Learning

Algorithm 3 Stochastic Gradient Push with Momentum

Require: Initialize γ > 0, m ∈ (0, 1), x(0)
i = z

(0)
i ∈ Rd and w(0)

i = 1 for all nodes i ∈ [n]
1: for k = 0, 1, 2, · · · ,K, at node i, do
2: Sample new mini-batch ξ(k)i ∼ Di from local distribution
3: Compute mini-batch gradient at z(k)

i : ∇Fi(z(k)
i ; ξ

(k)
i)

4: u
(k+1)
i = mu

(k)
i +∇Fi(z(k)

i ; ξ
(k)
i)

5: x
(k+ 1

2
)

i = x
(k)
i − γ(mu

(k+1)
i +∇Fi(z(k)

i ; ξ
(k)
i))

6: Send
(
p
(k)
j,i x

(k+ 1
2
)

i , p
(k)
j,i w

(k)
i

)
to out-neighbors;

receive
(
p
(k)
i,j x

(k+ 1
2
)

j , p
(k)
i,j w

(k)
j

)
from in-neighbors

7: x
(k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j x

(k+ 1
2
)

j

8: w
(k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j w

(k)
j

9: z
(k+1)
i = x

(k+1)
i /w

(k+1)
i

10: end for

For the machine translation experiment, we follow (Vaswani et al., 2017) and combine Stochastic Gradient Push with the
Adam preconditioner. In particular, we make use of the FAIRSEQ code (Gehring et al., 2017), and train the transformer
networks via SGP by replacing the built-in PyTorch parallel SGD model wrapper with our SGP model wrapper.

D. Additional Experiments
D.1. Additional Training Curves

0 20000 40000 60000
Time (s)

20

40

60

80

100

Tr
ai

ni
ng

 E
rro

r

SGP 4 nodes
SGP 8 nodes
SGP 16 nodes
SGP 32 nodes
SGD 4 nodes
SGD 8 nodes
SGD 16 nodes
SGD 32 nodes

(a) Train

0 20000 40000 60000
Time (s)

20

40

60

80

100

Va
lid

at
io

n
Er

ro
r

SGP 4 nodes
SGP 8 nodes
SGP 16 nodes
SGP 32 nodes
SGD 4 nodes
SGD 8 nodes
SGD 16 nodes
SGD 32 nodes

(b) Validation

Figure D.1: Training on Ethernet 10Gbit/s

0 20000 40000 60000 80000 100000
Iteration

20

40

60

80

100

Tr
ai

ni
ng

 E
rro

r

SGP 4 nodes
SGP 8 nodes
SGP 16 nodes
SGP 32 nodes

(a) Train

0 20000 40000 60000 80000 100000
Iteration

20

40

60

80

100

Va
lid

at
io

n
Er

ro
r

SGP 4 nodes
SGP 8 nodes
SGP 16 nodes
SGP 32 nodes

(b) Validation

Figure D.2: Training/Validation accuracy per iteration for SGP (Ethernet 10Gbit/s). Each time we double the number of
node in the network, we half the total number of iterations.

Stochastic Gradient Push for Distributed Deep Learning

The curves in Figure D.1 show the time-wise train- and validation-accuracies for the different runs performed on Ethernet
10Gbit/s. Figure D.2 reports the iteration-wise training and validation accuracy of SGP when using 10Gbits/s Ethernet.

D.2. Discrepancy across different nodes

0 20 40 60 80
 Epoch

20

40

60

80

Er
ro

r
4 nodes

(a) Discrepancy on 4 nodes

0 20 40 60 80
 Epoch

40

60

80

100

Er
ro

r

32 nodes

(b) Discrepancy on 32 nodes

Figure D.3: Resnet50, trained with SGP, training and validation errors for 4 and 32 nodes experiments. The solid and dashed
lines in each figure show the mean training and validation error, respectively, over all nodes. The shaded region shows the
maximum and minimum error attained at different nodes in the same experiment. Although there is non-trivial variability
across nodes early in training, all nodes eventually converge to similar validation errors, achieving consensus in the sense
that they represent the same function.

Here, we investigate the performance variability across nodes during training for SGP. In figure D.3, we report the minimum,
maximum and mean error across the different nodes for training and validation. In an initial training phase, we observe that
nodes have different validation errors; their local copies of the Resnet-50 model diverge. As we decrease the learning, the
variability between the different nodes diminish and the nodes eventually converging to similar errors. This suggests that all
models ultimately represent the same function, achieving consensus.

D.3. SGP Scaling Analysis

4 8 16 32
Number of Nodes

5000

10000

15000

20000

 Im
ag

es
 P

er
 S

ec
on

d

ideal
SGP

(a) ETH 10Gbit/s

4 8 16 32
Number of Nodes

5000

10000

15000

20000

25000

30000

 Im
ag

es
 p

er
 S

ec
on

d

ideal
SGP

(b) InfiniBand 100Gbit/s

4 8 16 32
Number of Nodes

5000

10000

15000

20000

25000

 Im
ag

es
 P

er
 S

ec
on

d

SGP (Ethernet)
SGP (InfiniBand)
SGD (Ethernet)
SGD (InfiniBand)

(c) Scaling of SGP and SGP

Figure D.4: SGP throughput on Ethernet (a) and InfiniBand (b). SGP exhibits 88.6% scaling efficiency on Ethernet 10Gbit/s
and 92.4% on InfiniBand. Comparison of SGD vs SGP throughput in Figure (c) shows that SGP exhibit better scaling and is
more robust to high-latency interconnect.

Figure D.4 highlights SGP input images throughput as we scale up the number of cluster node on both Ethernet 10Gbit/s and
Infiniband 100Gbit/s. SGP exhibits 88.6% scaling efficiency on Ethernet 10Gbit/s and 92.4% on InfiniBand and stay close
to the ideal scaling in both cases. In addition Figure (c) shows that SGP exhibit better scaling as we increase the network
size and is more robust to high-latency interconnect.

Stochastic Gradient Push for Distributed Deep Learning

1

0 2

3

1
2

1
3

1
2

1
2

1
3

1
2

1
2

1
2

1
3

(a)

1

0 2

301

02

1
2

0 1
2

1
2

1
3

1
2

1
2

1
2

1
3

0

1
3

1

1

(b)

Figure E.1: (a) Example of a 4-node network, with mixing-weights drawn on edges. (b) Example of a 4-node network,
augmented with virtual nodes and edges, with mixing-weights draw on edges. The virtual nodes/edges are used to model
the fact that messages from node 3 to node 0 can experience a delay of at most 2 iterations. In this particular example, we
model the fact that node 3 sends a message to node 0 with a delay of 2 iterations. All virtual nodes always forward all of
their messages to their out-neighbor.

E. Proofs of Theoretical Guarantees
Our convergence rate analysis is divided into three main parts. In the first one (subsection E.1) we present upper bounds for
three important expressions that appear in our computations. In subsection E.2 we focus on proving the important for our
analysis Lemma 8 based on which we later build the proofs of our main Theorems. Finally in the third part (subsection E.3)
we provide the proofs for Theorems 1 and 2.

Preliminary results. In our analysis, two preliminary results are extensively used. We state them here for future reference.

• Let a, b ∈ R. Since (a− b)2 ≥ 0, it holds that

2ab ≤ a2 + b2. (4)

Thus, ‖x‖ ‖y‖ ≤ (‖x‖2 + ‖y‖2)/2.

• Let r ∈ (0, 1) then from the summation of geometric sequence and for any K ≤ ∞ it holds that

K∑

k=0

rk ≤
∞∑

k=0

rk =
1

1− r . (5)

Modeling message delays. To model message delays we follow the procedure used in Assran & Rabbat (2018) (which we
will reiterate here). In essence, we augment the communication topology (and the mixing matrices) with virtual nodes that
store messages that were transmitted, but not yet received. Similar graph augmentations have been used in Charalambous
et al. (2015) and Hadjicostis & Charalambous (2014).

We commence by presenting a brief example of the delay-model before formalizing the discussion. Figure E.1 (a) shows an
example of a 4-node network at some arbitrary iteration k. Suppose each node communicates to each of its out-neighbors
with uniform mixing weights. These mixing weights are labeled on the corresponding edges in Figure E.1 (a). Then, the

Stochastic Gradient Push for Distributed Deep Learning

mixing matrix P (k) ∈ R4×4 is given by

P (k) =

1/2 0 0 1/3
1/2 1/2 0 1/3
0 1/2 1/2 0
0 0 1/2 1/3

.

Column indices correspond to sending nodes, and row indices correspond to receiving nodes. Recall that sending nodes
choose the mixing weights (columns of P (k)) used to pre-weight outgoing messages. Note that the matrix P (k) is column
stochastic (all columns sum to 1) — the crucial requirement of our analysis. Thus at time k + 1, we have the following
parameter updates

x
(k+1)
0 =

1

2
x

(k)
0 +

1

3
x

(k)
3

x
(k+1)
1 =

1

2
x

(k)
0 +

1

2
x

(k)
1 +

1

3
x

(k)
3

x
(k+1)
2 =

1

2
x

(k)
1 +

1

2
x

(k)
2

x
(k+1)
3 =

1

2
x

(k)
2 +

1

3
x

(k)
3 .

In particular, each node updates its variables with the most recent information from its in-neighbours. Similar equations can
be written for the push-sum weights w.

Now suppose that node 3 sends messages to its neighbors, nodes 0 and 1, at iteration k, but the message to node 0 doesn’t
arrive until iteration k+ 2. To model this delay, we augment the graph topology with virtual nodes 01, 02 (cf. Figure E.1 (b)).
The virtual nodes are initialized with parameters x(0) = 0 and push-sum weight w(0) = 0. Given this model, node 3 can
send its pre-weighted message to virtual node 02 (instead of node 0) at iteration k, while the rest of communication proceeds
business as usual. At the subsequent iteration, k + 1, node 02 forwards this message to node 01. Subsequently, at iteration,
k + 2, node 01 forwards this message to node 0, thereby modeling a 2-iteration message delay. The corresponding mixing
matrix at iteration k is given by

P (k) =

01 02

1/2 0 0 1/2 1 0
1/2 1/2 0 0 0 0
0 1/2 1/3 0 0 0
0 0 1/3 1/2 0 0

01 0 0 0 0 0 1
02 0 0 1/3 0 0 0

.

Note that we have added two extra rows and columns corresponding to the virtual nodes 01 and 02. As intended, node 2
sends a message to node 02 (instead of node 0) at iteration k. Node 02 always forwards any and all information it receives to
node 01, and node 01 always forwards any and all information it receives to node 0. Since all virtual nodes are initialized
with parameters x(k) = 0 and push-sum weight w(0) = 0, they do not have any impact on the final consensus value. The
sole purpose of the virtual nodes is to store messages that are in-transit (transmitted but not yet received).

If the message delays at every node are upper-bounded by τ , then we can generalize this procedure, and add τ virtual nodes
for every (non-virtual) node in the network. Thus, the augmented graph has n(τ + 1) nodes in total. The corresponding

Stochastic Gradient Push for Distributed Deep Learning

augmented mixing matrix, P (k) ∈ Rn(τ+1)×n(τ+1), in block matrix form is written as

P (k) =

(01, 11 . . .) (02, 12, . . .) (0τ , 1τ , . . .)

P̃
(k)
0 I 0 . . . 0

P̃
(k)
1 0 I

...
...

...
. . . 0

P̃
(k)
τ−1 0 . . . 0 I

P̃
(k)
τ 0 . . . 0 0

where each block is of size n× n. In particular, if node i sends a message to node j with weight p(k)
j,i at iteration k, and that

message is received with delay r (i.e., received at iteration k + r), then

[P (k)
r]j,i = p

(k)
j,i ,

otherwise
[P (k)
r]j,i = 0.

The off-diagonal of block identity matrices I denote the fact that the virtual nodes always forward all of their messages to
the next node in the delay daisy-chain. It is straightforward to verify that these augmented mixing matrices are still column
stochastic at all iterations k. We refer the curious reader to Assran & Rabbat (2018); Charalambous et al. (2015); Hadjicostis
& Charalambous (2014) for a deeper discussion of the augmented delay model.

Matrix Representation. In Algorithm 1, SGP was presented from node i’s perspective (for all i ∈ [n]). However, we can
actually write the SGP update at each iteration from a global viewpoint. To see this, first define the following matrices, for
all r = 1, 2, . . . τ ,

X(k)
r =

[
x

(k)
1r
,x

(k)
2r
, . . . ,x(k)

nr

]
∈ Rd×n.

The matrix X
(k)
r denotes a concatenation of all the delay-r nodes’ parameters at iteration k. For the purpose of notational

consistency, we let the matrix X
(k)
0 denote the concatenation of all the non-virtual nodes’ parameters. We generalize this

notation to other variables as well. In block-matrix form, we can define the augmented parameter matrix

X(k) = [X
(k)
0 ,X

(k)
1 , . . . ,X(k)

τ] ∈ Rd×n(τ+1),

which denotes a concatenation of all (virtual and non-virtual) nodes’ parameters at iteration k. Recall that the we initialize
all virtual nodes with parameters x(k) = 0 and push-sum weight w(0) = 0. Additionally, since the virtual nodes are only
used to model delays, and do not compute any gradient updates, we use the convention that z(k) = 0, ξ(k) = 0, and
∇F (z(k); ξ(k)) = 0 for all virtual nodes at all times k. Therefore, we define the augmented de-biased parameter matrix and
stochastic-seed matrix as follows

Z(k) = [Z
(k)
0 ,0, . . . ,0] ∈ Rd×n(τ+1); ξ(k) = [ξ

(k)
0 ,0, . . . ,0] ∈ Rn(τ+1).

Similarly, we define the augmented stochastic-gradient matrix as

∇F (Z(k); ξ(k)) = [∇F0(Z
(k)
0 ; ξ

(k)
0),0, . . . ,0] ∈ Rd×n(τ+1),

where the block matrix ∇F0(Z
(k)
0 ; ξ

(k)
0) denotes the concatenation of all non-virtual nodes’ stochastic gradients at iteration

k. Precisely

∇F0(Z
(k)
0 , ξ

(k)
0) =

[
∇F1(z

(k)
1 ; ξ

(k)
1),∇F2(z

(k)
2 ; ξ

(k)
2), . . . ,∇Fn(z(k)

n ; ξ(k)
n)
]
∈ Rd×n.

We also define the augmented expected gradient matrix (with respect to local node data distributions) as

∇F (Z(k)) = [∇F0(Z
(k)
0),0, . . . ,0] ∈ Rd×n(τ+1),

Stochastic Gradient Push for Distributed Deep Learning

where the block matrix ∇F0(Z
(k)
0) denotes the concatenation of all non-virtual nodes’ expected stochastic gradients at

iteration k. Precisely

∇F0(Z
(k)
0) =

[
E
ξ
(k)
1 ∼D1

[∇F1(z
(k)
1 ; ξ

(k)
1)],E

ξ
(k)
2 ∼D2

[∇F2(z
(k)
2 ; ξ

(k)
2)], . . . ,E

ξ
(k)
n ∼Dn [∇Fn(z(k)

n ; ξ(k)
n)]

]
∈ Rd×n.

For notational convenience, we simply write ∇fi(z(k)
i) := E

ξ
(k)
i ∼Di

[∇Fi(z(k)
i ; ξ

(k)
i)]. Using the above matrices, the 6th

step of SGP in Algorithm 1 (lines 19 to 24 in OSGP Algorithm 2) can be expressed from a global perspective as follows

X(k+1) =
(
X(k) − γ∇F (Z(k), ξ(k))

)
[P (k)]T , (6)

where [P (k)]T ∈ Rn(τ+1)×n(τ+1) is the transpose of the augmented mixing matrix.

Lastly, let n := n(τ + 1), and let x(k) = (1/n)X(k)1n denote the average of all nodes’ parameters at iteration k. Note that
this definition incorporates parameters that are in-transit.

Bound for the mixing matrices. Next we state a known result from the control literature studying gossip-based op-
timization which allows us to bound the distance between the de-biased parameters at each node and the node-wise
average.

Recall that we have assumed that the sequence of communication topologies is B-strongly connected. A directed graph is
called strongly connected if every pair of vertices is connected with a directed path (i.e., following the direction of edges). A
sequence of directed graphs is called B-strongly connected if the graph with edge set

⋃(l+1)B−1
k=lB E(k) is strongly connected,

for every l ≥ 0. Recall that we have also assumed that the upper bound on the message delays is τ iterations. In particular,
we assume all messages reach their destination within τ -iterations from transmission. i.e., a message in-transit does not get
dropped when the communication topology changes.

If the maximum message delay is τ , and all non-zero mixing weights are at least ε large, and the diameter of the graph with
edge set

⋃(l+1)B−1
k=lB E(k) has diameter at most ∆, then the product

A(k) := P (k+(τ+1)∆B−1) · · ·P (k+1)P (k)

has no non-zero entries in the first n-rows (corresponding to non-virtual agents). Moreover, every entry in the first n-rows of
A(k) is at least ε(τ+1)∆B .

If we further assume that all nodes have at most D out-neighbors in any iteration, and that all nodes always assign mixing
weights uniformly, then ε = D−1, and every entry in the first n-rows ofA(k) is at least D−(τ+1)∆B .

Lemma 3. Suppose that Assumption 3 (mixing connectivity) holds. Let λ = 1−nD−(τ+1)∆B and let q = λ1/((τ+1)∆B+1).
Then there exists a constant

C <
2
√
dD(τ+1)∆B

λ
(τ+1)∆B+2
(τ+1)∆B+1

,

where d is the dimension of x(k), zi(k), and xi(0), such that, for all i = 1, 2, . . . , n (non-virtual nodes) and k ≥ 0,

∥∥∥x(k) − zi(k)
∥∥∥

2
≤ Cqk

∥∥∥xi(0)
∥∥∥

2
+ γC

k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)
∥∥∥

2
.

This particular lemma follows after a small adaptation to Theorem 1 in Assran & Rabbat (2018) and its proof is based on
Wolfowitz (1963). Similar bounds appear in a variety of other papers, including Nedić & Olshevsky (2016).

E.1. Important Upper Bounds

Lemma 4 (Bound of stochastic gradient). We have the following inequality under Assumptions 1 and 2:

E
∥∥∥∇fi(z(k)

i)
∥∥∥

2

≤ 3L2E
∥∥∥z(k)

i − x(k)
∥∥∥

2

+ 3ζ2 + 3E
∥∥∥∇f(x(k))

∥∥∥
2

Stochastic Gradient Push for Distributed Deep Learning

Proof.

E
∥∥∥∇fi(z(k)

i)
∥∥∥

2

≤ 3E
∥∥∥∇fi(z(k)

i)−∇fi(x(k))
∥∥∥

2

+ 3E
∥∥∥∇fi(x(k))−∇f(x(k))

∥∥∥
2

+ 3E
∥∥∥∇f(x(k))

∥∥∥
2

L-smooth
≤ 3L2E

∥∥∥z(k)
i − x(k)

∥∥∥
2

+ 3E
∥∥∥∇fi(x(k))−∇f(x(k))

∥∥∥
2

+ 3E
∥∥∥∇f(x(k))

∥∥∥
2

Bounded Variance
≤ 3L2E

∥∥∥z(k)
i − x(k)

∥∥∥
2

+ 3ζ2 + 3E
∥∥∥∇f(x(k))

∥∥∥
2

Lemma 5. Let Assumptions 1-3 hold. Then,

Q
(k)
i = E

∥∥∥x(k) − zi(k)
∥∥∥

2

≤
(
γ2 4C2

(1− q)2
+ γ

qkC2

1− q

)
σ2 +

(
γ2 12C2

(1− q)2
+ γ

qk3C2

1− q

)
ζ2

+

(
γ2 12L2C2

1− q + γqk3L2C2

) k∑

j=0

qk−jQ(j)
i

+

(
γ2 12C2

1− q + γqk3C2

) k∑

j=0

qk−jE
∥∥∥∇f(x(j))

∥∥∥
2

+

(
q2kC2 + γqk

2C2

1− q

)∥∥∥xi(0)
∥∥∥

2

. (7)

Proof.

Q
(k)
i = E

∥∥∥x(k) − zi(k)
∥∥∥

2

Lemma 3
≤ E

(
Cqk

∥∥∥xi(0)
∥∥∥+ γC

k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)
∥∥∥
)2

= E

(
Cqk

∥∥∥xi(0)
∥∥∥+ γC

k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i) +∇fi(z(s)
i)
∥∥∥
)2

≤ E

Cq

k
∥∥∥xi(0)

∥∥∥
︸ ︷︷ ︸

a

+ γC
k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s))

∥∥∥
︸ ︷︷ ︸

b

+ γC
k∑

s=0

qk−s
∥∥∥∇fi(z(s)

i)
∥∥∥

︸ ︷︷ ︸
c

2

(8)

Thus, using the above expressions of a, b and c we have that Q(k)
i ≤ E(a2 + b2 + c2 + 2ab+ 2bc+ 2ac). Let us now obtain

bounds for all of these quantities:

a2 = C2
∥∥∥xi(0)

∥∥∥
2

q2k

b2 = γ2C2
k∑

j=0

q2(k−j)
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ 2γ2C2
k∑

j=0

k∑

s=j+1

q2k−j−s
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

︸ ︷︷ ︸
b1

c2 = γ2C2
k∑

j=0

q2(k−j)
∥∥∥∇fi(z(j)

i)
∥∥∥

2

+ 2γ2C2
k∑

j=0

k∑

s=j+1

q2k−j−s
∥∥∥∇fi(z(j)

i)
∥∥∥
∥∥∥∇fi(z(s)

i)
∥∥∥

︸ ︷︷ ︸
c1

Stochastic Gradient Push for Distributed Deep Learning

2ab = 2γC2qk
∥∥∥xi(0)

∥∥∥
k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

2ac = 2γC2qk
∥∥∥xi(0)

∥∥∥
k∑

s=0

qk−s
∥∥∥∇fi(z(s)

i)
∥∥∥

2bc = 2γ2C2
k∑

j=0

k∑

s=0

q2k−j−s
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥
∥∥∥∇fi(z(s)

i)
∥∥∥ .

The expression b1 is bounded as follows:

b1 = γ2C2
k∑

j=0

k∑

s=j+1

q2k−j−s2
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

(4)

≤ γ2C2
k∑

j=0

k∑

s=j+1

q2k−s−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ γ2C2
k∑

j=0

k∑

s=j+1

q2k−s−j
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

2

≤ γ2C2
k∑

j=0

k∑

s=0

q2k−s−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ γ2C2
k∑

j=0

k∑

s=0

q2k−s−j
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

2

= γ2C2
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2 k∑

s=0

qk−s

+ γ2C2
k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

2 k∑

j=0

qk−j

(5)

≤ 1

1− q γ
2C2

k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+
1

1− q γ
2C2

k∑

s=0

qk−s
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

2

=
2

1− q γ
2C2

k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

. (9)

Thus,

b2 = γ2C2
k∑

j=0

q2(k−j)
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ b1

≤ γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ b1

(9)

≤ 3γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

(10)

where in the first inequality above we use the fact that for q ∈ (0, 1), we have qk < 1
1−q ,∀k > 0.

Stochastic Gradient Push for Distributed Deep Learning

By identical construction we have

c2 ≤ 3γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇fi(z(j)

i)
∥∥∥

2

.

Now let us bound the products 2ab, 2ac and 2bc.

2ab = γC2qk
k∑

s=0

qk−s2
∥∥∥xi(0)

∥∥∥
∥∥∥∇Fi(z(s)

i ; ξ
(s)
i)−∇fi(z(s)

i)
∥∥∥

(4)

≤ γC2qk
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ γC2qk
k∑

j=0

qk−j
∥∥∥xi(0)

∥∥∥
2

(5)

≤ γC2qk
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+
γC2

∥∥xi(0)
∥∥2

1− q qk (11)

By similar procedure,

2ac ≤ γC2qk
∑k
s=0 q

k−s
∥∥∥∇fi(z(s)

i)
∥∥∥

2

+
γC2‖xi(0)‖2

1−q qk (12)

Finally,

2bc = γ2C2
k∑

j=0

k∑

s=0

q2k−j−s2
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥
∥∥∥∇fi(z(s)

i)
∥∥∥

(4)

≤ γ2C2
k∑

j=0

k∑

s=0

q2k−j−s
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ γ2C2
k∑

j=0

k∑

s=0

q2k−j−s
∥∥∥∇fi(z(s)

i)
∥∥∥

2

,

= γ2C2
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2 k∑

s=0

qk−s + γ2C2
k∑

s=0

qk−s
∥∥∥∇fi(z(s)

i)
∥∥∥

2 k∑

j=0

qk−j ,

(5)

≤ γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+
γ2C2

1− q
k∑

s=0

qk−s
∥∥∥∇fi(z(s)

i)
∥∥∥

2

(13)

By combining all of the above bounds together we obtain:

Q
(k)
i ≤ E(a2 + b2 + c2 + 2ab+ 2bc+ 2ac)

≤ E
4γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

+ E
4γ2C2

1− q
k∑

j=0

qk−j
∥∥∥∇fi(z(j)

i)
∥∥∥

2

+ C2
∥∥∥xi(0)

∥∥∥
2

q2k

+
2γC2

∥∥xi(0)
∥∥2

1− q qk

+ EγC2qk
k∑

j=0

qk−j
∥∥∥∇fi(z(j)

i)
∥∥∥

2

Stochastic Gradient Push for Distributed Deep Learning

+ EγC2qk
k∑

j=0

qk−j
∥∥∥∇Fi(z(j)

i ; ξ
(j)
i)−∇fi(z(j)

i)
∥∥∥

2

. (14)

After grouping terms together and using the upper bound of Lemma 4, we obtain

Q
(k)
i ≤

(
γ2 4C2

(1− q)2
+ γ

qkC2

1− q

)
σ2 +

(
q2kC2 + γqk

2C2

1− q

)∥∥∥xi(0)
∥∥∥

2

.

+

(
γ2 4C2

1− q + γqkC2

) k∑

j=0

qk−jE
∥∥∥∇fi(z(j)

i)
∥∥∥

2

Lemma 4
≤

(
γ2 4C2

(1− q)2
+ γ

qkC2

1− q

)
σ2 +

(
q2kC2 + γqk

2C2

1− q

)∥∥∥xi(0)
∥∥∥

2

+

(
γ2 12C2

(1− q)2
+
γqk3C2

1− q

)
ζ2

+

(
γ2 12L2C2

1− q + γqk3L2C2

) k∑

j=0

qk−jQ(j)
i

+

(
γ2 12C2

1− q + γqk3C2

) k∑

j=0

qk−jE
∥∥∥∇f(x(j))

∥∥∥
2

(15)

This completes the proof.

Having found a bound for the quantity Q(k)
i , let us now present a lemma for bounding the quantity

∑K−1
k=0 M (k) where

K > 1 is a constant and M (k) is the average Q(k)
i across all (non-virtual) nodes i ∈ [n]. That is, M (k) = 1

n

∑n
i=1Q

(k)
i .

Lemma 6. Let Assumptions 1-3 hold and let us define D2 = 1− γ212L2C2

(1− q)2
− γ3L2C2

(1− q)2
. Then,

K−1∑

k=0

M (k) ≤
(
γ2 4C2

(1− q)2D2

)
σ2K +

(
γ

C2

(1− q)2D2

)
σ2

+

(
γ2 12C2

(1− q)2D2

)
ζ2K +

(
γ3C2

(1− q)2D2

)
ζ2

+

(
C2

(1− q)2D2
+ γ

2C2

(1− q)2D2

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
γ2 12C2

(1− q)2D2
+ γ

3C2

(1− q)2D2

)K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

(16)

Stochastic Gradient Push for Distributed Deep Learning

Proof. Using the bound for Q(k)
i let us first bound its average across all nodes M (k)

M (k) =
1

n

n∑

i=1

Q
(k)
i

Lemma 5
≤

(
γ2 4C2

(1− q)2
+ γ

qkC2

1− q

)
σ2 +

(
γ2 12C2

(1− q)2
+
γqk3C2

1− q

)
ζ2

+

(
γ2 12C2

1− q + γqk3C2

) k∑

j=0

qk−jE
∥∥∥∇f(x(j))

∥∥∥
2

+

(
γ2 12L2C2

1− q + γqk3L2C2

) k∑

j=0

qk−jM (j)

+

(
q2kC2 + γqk

2C2

1− q

) ∑n
i=1

∥∥xi(0)
∥∥2

n
. (17)

At this point note that for any λ ∈ (0, 1), non-negative integer K ∈ N, and non-negative sequence {β(j)}kj=0, it holds that

K∑

k=0

k∑

j=0

λk−jβ(j) = β(0)
(
λK + λK−1 + · · ·+ λ0

)
+ β(1)

(
λK−1 + λK−2 + · · ·+ λ0

)
+ · · ·+ β(K)

(
λ0
)

≤ 1

1− λ
K∑

j=0

β(j). (18)

Similarly,

K∑

k=0

λk
k∑

j=0

λk−jβ(j) =
K∑

k=0

k∑

j=0

λ2k−jβ(j) ≤
K∑

k=0

k∑

j=0

λ2(k−j)β(j)
(18)

≤ 1

1− λ2

K∑

j=0

β(j) (19)

Now by summing from k = 0 to K − 1 and using the bounds of (18) and (19) we obtain:

K−1∑

k=0

M (k) ≤
(
γ2 4C2

(1− q)2

)
σ2K +

(
γ

C2

(1− q)2

)
σ2

+

(
γ2 12C2

(1− q)2

)
ζ2K +

(
γ3C2

1− q

)
ζ2

+

(
C2

1− q2
+ γ

2C2

(1− q)2

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
γ2 12C2

(1− q)2
+ γ

3C2

1− q2

)K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

+

(
γ2 12L2C2

(1− q)2
+ γ

3L2C2

1− q2

)K−1∑

k=0

M (k).

Stochastic Gradient Push for Distributed Deep Learning

By rearranging:

(
1− γ2 12L2C2

(1− q)2
− γ 3L2C2

1− q2

)K−1∑

k=0

M (k) ≤
(
γ2 4C2

(1− q)2

)
σ2K +

(
γ

C2

(1− q)2

)
σ2

+

(
γ2 12C2

(1− q)2

)
ζ2K +

(
γ3C2

(1− q)2

)
ζ2

+

(
C2

1− q2
+ γ

2C2

(1− q)2

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
γ2 12C2

(1− q)2
+ γ

3C2

1− q2

)K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

Note that since q ∈ (0, 1) it holds that 1
1−q2 ≤ 1

(1−q)2 .4 Thus,

(
1− γ2 12L2C2

(1− q)2
− γ 3L2C2

(1− q)2

)K−1∑

k=0

M (k) ≤
(
γ2 4C2

(1− q)2

)
σ2K +

(
γ

C2

(1− q)2

)
σ2

+

(
γ2 12C2

(1− q)2

)
ζ2K +

(
γ3C2

(1− q)2

)
ζ2

+

(
C2

(1− q)2
+ γ

2C2

(1− q)2

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
γ2 12C2

(1− q)2
+ γ

3C2

(1− q)2

)K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

Dividing both sides with D2 = 1− γ212L2C2

(1− q)2
− γ3L2C2

(1− q)2
completes the proof.

E.2. Towards the proof of the main Theorems

The goal of this section is the presentation of Lemma 8. It is the main lemma of our convergence analysis and based on
which we build the proofs of Theorems 1 and 2.

Let us first state a preliminary lemma that simplifies some of the expressions that involve expectations with respect to the
random variable ξ(t)

i .

Lemma 7. Under the definition of our problem and the Assumptions 1-3 we have that:

(i)

E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)

n

∥∥∥∥∥

2

= E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)

n

∥∥∥∥∥

2

+ E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

(ii)

E
ξ
(k)
i

∥∥∥∥∥∥

∑n
i=1

[
∇Fi(z(k)

i ; ξ
(k)
i)−∇fi(z(k)

i)
]

n

∥∥∥∥∥∥

2

≤ σ2

n

4This step is used to simplified the expressions involve the parameter q. One can still obtain similar results by keeping the expression
1

1−q2 in the definition of D2.

Stochastic Gradient Push for Distributed Deep Learning

Proof.

E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)

n

∥∥∥∥∥

2

= E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)

n
+

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

= E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)

n

∥∥∥∥∥

2

+E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

+2

〈∑n
i=1 Eξ(k)

i
∇Fi(z(k)

i ; ξ
(k)
i)−∇fi(z(k)

i)

n
,

∑n
i=1∇fi(z

(k)
i)

n

〉

= E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)

n

∥∥∥∥∥

2

+E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

. (20)

where in the last equality the inner product becomes zero from the fact that E
ξ
(k)
i
∇Fi(z(k)

i ; ξ
(k)
i) = ∇fi(z(k)

i).

E
ξ
(k)
i

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∑n

i=1∇fi(z
(k)
i)

n

∥∥∥∥∥

2

=
1

n2
E
ξ
(k)
i

∥∥∥∥∥
n∑

i=1

[
∇Fi(z(k)

i ; ξ
(k)
i)−∇fi(z(k)

i)
]∥∥∥∥∥

2

=
1

n2

n∑

i=1

E
ξ
(k)
i

∥∥∥∇Fi(z(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)
∥∥∥

2

+
2

n2

∑

i 6=j

〈
E
ξ
(k)
i
∇Fi(z(k)

i ; ξ
(k)
i)−∇fi(z(k)

i),E
ξ
(k)
j
∇Fj(z(k)

j ; ξ
(k)
j)−∇fj(z(k)

j)
〉

=
1

n2

n∑

i=1

E
ξ
(k)
i

∥∥∥∇Fi(z(k)
i ; ξ

(k)
i)−∇fi(z(k)

i)
∥∥∥

2

Bounded Variance
≤ 1

n2

n∑

i=1

σ2 =
σ2

n
, (21)

Before presenting the proof of next lemma let us define the conditional expectation

E[·|Fk] := E
ξ
(k)
i ∼Di∀i∈[n]

[·] = E
ξ
(k)
i ∀i∈[n]

[·].

The expectation in this expression is only with respect to the random choices ξ(k)
i for all nodes i ∈ [n] at the kth iteration. In

addition, we should highlight that the choices of random variables ξki ∼ Di, ξkj ∼ Dj at the step t of the algorithm, are
independent for any two nodes i 6= j ∈ [n]. This is also true in the case that the two nodes follow the same distribution
D = Di = Dj .
Lemma 8. Let Assumptions 1-3 hold and let

D1 =
1

2
− L2

2

(
12γ2C2 + 3γC2

(1− q)2D2

)
and D2 = 1− γ212L2C2

(1− q)2
− γ3L2C2

(1− q)2
.

Stochastic Gradient Push for Distributed Deep Learning

Here C > 0 and q ∈ (0, 1) are the two non-negative constants defined in Lemma 3. Let {Xk}∞k=0 be the random sequence
produced by (6) (Matrix representation of Algorithm 1). Then,

1

K

(
D1

K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

+
1− Lγ

2

K−1∑

k=0

E
∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
)

≤f(x(0))− f∗
γK

+
Lγσ2

2n
+

4L2γ2C2σ2 + 12L2γ2C2ζ2

2(1− q)2D2
+
γL2C2σ2 + 3L2γC2ζ2

2K(1− q)2D2

+

(
L2C + 2L2γC2

2(1− q)2D2K

) ∑n
i=1

∥∥xi(0)
∥∥2

n
.

Proof.

f
(
x(k+1)

)
= f

(
X(k+1)1n

n

)
(6)
= f

(
X(k)[P(k)]>1n − γ∇F (Z(k), ξ(k))[P(k)]>1n

n

)

= f

(
X(k)1n

n
− γ∇F (Z(k), ξk)1n

n

)

L−smooth
≤ f

(
X(k)1n

n

)
− γ

〈
∇f

(
X(k)1n

n

)
,
∇F (Z(k), ξ(k))1n

n

〉

+
Lγ2

2

∥∥∥∥
∇F (Z(k), ξ(k))1n

n

∥∥∥∥
2

(22)

Taking expectations of both sides conditioned on Fk:

E
[
f

(
X(k+1)1n

n

)
|Fk
]

≤ f

(
X(k)1n

n

)
− γ

〈
∇f

(
X(k)1n

n

)
,
∇F (Z(k))1n

n

〉

+
Lγ2

2
E

[∥∥∥∥
∇F (Z(k), ξ(k))1n

n

∥∥∥∥
2

|Fk
]

Lemma 7[i]
= f

(
X(k)1n

n

)
− γ

〈
∇f

(
X(k)1n

n

)
,
∇F (Z(k))1n

n

〉

+
Lγ2

2
E

∥∥∥∥∥

∑n
i=1∇Fi(z

(k)
i ; ξ

(k)
i)−∑n

i=1∇fi(z
(k)
i)

n

∥∥∥∥∥

2

|Fk

+
Lγ2

2
E

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

|Fk

Lemma 7[ii]

≤ f

(
X(k)1n

n

)
− γ

〈
∇f

(
X(k)1n

n

)
,
∇F (Z(k))1n

n

〉

+
Lγ2σ

2n
+
Lγ2

2
E

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

|Fk

= f

(
X(k)1n

n

)
− γ

2

∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2

− γ

2

∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2

,

+
γ

2

∥∥∥∥∇f
(
X(k)1n

n

)
− ∇F (Z(k))1n

n

∥∥∥∥
2

+
Lγ2σ2

2n

+
Lγ2

2
E

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

|Fk

 (23)

where in the last step above we simply expand the inner product.

Stochastic Gradient Push for Distributed Deep Learning

Taking expectations with respect to Fk and using the tower property, we get

E
[
f

(
X(k+1)1n

n

)]
≤ E

[
f

(
X(k)1n

n

)]
− γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]
− γ

2
E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]
,

+
γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)
− ∇F (Z(k))1n

n

∥∥∥∥
2
]

+
Lγ2σ2

2n

+
Lγ2

2
E

∥∥∥∥∥

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

= E
[
f

(
X(k)1n

n

)]
− γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]
− γ − Lγ2

2
E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]
,

+
γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)
− ∇F (Z(k))1n

n

∥∥∥∥
2
]

+
Lγ2σ2

2n
(24)

Let us now focus on find an upper bound for the quantity E
[∥∥∥∇f

(
X(k)1n

n

)
− ∇F (Z(k))1n

n

∥∥∥
2
]

.

E

[∥∥∥∥∇f
(
X(k)1n

n

)
− ∇F (Z(k))1n

n

∥∥∥∥
2
]

= E

∥∥∥∥∥∇f (x)−

∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

= E

∥∥∥∥∥

1

n

n∑

i

∇fi (x)−
∑n
i=1∇fi(z

(k)
i)

n

∥∥∥∥∥

2

= E

∥∥∥∥∥

∑n
i ∇fi (x)−∑n

i=1∇fi(z
(k)
i)

n

∥∥∥∥∥

2

= E

∥∥∥∥∥

1

n

n∑

i

[
∇fi (x)−∇fi(z(k)

i)
]∥∥∥∥∥

2

Jensen
≤ 1

n

n∑

i

E
[∥∥∥∇fi (x)−∇fi(z(k)

i)
∥∥∥

2
]

L−smooth
≤ L2

n

n∑

i=1

E
[∥∥∥x− z(k)

i

∥∥∥
2
]

=
L2

n

n∑

i=1

Q
(k)
i (25)

Thus we have that:

E
[
f

(
X(k+1)1n

n

)]
≤ E

[
f

(
X(k)1n

n

)]
− γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]
− γ − Lγ2

2
E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]
,

+
γL2

2n

n∑

i=1

Q
(k)
i +

Lγ2σ2

2n
(26)

Stochastic Gradient Push for Distributed Deep Learning

By rearranging:

γ

2
E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]

+
γ − Lγ2

2
E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]
≤ E

[
f

(
X(k)1n

n

)]
− E

[
f

(
X(k+1)1n

n

)]

+
Lγ2σ2

2n
+
γL2

2n

n∑

i=1

Q
(k)
i (27)

Let us now sum from k = 0 to k = K − 1:

γ

2

K−1∑

k=0

E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]

+
γ − Lγ2

2

K−1∑

k=0

E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]
≤

K−1∑

k=0

[
E
[
f

(
X(k)1n

n

)]
− E

[
f

(
X(k+1)1n

n

)]]

+
K−1∑

k=0

Lγ2σ2

2n
+
γL2

2n

K−1∑

k=0

n∑

i=1

Q
(k)
i

≤ E
[
f

(
X(0)1n

n

)]
− E

[
f

(
X(k)1n

n

)]

+
LKγ2σ2

2n
+
γL2

2

K−1∑

k=0

1

n

n∑

i=1

Q
(k)
i

≤ f(x(0))− f∗

+
LKγ2σ2

2n
+
γL2

2

K−1∑

k=0

1

n

n∑

i=1

Q
(k)
i

︸ ︷︷ ︸
Mk

(28)

For the last inequality above, recall that we let f∗ denote the global infimum of our problem.

Using the bound for the expression
∑K−1
k=0 Mk from Lemma 6 we obtain:

γ

2

K−1∑

k=0

E

[∥∥∥∥∇f
(
X(k)1n

n

)∥∥∥∥
2
]

+
γ − Lγ2

2

K−1∑

k=0

E

[∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
]

≤f(x(0))− f∗ +
LKγ2σ2

2n

+
γL2

2

4γ2C2σ2K + γC2σ2

(1− q)2D2
+
γL2

2

12γ2C2ζ2K + 3γC2ζ2

(1− q)2D2

+
γL2

2

(
12γ2C2 + 3γC2

(1− q)2D2

) K∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

+
γL2

2

(
C2 + 2γC2

(1− q)2D2

) ∑n
i=1

∥∥xi(0)
∥∥2

n
.

By rearranging and dividing all terms by γK we obtain:

1

K

([
1

2
− L2

2

(
12γ2C2 + 3γC2

(1− q)2D2

)]K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

+
1− Lγ

2

K−1∑

k=0

E
∥∥∥∥
∇F (Z(k))1n

n

∥∥∥∥
2
)

≤f(x(0))− f∗
γK

+
Lγσ2

2n
+

4L2γ2C2σ2 + 12L2γ2C2ζ2

2(1− q)2D2
+
γL2C2σ2 + 3L2γC2ζ2

2K(1− q)2D2

+

(
L2C2 + 2L2γC2

2(1− q)2D2K

) ∑n
i=1

∥∥xi(0)
∥∥2

n
.

Stochastic Gradient Push for Distributed Deep Learning

By defining D1 =
[

1
2 − L2

2

(
12γ2C2+3γC2

(1−q)2D2

)]
the proof is complete.

E.3. Proofs of Main Theorems

Having present all of the above Lemmas we are now ready to provide the proofs of main Theorems 1 and 2.

E.3.1. PROOF OF THEOREM 1

Let γ ≤ min

{
(1− q)2

60L2C2
, 1

}
. Then:

D2 = 1− γ212L2C2

(1− q)2
− γ3L2C2

(1− q)2

(γ2<γ)

≥ 1− γ15L2C2

(1− q)2
≥ 1− 1

4
≥ 1

2

and

D1 =
1

2
− L2

2

(
12γ2C2 + 3γC2

(1− q)2D2

)
(γ2<γ)

≥ 1

2
− 15γC2L2

2(1− q)2D2
≥ 1

2
− 1

8D2
≥ 1

4

By substituting the above bounds into the result of Lemma 8 and by removing the second term of left hand side we obtain:

1

4

∑K−1
k=0 E

∥∥∥∇f(x(k))
∥∥∥

2

K
=

1

K

(
1

4

K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

+
1− Lγ

2

K−1∑

k=0

E
∥∥∥∥
∇F (Zk)1n

n

∥∥∥∥
2
)

≤ f(x(0))− f∗
γK

+
Lγσ2

2n
+

4L2γ2C2σ2 + 12L2γ2C2ζ2

(1− q)2
+
γL2C2σ2 + 3L2γC2ζ2

K(1− q)2

+

(
L2C + 2L2γC2

(1− q)2K

) ∑n
i=1

∥∥xi(0)
∥∥2

n
(29)

Let us now substitute in the above expression γ =
√

n
K . This can be done due to the lower bound (see equation 3) on the

total number of iterations K where guarantees that
√

n
K ≤ min

{
(1− q)2

60L2C2
, 1

}
.

1

4

∑K−1
k=0 E

∥∥∥∇f(x(k))
∥∥∥

2

K
≤ f(x(0))− f∗

γK
+
Lγσ2

2n
+ γ2 4L2C2σ2 + 12L2C2ζ2

(1− q)2
+ γ

L2C2σ2 + 3L2C2ζ2

K(1− q)2

+
L2C

(1− q)2K

∑n
i=1

∥∥xi(0)
∥∥2

n
+ γ

2L2C2

(1− q)2K

∑n
i=1

∥∥xi(0)
∥∥2

n

γ=
√

n
K

=
f(x(0))− f∗√

nK
+

Lσ2

2
√
nK

+
n

K

4L2C2σ2 + 12L2C2ζ2

(1− q)2
+

√
n

K

L2C2σ2 + 3L2C2ζ2

K(1− q)2

+
L2C2

(1− q)2K

∑n
i=1

∥∥xi(0)
∥∥2

n
+

√
n

K

2L2C2

(1− q)2K

∑n
i=1

∥∥xi(0)
∥∥2

n

=
f(x(0))− f∗ + L

2 σ
2

√
nK

+
L2C2

K(1− q)2

[
(4σ2 + 12ζ2)n+

∑n
i=1

∥∥xi(0)
∥∥2

n

]

+

√
nL2C2

√
K(1− q)2K

[
σ2 + 3L2C2ζ2 + 2

∑n
i=1

∥∥xi(0)
∥∥2

n

]
(30)

Using again the assumption on the lower bound (3) of the total number of iterations K, the last two terms of the above
expression are bounded by the first term. Thus,

1

4

∑K−1
k=0 E

∥∥∥∇f(x(k))
∥∥∥

2

K
≤ 3

f(x(0))− f∗ + L
2 σ

2

√
nK

(31)

Stochastic Gradient Push for Distributed Deep Learning

E.3.2. PROOF OF THEOREM 2

Proof. From Lemma 6 we have that:

1

K

K−1∑

k=0

M (k) ≤
(
γ2 4C2

(1− q)2D2

)
σ2 +

(
γ

C2

(1− q)2D2

)
σ2

K

+

(
γ2 12C2

(1− q)2D2

)
ζ2 +

(
γ3C2

(1− q)2D2

)
ζ2

K

+

(
C2

(1− q)2D2K
+ γ

2C2

(1− q)2D2K

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
γ2 12C2

(1− q)2D2
+ γ

3C2

(1− q)2D2

) ∑K−1
k=0 E

∥∥∥∇f(x(k))
∥∥∥

2

K
(32)

Using the assumptions of Theorem 1 and stepsize γ =
√

n
K :

1

K

K−1∑

k=0

M (k) ≤
(
n

K

4C2

(1− q)2D2

)
σ2 +

(√
n

K

C2

(1− q)2D2

)
σ2

K

+

(
n

K

12C2

(1− q)2D2

)
ζ2 +

(√
n
K 3C2

(1− q)2D2

)
ζ2

K

+

(
C2

(1− q)2D2K
+

√
n

K

2C2

(1− q)2D2K

) ∑n
i=1

∥∥xi(0)
∥∥2

n

+

(
n

K

12C2

(1− q)2D2
+

√
n

K

3C2

(1− q)2D2

) 12
[
f(x(0))− f∗ + L

2 σ
2
]

√
nK

=
1

K

 4nC2σ2

(1− q)2D2
+

12nC2ζ2

(1− q)2D2
+
C2
∑n
i=1

∥∥xi(0)
∥∥2

n(1− q)2D2
+

3
√
nC212

[
f(x(0))− f∗ + L

2 σ
2
]

√
n(1− q)2D2

+
1

K
√
K

 nσ2C2

(1− q)2D2
+

n
3C

2ζ2

(1− q)2D2
+

2C2
∑n
i=1

∥∥xi(0)
∥∥2

(1− q)2D2
√
n

+
144
√
nC2

[
f(x(0))− f∗ + L

2 σ
2
]

(1− q)2D2

= O

(
1

K
+

1

K
√
K

)
(33)

where the Big O notation swallows all constants of our setting
(
n,L, σ, ζ, C, q,

∑n
i=1

∥∥xi(0)
∥∥2

andf(x(0))− f∗
)

.

Stochastic Gradient Push for Distributed Deep Learning

Now using the above upper bound equation 33 and result of Theorem 1 we obtain:

1

K

K−1∑

k=0

1

n

n∑

i=1

E
∥∥∇f(zki)

∥∥2
=

1

K

K−1∑

k=0

1

n

n∑

i=1

E
∥∥∥∇f(zki) +∇f(x(k))−∇f(x(k))

∥∥∥
2

≤ 1

K

K−1∑

k=0

1

n

n∑

i=1

2E
∥∥∥∇f(zki)−∇f(x(k))

∥∥∥
2

+ 2E
∥∥∥∇f(x(k))

∥∥∥
2

=
1

K

K−1∑

k=0

1

n

n∑

i=1

2E
∥∥∥∇f(zki)−∇f(x(k))

∥∥∥
2

+
1

K

K−1∑

k=0

1

n

n∑

i=1

2E
∥∥∥∇f(x(k))

∥∥∥
2

= 2
1

K

K−1∑

k=0

1

n

n∑

i=1

E
∥∥∥∇f(zki)−∇f(x(k))

∥∥∥
2

+ 2
1

K

K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

L−smooth
= 2L2 1

K

K−1∑

k=0

1

n

n∑

i=1

E
∥∥∥zki − x(k)

∥∥∥
2

+ 2
1

K

K−1∑

k=0

E
∥∥∥∇f(x(k))

∥∥∥
2

(33)+(31)

≤ O

(
1√
nK

+
1

K
+

1

K3/2

)
(34)

where again the Big O notation swallows all constants of our setting
(
n,L, σ, ζ, C, q,

∑n
i=1

∥∥xi(0)
∥∥2

andf(x(0))− f∗
)

.

