A. Optimality and Effectiveness

Alg. 2 computes an optimum flow F^*, whose components are determined by the quantities r in step 4. Namely, the components of the i-th row of F^*, are given recursively as $F^*_{i,s[1]} = \min(p_i, q_{s[1]})$ and $F^*_{i,s[l]} = \min(p_i - \sum_{u=1}^{l-1} F^*_{i,s[u]}, q_{s[l]})$ for $l = 2, \ldots, h_q$.

Lemma 1. Each row i of the flow F^* of Algorithm 2 has a certain number k_i, $1 \leq k_i \leq h_q$ of nonzero components, which are given by $F^*_{i,s[l]} = q_{s[l]}$ for $l = 1, \ldots, k_i$ and $F^*_{i,s[k_i]} = p_i - \sum_{l=1}^{k_i-1} q_{s[l]}$.

The Lemma follows by keeping track of the values of the term r in step 4 in Alg. 2. An immediate implication is that the flow F^* satisfies the constraints (2) and (4). One can also show that F^* is a minimal solution of (1) under the constraints (2) and (4), and this leads to the following theorem.

Theorem 1. (i) The flow F^* of Algorithm 2 is an optimal solution of the relaxed minimization problem given by (1), (2) and (4). (ii) ICT provides a lower bound on EMD.

Proof. Proof of part (i): It has already been shown that the flow F^* satisfies constraints (2) and (4), and it remains to show that F^* achieves the minimum in (1). To this end, let \mathbf{F} be any nonnegative flow, which satisfies (2) and (4). To show that F^* achieves the minimum in (4), it is enough to show that for every row i, one has $\sum_j F_{i,j} C_{i,j} \geq \sum_j F_{i,j}^* C_{i,j}$, which then implies $\sum_{i,j} F_{i,j} C_{i,j} \geq \sum_{i,j} F_{i,j}^* C_{i,j}$.

By Alg. 2, there is a reordering given by the list s such that

$$C_{i,s[1]} \leq C_{i,s[2]} \leq \ldots \leq C_{i,s[n_q]}.$$ \hspace{1cm} (10)

By Lemma 1, there is a $k_i \leq n_q$ such that $\sum_{l=1}^{k_i} F^*_{i,s[l]} = p_i$ and $F^*_{i,s[l]} = 0$ for $l > k_i$. Furthermore by Lemma 1 and by constraint (4) on \mathbf{F}, it follows that

$$F_{i,s[l]} \leq q_{s[l]} = F^*_{i,s[l]} \quad \text{for} \quad l = 1, \ldots, k_i - 1.$$ \hspace{1cm} (11)

The outflow-constraint (2) implies $\sum_j F_{i,j} = p_i = \sum_j F_{i,j}^*$ or, equivalently,

$$\sum_{l=k_i}^{n_q} F_{i,s[l]} = F_{i,s[k_i]} + \sum_{l=1}^{k_i-1} (F_{i,s[l]} - F_{i,s[l]}).$$ \hspace{1cm} (12)

In the following chain of inequalities, the first inequality follows from (10), and (12) implies the equality in the second step.

$$\sum_{l=k_i}^{n_q} C_{i,s[l]} F_{i,s[l]} \geq C_{i,s[k_i]} \sum_{l=k_i}^{n_q} F_{i,s[l]}$$

$$= C_{i,s[k_i]} (F_{i,s[k_i]} + \sum_{l=1}^{k_i-1} (F_{i,s[l]} - F_{i,s[l]}))$$

$$= C_{i,s[k_i]} F_{i,s[k_i]} + \sum_{l=1}^{k_i-1} C_{i,s[l]}(F_{i,s[l]} - F_{i,s[l]})$$

$$\geq C_{i,s[k_i]} F_{i,s[k_i]} + \sum_{l=1}^{k_i-1} C_{i,s[l]}(F_{i,s[l]} - F_{i,s[l]}).$$

The inequality in the last step follows from (10) and the fact that the terms $F_{i,s[l]} - F_{i,s[l]}$ are nonnegative by (11). By
rewriting the last inequality, one obtains the desired inequality
\[
\sum_j F_{i,j}^* C_{i,j} = \sum_{l=1}^{n_0} F_{i,s[l]}^* C_{i,s[l]} \\
\geq \sum_{i=1}^{k_i} F_{i,s[l]}^* C_{i,s[l]} \\
= \sum_j F_{i,j}^* C_{i,j},
\]
where in the last equation \(F_{i,s[l]}^* = 0 \) for \(l > k_i \) is used.

Proof of part (ii): Since ICT is a relaxation of the constrained minimization problem of the EMD, ICT provides a lower bound on EMD given by the output of Alg. 2, namely, \(\sum_{i,j} F_{i,j}^* C_{i,j} = \text{ICT}(p, q) \leq \text{EMD}(p, q) \).

Similar to Alg. 2, Alg. 3 also determines an optimum flow \(F^* \), which now depends on the number of iterations \(k \).

Lemma 2. Each row \(i \) of the flow \(F^* \) of Algorithm 3 has a certain number \(k_i \), \(1 \leq k_i \leq k \) of nonzero components, which are given by \(F_{i,s[l]}^* = q_{a[l]} \) for \(l = 1, \ldots, k_i - 1 \) and \(F_{i,s[k_i]}^* = p_i - \sum_{l=1}^{k_i-1} q_{a[l]} \).

Based on this Lemma, one can show that the flow \(F^* \) from Algorithm 3 is an optimum solution to the minimization problem given by (1), (2) and (4), in which the constraint (4) is further relaxed in function of the predetermined parameter \(k \). Since the constrained minimization problems for ICT, ACT, OMR, RWMD form a chain of increased relaxations of EMD, one obtains the following result.

Theorem 2. For two normalized histograms \(p \) and \(q \): \(\text{RWMD}(p, q) \leq \text{OMR}(p, q) \leq \text{ACT}(p, q) \leq \text{ICT}(p, q) \leq \text{EMD}(p, q) \).

We call a nonnegative cost function \(C \) effective, if for any indices \(i, j \), the equality \(C_{i,j} = 0 \) implies \(i = j \). For a topological space, this condition is related to the Hausdorff property. For an effective cost function \(C \), one has \(C_{i,j} > 0 \) for all \(i \neq j \), and, in this case, \(\text{OMR}(p, q) = \sum_{i,j} C_{i,j} F_{i,j}^* = 0 \) implies \(F_{i,j}^* = 0 \) for \(i \neq j \) and, thus, \(k_i = 1 \) in Lemma 2 and, thus, \(F^* \) is diagonal with \(F_{i,i}^* = p_i \). This implies \(p_i \leq q_i \) for all \(i \) and, since both histograms are normalized, one must have \(p = q \).

Theorem 3. If the cost function \(C \) is effective, then \(\text{OMR}(p, q) = 0 \) implies \(p = q \), i.e., \(\text{OMR} \) is effective.

Remark 1. If \(\text{OMR} \) is effective, then, a fortiori, ACT and ICT are also effective. However, RWMD does not share this property.

B. Complexity Analysis

The algorithms presented in Section 3 assume that the cost matrix \(C \) is given, yet they still have a quadratic time complexity in the size of the histograms. Assume that the histograms size is \(h \). Then, the size of \(C \) is \(h^2 \). The complexity is determined by the row-wise reduction operations on \(C \). In case of the OMR method, the top-2 smallest values are computed in each row of \(C \) and a maximum of two updates are performed on each bin of \(p \). Therefore, the complexity is \(O(h^2) \). In case of the ACT method, the top-\(k \) smallest values are computed in each row, and up to \(k \) updates are performed on each histogram bin. Therefore, the complexity is \(O(h^2 \log k + kh) \). The ICT method is the most expensive one because 1) it fully sorts the rows of \(C \), and 2) it requires \(O(h) \) iterations in the worst case. Its complexity is given by \(O(h^2 \log h) \).

In Section 5, the complexity of Phase 1 of the LC-ACT algorithm is \(O(vhm + nh \log k) \) because the complexity of the matrix multiplication that computes \(D \) is \(O(vhm) \), and the complexity of computing top-\(k \) smallest distances in each row of \(D \) is \(O(nh \log k) \). The complexity of performing (6), (7), (8), and (9) are \(O(nh) \) each. When \(k-1 \) iterations of Phase 2 is applied, the overall time complexity of the LC-ACT algorithm is \(O(vhm + knh) \). Note that when the number of iterations \(k \) performed by LC-ACT is a constant, LC-ACT and LC-RWMD have the same time complexity. When the number of iterations are in the order of the dimensionality of the coordinates (i.e., \(O(k) = O(m) \)) and the database is sufficiently large (i.e., \(O(n) = O(v) \)), LC-ACT and LC-RWMD again have the same time complexity, which increases linearly in the size of the histograms \(h \). In addition, the sizes of the matrices \(X, V, D, \) and \(Z \) are \(nh, vm, vh, \) and \(vk \), respectively. Therefore, the overall space complexity of the LC-ACT algorithm is \(O(nh + vm + vh + vk) \).