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Proof of Proposition 2.3. The reverse direction is given in
Remark 1 from Hall et al. (2013), though we provide the
argument here again for completeness. Let B ∈ F and
X,X ′ ∈ Xn be adjacent elements. Then

µX(B) =

∫
B

fX(b) dν(b) =

∫
B

fX′(b)

fX′(b)
fX(b) dν(b)

≤
∫
B

exp(ε)fX′(b) dν(b) = exp(ε)µX′(b),

which implies that M achieves ε-DP.

Going in the other direction we will use a proof by contra-
diction. Assume that M is an ε-DP mechanism. Recall that
two measures are equivalent if they agree on the zero sets.
Thus, as we have said, the measures in a DP mechanism
must all be equivalent. So, we can assume that all of the
measures have a density with respect to some common base
measure, ν, which, without loss of generality, we can take
to be one of the elements of M . Now assume that there
exists a set B and some adjacent databases X,X ′ such that
fX(b) > fX′(b) exp(ε) for all b ∈ B and that ν(B) > 0.
Then this would imply the strict inequality

µX(B) =

∫
B

fX(b) dν(b)

> exp(ε)

∫
B

fX′(b) dν(b) = exp(ε)µX′(B),

which is a contradiction, and thus the claim holds.

Proof of Theorem 3.2. The density of the exponential mech-
anism can be expressed as

fX(b) = c−1
n g(b) exp

{ ε

2∆
ξX(b)

}
,
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where cn is the normalizing constant. Define the random
variable Z =

√
n(b̃− b̂), then its density is given by

fn(z) = c−1
n n−1/2g(b̂+z/

√
n) exp

{ ε

2∆
ξn(b̂+ z/

√
n)
}
.

We now aim to show that, for z fixed, the density converges
to a multivariate normal. Using a two term Taylor expansion,
we have by Assumption (2) and (3) that

ξX(b̂+ z/
√
n) = [ξX(b̂) + z>ξ′X(b̂)/

√
n

+ z>ξ′′X(b̂)z/2n] + o(1).

The first term will be absorbed into the constants, since it
does not depend on z, while the second term is zero, since
b̂ minimizes ξX . So, only the third term contributes to the
form of the density. Obviously |g(b̂+ z/

√
n)− g(b?)| → 0,

so the only remaining task is to show that the combined
constants behave appropriately. The integrating constant is
of the form

cnn
1/2 exp

{
− ε

2∆
ξn(b̂)

}
=

∫
Bn

g(b̂+ z/
√
n) exp

{ ε

2∆
[ξn(b̂+ z/

√
n)− ξn(b̂)]

}
dz.

By Assumption (1) we have that

ξX(b̂+ z/
√
n)− ξn(b̂) ≤ −α

2
‖z‖2.

Since exp{−‖z‖2} is integrable, we can apply the domi-
nated convergence theorem to conclude that the constants
converge to something nonzero as well.

Putting everything together, we conclude that

fn(z)→ f(z) ∝ exp
{
− ε

2∆
z>Σ−1z/2

}
,

which is the density of the multivariate normal. Apply-
ing Scheffe’s Theorem, we thus have both convergence in
distribution as well as convergence in total variation:

√
n(b̃− b̂) D→ Np

(
0,

2∆

ε
Σ

)
.
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Lemma 0.1. Suppose that Σ and C are nuclear positive-
definite operators onH such that Σ−1C is Hilbert-Schmidt.
Then C1/2Σ−1C1/2 and Σ−1/2CΣ−1/2 are also Hilbert-
Schmidt.

Proof. Recall that Σ−1C is Hilbert-Schmidt is equivalent
to ‖Σ−1C‖HS = ‖CΣ−1‖HS <∞. Then

∞ > ‖Σ−1C‖HS · ‖CΣ−1‖HS
≥ 〈CΣ−1,Σ−1C〉HS
= tr

(
Σ−1CΣ−1C

)
= tr

(
C1/2Σ−1C1/2C1/2Σ−1C1/2

)
= ‖C1/2Σ−1C1/2‖2HS ,

which implies that C1/2Σ−1C1/2 is Hilbert-Schmidt. The
same trick works for Σ−1/2CΣ−1/2.

Lemma 0.2. In the setting of Theorem 3.3, let Σ and C be
nuclear positive-definite operators on H such that Σ−1C
is Hilbert-Schmidt (with respect to the inner product of H ,
Σ−1C is bounded with respect to the Cameron-Martin space
(CMS) of C, and b̂n lies in the CMS of C for all n. Then

1. The Gaussian process on H with mean√
n
(
ε

2∆Σ−1 + 1
nC
−1
)−1 ( 1

nC
−1
)
b̂ and covariance

( ε
2∆Σ−1 + 1

nC
−1)−1 is equivalent, as probability

measures, to a Gaussian process with mean −
√
nb̂

and covariance nC.

2.
(
ε

2∆Σ−1 + 1
nC
−1
)−1

converges to Σ in the space of
nuclear operators.

3. −n−1/2
(
ε

2∆Σ−1 + 1
nC
−1
)−1 ( 1

nC
−1
)
b̂→ 0 inH.

Proof. 1. We first check that the covariances will induce
equivalent measures (Corollary 6.4.11 Bogachev, 1998).
Namely we first require that(

ε

2∆
Σ−1 +

1

n
C−1

)1/2

(nC)1/2

is invertible and bounded. This can be written in the form( εn
2∆

Σ−1C + I
)1/2

.

Since Σ−1C is Hilbert-Schmidt and I is bounded, the com-
bined quantity is bounded. Furthermore, the smallest eigen-
value is ≥ 1, so it is invertible.

Second, we check that

(nC)−1/2

(
ε

2∆
Σ−1 +

1

n
C−1

)−1

(nC)−1/2 − I

is Hilbert-Schmidt. This can be rearranged as follows:( εn
2∆

C1/2Σ−1C1/2 + I
)−1

− I

=
( εn

2∆
C1/2Σ−1C1/2 + I

)−1
[
−εn
2∆

C1/2Σ−1C1/2

]
At this point, we recall that Σ−1C being Hilbert-Schmidt
implies that C1/2Σ−1C1/2 is Hilbert Schmidt, by Lemma
0.1. So, we have a bounded operator multiplied by a Hilbert-
Schmidt operator, which shows that the result is Hilbert-
Schmidt.

Third and last, we verify that

√
n

(
ε

2∆
Σ−1 +

1

n
C−1

)−1(
1

n
C−1

)
b̂−
√
nb̂

lies in the CMS of C. We can express this difference as
follows:

√
n

[(
ε

2∆
Σ−1 +

1

n
C−1

)−1(
1

n
C−1

)
− I

]
b̂

=
√
n

[( εn
2∆

Σ−1C + I
)−1

− I
]
b̂

=
√
n
( εn

2∆
Σ−1C + I

)−1 [
I −

( εn
2∆

Σ−1C + I
)]
b̂

= −
√
n
( εn

2∆
Σ−1C + I

)−1 ( εn
2∆

Σ−1C
)
b̂.

From this representation, we see that
−
√
n
(
εn
2∆Σ−1C + I

)−1
is a bounded operator, since

Σ−1C is Hilbert-Schmidt. So, it suffices to show that

〈Σ−1Cb̂, C−1Σ−1Cb̂〉 <∞.

Equivalently, we may show that

‖Σ−1Cb̂‖C <∞,

where ‖·‖C is the norm of the CMS of C. Since Σ−1C is
bounded in the CMS of C, and since b̂ lies in the CMS of
C, the result holds.

2. Since Σ−1/2CΣ−1/2 a is symmetric, positive definite,
and Hilbert-Schmidt there exists an orthonormal sequence
(ui)

∞
i=1 inH and a sequence of real numbers ai ∈ R+ such

that

Σ−1/2CΣ−1/2 =

∞∑
i=1

aiui ⊗ ui
∞∑
i=1

a2
i <∞.

Then (
ε

2∆
Σ−1 +

1

n
C−1

)−1

=
2∆

ε
Σ1/2

(
I +

2∆

nε
Σ1/2C−1Σ1/2

)−1

Σ1/2.
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Using the eigen decomposition with the ui we have the
inside term is given by(

I +
2∆

nε
Σ1/2C−1Σ1/2

)−1

=

∞∑
i=1

(
1 +

2∆a−1
i

nε

)−1

ui ⊗ ui

=

∞∑
i=1

ai
ai + 2∆/(nε)

ui ⊗ ui.

So then we can express the difference

2∆

ε
Σ−

(
ε

2∆
Σ−1 +

1

n
C−1

)−1

=
2∆

ε

∞∑
i=1

2∆

nεai + 2∆
Σ1/2 ◦ (ui ⊗ ui) ◦ Σ1/2.

Notice that Σ =
∑
i=1 Σ1/2◦(ui⊗ui)◦Σ1/2, since

∑
ui⊗

ui is just the identity operator. Thus, since Σ is nuclear, for
any δ > 0, we can choose m such that∥∥∥∥∥2∆

ε

∞∑
i=m+1

2∆

nεai + 2∆
Σ1/2 ◦ (ui ⊗ ui) ◦ Σ1/2

∥∥∥∥∥ ≤ δ

2
,

in the nuclear norm. Finally, now that the sum is finite, we
can choose n such that∥∥∥∥∥2∆

ε

m∑
i=1

2∆

nεai + 2∆
Σ1/2 ◦ (ui ⊗ ui) ◦ Σ1/2

∥∥∥∥∥ ≤ δ

2
,

as desired.

3. To see the convergence of

−n−1/2

(
ε

2∆
Σ−1 +

1

n
C−1

)−1(
1

n
C−1

)
b̂,

note that the largest (absolute) singular value of(
εn
2∆Σ−1C + I

)−1
is upper bounded by 1. So,∥∥∥∥∥−n−1/2

(
ε

2∆
Σ−1 +

1

n
C−1

)−1(
1

n
C−1

)
b̂

∥∥∥∥∥
=

∥∥∥∥n1/2
( εn

2∆
Σ−1C + I

)−1

b̂

∥∥∥∥
≤ 1√

n
‖b̂‖

→ 0.

Proof of Theorem 3.3. The proof strategy is the same as for
Theorem 3.2. However since the base measure is no longer

Lebesgue, the effect of changing variables on the Gaussian
base measure must be handled more carefully. Consider
Z =

√
n(b̃− b̂) and

P (
√
n(b̃− b̂) ∈ A) =

∫
b̂+A/

√
n

fX(b) dν(b)

= n−1/2

∫
A

fX(b̂+ z/
√
n) dν(b̂+ z/

√
n).

The same Taylor expansion arguments from before still
apply, however the base measure has now been shifted and
scaled. In particular, if dν̃(z) = dν(b̂ + z/

√
n), then ν̃ is

the measure of a Gaussian process with mean −
√
nb̂ and

covariance operator nC. So we have that

P (
√
n(b̃− b̂) ∈ A)

= c−1
n

∫
A

exp
{
−
〈
z,

ε

2∆
Σ−1z

〉
/2
}
dν̃(z) + o(1),

(1)

where cn is the normalizing constant. However, this is
a Gaussian measure with covariance operator ( ε

2∆Σ−1 +

C−1/n)−1 and mean −n−1/2( ε
2∆Σ−1 + C−1/n)−1C−1b̂.

By part 1 of Lemma 0.2, we know that this Gaussian process
is equivalent to ṽ, which is a Gaussian process with mean
−
√
nb̂ and covariance nC, meaning that the density in (1)

is well defined. By parts 2 and 3 of Lemma 0.2, we have
that the following limits hold:( ε

2∆
Σ−1 + C−1/n

)−1

→ 2∆

ε
Σ

−n−1/2
( ε

2∆
Σ−1 + C−1/n

)−1

C−1b̂→ 0,

where the first limit is in the space of nuclear operators,
implying the sequence of measures is tight, and the second
limit occurs in H. We conclude that the characteristic func-
tions of the measures converge and, since the sequence is
also tight, this implies that

√
n(̃b− b̂) converges in distribu-

tion to the specified Gaussian process.

Proof of Theorem 4.1. Recall that we assumed that ‖Xi‖ ≤
1 for all i = 1, . . . , n. So, ‖PXi‖2 ≤ ‖Xi‖2 ≤ 1 for any
P ∈ Pk and any i = 1, . . . , n. Since we also have that
‖PXi‖2 ≥ 0, we see that ∆ξ = 1. Since

∑n
i=1‖PXi‖2 ≤

n, we have that exp
(
− ε

2∆

∑n
i=1‖PXi‖2

)
is a valid den-

sity with respect to any probability measure in Pk. By
Proposition 3.1, the mechanism M satisfies ε-DP.

Proof of Theorem 4.2. The proof is essentially the same as
for Theorem 4.1.
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