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Abstract
We introduce the concrete autoencoder, an end-
to-end differentiable method for global feature
selection, which efficiently identifies a subset of
the most informative features and simultaneously
learns a neural network to reconstruct the input
data from the selected features. Our method is
unsupervised, and is based on using a concrete
selector layer as the encoder and using a standard
neural network as the decoder. During the train-
ing phase, the temperature of the concrete selector
layer is gradually decreased, which encourages a
user-specified number of discrete features to be
learned; during test time, the selected features
can be used with the decoder network to recon-
struct the remaining input features. We evaluate
concrete autoencoders on a variety of datasets,
where they significantly outperform state-of-the-
art methods for feature selection and data recon-
struction. In particular, on a large-scale gene ex-
pression dataset, the concrete autoencoder selects
a small subset of genes whose expression levels
can be used to impute the expression levels of the
remaining genes; in doing so, it improves on the
current widely-used expert-curated L1000 land-
mark genes, potentially reducing measurement
costs by 20%. The concrete autoencoder can be
implemented by adding just a few lines of code
to a standard autoencoder, and the code for the
algorithm and experiments is publicly available.

1. Introduction
High-dimensional datasets often pose a challenge for ma-
chine learning algorithms. Feature selection methods aim
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to reduce dimensionality of data by identifying the subset
of relevant features in a dataset. A large number of algo-
rithms have been proposed for feature selection in both
supervised and unsupervised settings (Kohavi & John, 1997;
Wang et al., 2013). These methods provide insight into the
relationship between features in complex data and can sim-
plify the process of training downstream models. Feature
selection is particularly useful if the data with the full set of
features is expensive or difficult to collect, as it can eliminate
the need to measure irrelevant or redundant features.

As a motivating example, consider a dataset that consists of
the expression of various genes across tissue samples. Such
“omics” measurements are increasingly carried out to fully
characterize biological samples at the individual and single-
cell level (Bock et al., 2016; Huang et al., 2017). Yet it
remains expensive to conduct all of the biological assays that
are needed to characterize such samples. It is natural to ask:
what are the most important features in this dataset? Are
there redundant features that do not need to be measured?
The idea of only measuring a subset of biological features
and then reconstructing the remaining features is not new; in
fact, this line of thinking has motivated the identification of
the landmark genes, also known as the L1000 genes, which
are a small subset of the over 20,000 human genes. The
expression levels of the L1000 are strongly correlated with
the expression levels of other genes, and thus this subset can
be measured cheaply and then used to impute the remaining
gene expression levels (Lamb et al., 2006).

The problem of feature selection is different from the more
general problem of dimensionality reduction. Standard tech-
niques for dimensionality reduction, such as principal com-
ponents analysis (Hotelling, 1933) and autoencoders (Hin-
ton & Salakhutdinov, 2006), are be able to represent data
with fewer dimensions while preserving maximal variance
or minimizing reconstruction loss. However, such methods
do not select a set of features present in the original dataset,
and thus cannot be directly used to eliminate redundant
features and reduce experimental costs. We emphasize the
unsupervised nature of this problem: specific prediction
tasks may not be known ahead of time, and thus it is impor-
tant to develop methods that can identify a subset of features
while allowing imputation of the remaining features with
minimal distortion for arbitrary downstream tasks.

In this paper, we propose a new end-to-end method to per-
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Figure 1. Demonstrating concrete autoencoders on the MNIST dataset. Here, we show the results of using concrete autoencoders to
select in an unsupervised manner the k = 20 most informative pixels of images in the MNIST dataset. (a) The 20 selected features (out of
the 784 pixels) on the MNIST dataset are shown in white. (b) A sample of input images in MNIST dataset with the top 2 rows being
training images and the bottom 3 rows being test images. (c) The same input images with only the selected features shown as colored dots.
(d). The reconstructed versions of the images, using only the 20 selected pixels, shows that generally the digit is identified correctly and
some stylistic features, such as the swirl in the digit “2”, are captured. (cf. figures in Appendix A which show the results of applying
concrete autoencoder to individual classes of digits.)

form feature subset selection and imputation that leverages
the power of deep autoencoders for discrete feature selection.
Our method, the concrete autoencoder, uses a relaxation of
the discrete distribution, the Concrete distribution (Maddi-
son et al., 2016), and the reparametrization trick (Kingma
& Welling, 2013) to differentiate through an arbitrary (e.g.
reconstruction) loss and select input features to minimize
this loss. A visual example of results from our method is
shown in Fig. 1, where the concrete autoencoder selects
the 20 most informative pixels (out of a total of 784) on the
MNIST dataset, and reconstructs the original images with
high accuracy. We test concrete autoencoders on a variety
of datasets, and find that they generally outperform state-of-
the-art methods for feature selection and data reconstruction.
We have made the code for our algorithm and experiments
available on a public repository1.

Related Works Feature selection methods are generally
divided into three classes: filter, wrapper, and embedded
methods. Filter methods rank the features of the dataset
using statistical tests, such as the variance, in order to se-
lect features that individually maximize the desired criteria
(Battiti, 1994; Duda et al., 2012). Filter methods generally
do not consider interactions between features and do not
provide a way to impute the remaining features; one must
train a separate algorithm to do so. Wrapper methods select
subsets of features that maximize an objective function opti-
mized over the choice of input features using a black-box
optimization method, such as sequential search or genetic al-
gorithms (Kohavi & John, 1997; Goldberg & Holland, 1988).
Since wrapper methods evaluate subsets of features, they

1Code available at: https://github.com/mfbalin/
Concrete-Autoencoders

are able to detect potential relationships between features,
but usually at the expense of increased computation time.
Embedded methods also consider relationships between
features but generally do so more efficiently as they incor-
porate feature selection into the learning phase of another
algorithm. A well-known example is the Lasso (Tibshirani,
1996), which can be used to select features for regression
by varying the strength of `1 regularization.

Many embedded unsupervised feature selection algorithms
use regularization as the means to select discrete features.
The popular UDFS algorithm Yang et al. (2011) incorpo-
rates `2,1 regularization on a set of weights applied to the
input to select features most useful for local discriminative
analysis. Similarly, the MCFS algorithm (Cai et al., 2010)
uses regularization to solve for the features which preserve
the clustering structure in the data. The recently-proposed
AEFS (Han et al., 2017) algorithm also uses `2,1 regular-
ization on the weights of the encoder that maps the input
data to a latent space and optimizes these weights for their
ability to reconstruct the original input.

In this paper, we select discrete features using an embed-
ded method but without resorting to regularization. Rather,
we use a relaxation of the discrete random variables, the
Concrete distribution (Maddison et al., 2016), which allows
a low-variance estimate of the gradient through discrete
stochastic nodes. By using Concrete random variables, we
can directly parametrize the selection of input features, and
differentiate through the parameters. As we show through
experiments in Section 4, this leads to lower reconstruction
errors on real-world datasets compared to the aforemen-
tioned regularization-based methods. Additional related
works can bed found in Appendix B.

https://github.com/mfbalin/Concrete-Autoencoders
https://github.com/mfbalin/Concrete-Autoencoders
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2. Problem Formulation
We now describe the problem of global feature selection.
Although global feature selection is relevant for both un-
supervised and supervised settings, we describe here the
unsupervised case, which is the primary focus of this paper,
and defer discussion of the supervised case to Appendix G.

Consider a data-generating probability distribution p(x)
over a d-dimensional space. The goal is to learn a sub-
set S ⊆ {1, 2 . . . d} of features of specified size |S| = k
and also learn a reconstruction function fθ(·) : Rk → Rd,
such that the expected loss between the reconstructed sam-
ple fθ(xS) and the original sample x is minimized, where
xS ∈ Rk consists of those elements xi such that i ∈ S. In
other words, we would like to optimize

argmin
S,θ

Ep(x)[‖fθ(xS)− x‖2] (1)

In practice, we do not know p(x); rather we have n samples,
generally assumed to be drawn i.i.d. from p(x). These
samples can be represented in a data matrix X ∈ Rn×d, and
so the goal becomes choosing k columns of X such that
sub-matrix XS ∈ Rn×k, defined analogously to xS , can be
used to reconstruct the original matrix X . Let us overload
fθ(XS) to mean the matrix that results from applying fθ(·)
to each of the rows of XS and stacking the resulting outputs.
We seek to minimize the empirical reconstruction error:

argmin
S,θ

‖fθ(XS)−X‖F , (2)

where ‖·‖F denotes the Frobenius norm of the matrix. The
principal difficulty in solving (2) is the optimization over the
discrete set of features S, whose choices grow exponentially
in d. Thus, even for simple choices of fθ(·), such as linear
regression, the optimization problem in (2) is NP-hard to
solve (Amaldi & Kann, 1998).

Furthermore, the complexity of fθ(·) can significantly af-
fect reconstruction error and even the choice of S. More
expressive and non-linear choices for fθ(·), such as neural
networks, will naturally allow for lower reconstruction error,
potentially at the expense of a more difficult optimization
problem. We seek to develop a method that can approxi-
mate the solution for any given class of functions fθ(·), from
linear regression to deep fully-connected neural networks.

Finally, we note that the choice of mean-squared error
(MSE) as the metric for optimization in (1) and (2) stems
from the fact that it is a smooth differentiable function that
serves as a proxy for many downstream analyses, such as
clustering performance and classification accuracy. How-
ever, other differentiable metrics, such as a variational ap-
proximation of the mutual information between fθ(XS) and
X , may be considered as well (Chen et al., 2018).

3. Proposed Method
The concrete autoencoder is an adaption of the standard
autoencoder (Hinton & Salakhutdinov, 2006) for discrete
feature selection. Instead of using series of fully-connected
layers for the encoder, we propose a concrete selector layer
with a user-specified number of nodes, k. This layer selects
stochastic linear combinations of input features during train-
ing, which converge to a discrete set of k features by the
end of training and during test time.

The way in which input features are combined depends on
the temperature of this layer, which we modulate using
a simple annealing schedule. As the temperature of the
layer approaches zero, the layer selects k individual input
features. The decoder of a concrete autoencoder, which
serves as the reconstruction function, is the same as that of a
standard autoencoder: a neural network whose architecture
can be set by the user based on dataset size and complexity.
In effect, then, the concrete autoencoder is a method for
selecting a discrete set of features that are optimized for an
arbitrarily-complex reconstruction function. We describe
the ingredients for our method in more detail in the next two
subsections.

3.1. Concrete Selector Layer

The concrete selector layer is based on Concrete random
variables (Maddison et al., 2016; Jang et al., 2016), which
are continuous distributions on a simplex with closed form
derivatives. The distribution is controlled by a temperature
parameter T ∈ (0,∞). To sample a Concrete random
variable in d dimensions with parameters α ∈ Rd>0 and T ,
one first samples a d-dimensional vector of i.i.d. samples
from a Gumbel distribution (Gumbel, 1954), g. Then each
element of the samplem from the Concrete distribution is
defined as:

mj =
exp((logαj + gj)/T )∑d
k=1 exp((logαk + gk)/T )

, (3)

where mj refers to the jth element in a particular sample
vector. In the limit T → 0, the concrete random variable
smoothly approaches the discrete distribution, outputting
one hot vectors withmj = 1 with probability αj/

∑
pαp.

The desirable aspect of the Concrete random variable is that
it allows for differentiation with respect to its parameters α
via the reparametrization trick (Kingma & Welling, 2013).

We use Concrete random variables to select input features in
the following way. For each of the k nodes in the concrete
selector layer, we sample a d-dimensional Concrete random
variable m(i), i ∈ {1 . . . k} (note that the superscript here
indexes the node in the selector layer, whereas the subscript
earlier referred to the element in the vector). The ith node in
the selector layer u(i) outputs x ·m(i). This is, in general, a
weighted linear combination of the input features, but notice
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Figure 2. Concrete autoencoder architecture and pseudocode. (a) The architecture of a concrete autoencoder consists of a single
encoding layer, shown in brown, and arbitrary decoding layers (e.g. a deep feedforward neural network), shown in teal. The encoder has one
neuron for each feature to be selected. During the training phase, the ith neuron u(i) takes the value x>m(i), m(i) ∼ Concrete(α(i),T).
During test time, these weights are fixed and the element with the highest value in α(i) is selected by the corresponding ith hidden neuron.
The architecture of the decoder remains the same during train and test time, namely that x̂ = fθ(u), where u is the vector consisting of
each u(i). (b) Here, we show pseudocode for the concrete autoencoder algorithm, see Appendix C for more details.

that when T → 0, each node in the concrete selector layer
outputs exactly one of the input features. After the network
is trained, during test time, we thus replace the concrete
selector layer with a discrete argmax layer in which the
output of the ith neuron is x

argmaxj α
(i)
j

.

We randomly initialize αi to small positive values, to en-
courage the selector layer to stochastically explore different
linear combinations of input features. However, as the net-
work is trained, the values of αi become more sparse, as the
network becomes more confident in particular choices of
input features, reducing the stochasticity in selected features.
The concrete autoencoder architecture is shown in Fig. 2(a)
and the pseudocode for training in Fig. 2(b).

3.2. Annealing Schedule

The temperature of Concrete random variables in the con-
crete selector layer has a significant effect on the output
of the nodes. If the temperature is held high, the concrete
selector layer continuously outputs a linear combination of
features. On the contrary, if the temperature is held low, the
concrete selector layer is not able to explore different combi-
nations of features and converges to a poor local minimum.
Neither fixed temperature allows the concrete selector layer
to converge to informative features.

Instead, we propose a simple annealing schedule that sets
the temperature for all of the concrete variables, initially

beginning with a high temperature T0 and gradually de-
caying the temperature until a final temperate TB at each
epoch according to a first-order exponential decay: T (b) =
T0(TB/T0)

b/B where T (b) is the temperature at epoch num-
ber b, and B is the total number of epochs. We compare
various methods for setting the temperature of the concrete
selector nodes in Fig. 3. We find that this annealing schedule
allows the concrete selector layer to effectively stochasti-
cally explore combinations of features in the initial phases
of training, while in the later stages of training, the lowered
temperature allows the the network to converge to informa-
tive individual features.

4. Experiments
In this section, we carry out experiments to compare the per-
formance of concrete autoencoders to other feature subset
selections on standard public datasets. For all of the experi-
ments, we use Adam optimizer with a learning rate of 10−3.
The initial temperature of the concrete autoencoder T0 was
set to 10 and the final temperature TB to 0.01. We trained
the concrete autoencoder until the mean of the highest prob-
abilities in α(i) exceeded 0.99. For UDFS and AEFS, we
swept values of each regularization hyperparameter and re-
port the results with optimal hyperparameters according to
mean squared error for reconstruction for each method.

Furthermore, since the reconstruction fθ(·) can overfit to
patterns particular to the training set, we divide each dataset
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Figure 3. Annealing schedules for the concrete autoencoder.
Here, we show the effect of different annealing schedules on a
concrete autoencoder trained on the MNIST dataset with k = 20
selected features. At each epoch, we plot the temperature in red,
average of the largest value in each concrete samplem(i) in black,
as well the reconstruction error (using linear regression with the
top k = 20 features on validation data), shown in blue. If the
temperature is kept high, the concrete samples do not converge
to individual features, and the reconstruction error remains large
(top left). If the temperature is kept low, the samples immediately
converge to poor features, and the error remains large (top right). If
the temperature is exponentially decayed (the annealing schedule
we use), the samples converge to informative features, and the
reconstruction error reaches a suitable minimum (bottom left). Fi-
nally, if the temperature is dropped abruptly, the samples converge,
but the error is suboptimal (bottom right).

randomly into train, validation, and test datasets according
to a 72-8-20 split2 that were held constant for all experi-
ments. We use the training set to learn the parameters of the
concrete autoencoders, the validation set to select optimal
hyperparameters, and the test set to evaluate generalization
performance, which we report below.

We compare concrete autoencoders to many of the unsuper-
vised feature selection methods mentioned in Related Works
including UDFS, MCFS, and AEFS. We also include prin-
cipal feature analysis (PFA), proposed by Lu et al. (2007),
which is a popular method for selecting discrete features
based on PCA, as well as a spectral method, the Laplacian
score (He et al., 2006). Where available, we made use of
scikit-feature implementation of each method (Li
et al., 2016). In our experiments, we also include, as upper

2For the MNIST, MNIST-Fashion, and Epileptic datasets, we
only used 6000, 6000 and 8000 samples respectively to train and
validate the model (using a 90-10 train-validation split), because
of long runtime of the UDFS algorithm. The remaining samples
were used for the holdout test set.

bounds on performance, dimensionality reduction meth-
ods that are not restricted to choosing individual features.
In experiments with linear decoders, we use PCA and in
experiments with non-linear decoders, we use equivalent
autoencoders. The methods, because they allow k combi-
nations of features, bound the performance of any feature
selection technique. We evaluate these methods on a number
of datasets (the sizes of the datasets are in Table 1):

MNIST and MNIST-Fashion consist of 28-by-28
grayscale images of hand-written digits and clothing items,
respectively. We choose these datasets because they are
widely known in the machine learning community. Al-
though these are image datasets, the objects in each image
are centered, which means we can meaningfully treat each
784 pixels in the image as a separate feature.

ISOLET consists of preprocessed speech data of people
speaking the names of the letters in the English alphabet.
This dataset is widely used as a benchmark in the feature
selection literature. Each feature is one of the 617 quantities
produced as a result of preprocessing, including spectral
coefficients and sonorant features.

COIL-20 consists of centered grayscale images of 20 ob-
jects. Images of the objects were taken at pose intervals of
5 degrees amounting to 72 images for each object. During
preprocessing, the images were resized to produce 20-by-20
images, with each feature being one of the 400 pixels.

Smartphone Dataset for Human Activity Recognition
consists of sensor data collected from a smartphone mounted
on subjects while they performed several activities such as
walking upstairs, standing and laying. Each feature repre-
sents one of the 561 raw or processed quantities from the
sensors on the phone.

Mice Protein Dataset consists of protein expression levels
measured in the cortex of normal and trisomic mice who had
been exposed to different experimental conditions. Each
feature is the expression level of one protein.

GEO Dataset consists of gene expression profiles measured
from a large number of samples through a microarray-based
platform. Each of the 10,463 features represents the expres-
sion level of one gene.

To evaluate the various feature selection methods, we exam-
ine two metrics, both reported on a hold-out test set:

Reconstruction error: We extract the k selected features.
We pass the resulting matrix XS through the reconstruction
function fθ that we have trained. We measure the Frobenius
norm between the original and reconstructed test matrices
‖fθ(XS)−X‖F , normalized by the number of features d.

Classification accuracy: We extract the k features selected
by the method. We then pass the resulting matrix XS to an
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Figure 4. Results on the ISOLET dataset. Here, we com-
pare the concrete autoencoder (CAE) to other feature selec-
tion methods using a 1-hidden layer neural network as the
reconstructor. Standard autoencoders are included only as
an upper bound on performance, since they do not select
discrete features. (a) Across all numbers of features selected,
concrete autoencoders have lowest reconstruction errors (b)
The features learned by the concrete autoencoder also tend
to result in higher classification accuracies.

extremely randomized trees classifier (Geurts et al., 2006),
a variant of random forests that has been used with feature
selection methods in prior literature (Drotár et al., 2015).
We measure the accuracy between the predicted labels and
true labels, which are available for each of the datasets. Note
that the labels are only used for training the classifier and
not for the feature selection.

4.1. Concrete Autoencoders (Non-Linear Decoder)

First, we constructed a concrete autoencoder with a non-
linear decoder architecture consisting of one hidden layer
with 3k/2 neurons, with k being the number of selected fea-
tures. We performed a series of experiments with the ISO-
LET dataset, which is widely used as a benchmark in prior
feature selection literature. We benchmarked each feature
selection method (besides UDFS whose run-time was pro-
hibitive) with varying numbers of of features (from k = 10
to k = 85), measuring the reconstruction error using a
1-hidden-layer neural network as well as classification accu-
racy. The number of neurons in the hidden layer of the recon-
struction network was varied within [4k/9, 2k/3, k, 3k/2],
and the network with the highest validation accuracy was
selected and measured on the test set.

To control for the performance of the reconstruction net-
work, we trained each reconstruction network for the same
number of epochs, 200. For the concrete autoencoder, we
did not use the decoder that was learned during training, but
re-trained the reconstruction networks from scratch. Our
resulting classification accuracies and reconstruction error
on each dataset are shown in Fig. 4. We find that the con-
crete autoencoder consistently outperformed other feature
selection methods on the ISOLET dataset.

4.2. Concrete Autoencoders (Linear Decoder)

Next, we carried out a series of experiments in which we
compared concrete autoencoders with linear decoders to the
other methods using linear regression as the reconstruction
function. Since linear regression can be trained easily to
convergence, this allowed us to isolate the effect of using
the concrete selector layer for feature selection, and allowed
us to train on a wider variety of datasets with less risk of
overfitting. We selected a fixed number k = 50 of features

with each method, with the exception of the Mice Protein
Dataset, for which we used k = 10 due to its small size.

After selecting the features using concrete autoencoder and
the other feature selection methods, we trained a standard
linear regressor with no regularization to impute the original
features. The resulting reconstruction errors on a hold-out
test set are shown in Table 1. We also used the selected fea-
tures to measure classification accuracies, which are shown
in Table 2 in Appendix D. On almost all datasets, we found
that the concrete autoencoder continued to have the lowest
reconstruction error and a high classification accuracy.

4.3. Interpreting Related Features

An added benefit of using the concrete selector layer is that
it allows the user to not only identify the most informative
features for reconstruction, but also identify sets of related
features through examination of the learned Concrete pa-
rameters α(i). Because the concrete selector layer samples
the input features stochastically based on α(i), any of the
features with the large values in the vector α(i) may be
selected, and are thus likely to be correlated to one another.

In Fig. 5, we show how this can reveal related features by
visualizing the top 3 pixels with the highest values in the
α(i) vector for each of the 20 concrete selector nodes on the
MNIST digits. We notice that the pixels that are selected by
each node are spatially close to one another, which agrees
with intuitive notions of related features, as neighboring
pixel values are likely to be correlated in handwritten digits.
These patterns are even more striking when generated for
individual classes of digits; in that case, the set of correlated
pixels may even suggest the direction of the stroke when
the digit was written (see Appendix E for more details).
Such analysis may be carried out more generally to find sets
of related features, such as sets of related genes in a gene
expression dataset.

4.4. Case Study: L1000 Gene Expression

We now turn to a large-scale test of the concrete autoen-
coder: examining whether we can improve gene expression
inference. Gene expression inference arises from an im-
portant problem in molecular biology: characterizing the
state of cells in different biological conditions. In particular,
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Dataset (n, d) PCA Lap AEFS UDFS MCFS PFA CAE (Ours)
MNIST (10000, 784) 0.012 0.070 0.033 0.035 0.064 0.051 0.026
MNIST-Fashion (10000, 784) 0.012 0.128 0.047 0.133 0.096 0.043 0.041
COIL-20 (1440, 400) 0.008 0.126 0.061 0.116 0.085 0.061 0.093
Mice Protein (1080, 77) 0.003 0.603 0.783 0.867 0.695 0.871 0.372
ISOLET (7797, 617) 0.009 0.344 0.301 0.375 0.471 0.316 0.299
Activity (5744, 561) 0.002 0.139 0.112 0.173 0.170 0.197 0.108

Table 1. Reconstruction errors of feature selection methods. Here, we show the MSE of the various methods on six public datasets.
Here Lap is the Laplacian score and CAE is the concrete autoencoder. PCA is included only as an upper bound on performance, since it
does not select discrete features. For each method, we select k = 50 features (except for mice protein, where we use k = 10 because the
dataset is lower dimensional) and use a linear regressor for reconstruction. All reported values are on a hold-out test set. (Lower is better.)

Figure 5. Pixel groups selected by concrete selector nodes on
MNIST. Here, we illustrate the top 3 pixels selected by each of
the 20 nodes in the concrete layer when trained on the MNIST
dataset. We color each group of 3 pixels with the same color (note
that some colors are repeated because of the limited color palette).
cf. Appendix E, which shows pixel group for classes of digits.

the response of cells to diseases, mutations, and drugs is
often characterized by the measurement of gene expression
patterns (Lamb et al., 2006).

However, measuring all of the genes expressed in a human
cell can be expensive, and thus researchers have looked to
computational methods to reduce the cost and time required
for gene expression profiling. In particular, researchers from
the LINCS Project found that, because gene expression is
correlated in different conditions, a set of roughly a thou-
sand carefully-chosen genes can capture most of the gene
expression information in the entire human transcriptome
(Peck et al., 2006). It is thus possible to use a linear re-
gression model trained on genome-wide gene expression
to infer the gene expression values of the remaining genes.
More recently, Chen et al. (2016) showed that it is possible
to leverage the representation power of neural networks to
improve the accuracy of gene expression inference in an
approach they referred to as D-GEX.

Here, we ask whether it is possible to use concrete autoen-
coders to determine a good subset of genes, perhaps as an
alternative to the landmark genes, without utilizing any prior
biological knowledge of gene networks or gene function.

We relied only on a large dataset of gene expression data,
from which we aim to select the most informative features.

We used the version of the GEO dataset used in the D-
GEX paper, and followed the same preprocessing scheme to
obtain a dataset of sample size 112,171 and dimensionality
10,463 genes. We then randomly partitioned the dataset in a
manner similar to that performed by Chen et al. (2016): as a
result, the training set had 88,807 samples, the validation set
had 11,101, and the test set had 12,263. We then considered
3 kinds of reconstruction functions: in the simplest case,
we considered multitarget linear regression, and we also
implemented neural networks with 1 and 2 hidden layers.
See Appendix F for the architecture of the networks.

First, we trained a concrete autoencoder to select 943 genes
using only a linear regression decoder. An analysis of the
selected genes showed very little overlap with the landmark
genes: only 90 of the concrete autoencoder-selected 943
genes were among the landmark genes. For consistency
with the D-GEX results, we used this same set of 943 genes,
selected by a concrete autoencoder with a linear decoder,
with all of our reconstruction networks.

We trained each reconstruction networks to impute all of
the original 10,463 genes. We measured the reconstruction
error on a hold-out test set that was used neither to train
the concrete autoencoder nor the reconstruction functions.
Our results are summarized in Fig. 6(a), where we plot the
mean-squared error of imputation, averaged over three inde-
pendent trainings of the reconstruction network. We show
that not only is it possible to use concrete autoencoders to
perform gene selection gene expression inference in a differ-
entiable, end-to-end manner on large-scale datasets, doing
so improves the performance of the gene expression impu-
tation on a holdout test set of gene expression by around
3% for each architecture, which is significant as the L1000
landmark genes were expert curated using a combination of
computational prediction with domain knowledge, and is a
very strong benchmark and is widely used in genomics.
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Figure 6. Imputation errors of concrete autoencoders and
landmark genes. Here, we show the mean-squared error of the
imputation task using both the 943 landmark genes (red) and the
943 genes selected by the concrete autoencoder (blue) on the test
set. The task is to impute the expression of all 10,463 genes. We
observe about a 3% reduction (note that y-axis begins at 0.20)
of the reconstruction error when using the genes selected by the
concrete autoencoders (CAE) across all architectures. These are re-
sults averaged over three trials. Standard deviation bars are shown
but were very low, as the final imputations were very similar across
all trials. (b) We train the CAE with different numbers of selected
features, and calculate the MSE using linear regression on the test
set. We find that we can achieve a similar MSE to the landmark
genes using only around 750 genes, a 20% reduction in the number
of genes measured.

Next, we investigated whether it would be possible to ob-
tain similar accuracies as to the landmark genes while us-
ing a smaller set of concrete autoencoder-selected genes.
We trained concrete autoencoders from scratch using k =
750, 800, 850, 900, 943, using the same architecture de-
scribed in Appendix F and using a linear regression decoder.
We found that using linear regression as the reconstruction
function, we could obtain reconstruction MSEs about as
low as the landmark genes, using only 750 genes, which
represents roughly a 20% reduction in the number of genes
measured, potentially saving substantial experimental costs.
These results are illustrated in Fig. 6(b).

5. Discussion
In this paper, we have proposed a new method for differ-
entiable, end-to-end feature selection via backpropagation.
At its core, the concrete autoencoder uses Concrete random
variables and the reparametrization trick to allow gradients
to flow through a layer that stochastically selects discrete
input features. The stochasticity of the concrete autoencoder
allows it to efficiently explore and converge to a subset of
input features of specified size that minimizes a reconstruc-
tion loss, as described in Section 3. The learned parameters
can be further probed to allow the analyst to interpret related
features, as demonstrated in Section 4.3. This makes con-

crete autoencoders different from many competing methods,
which rely on regularization to select features.

We show via experiments on a variety of public datasets
that concrete autoencoders effectively minimize the recon-
struction error and maximize classification accuracy us-
ing selected features. In the six public datasets that we
tested concrete autoencoders, we found that concrete au-
toencoders outperformed many different complex feature
selection methods. This remains the case even when we re-
duced the decoder layer to be a single linear layer, showing
that the concrete selector node is useful even when selecting
input features that minimize the loss when using a linear
regression as the reconstruction function. Code to repro-
duce these experiments are publicly available in a GitHub
repository (see Section 1).

Because the concrete autoencoder is an adaptation of the
standard autoencoder, it scales easily to datasets with many
samples or high dimensionality. We demonstrated this in
section 4.4 using a gene expression dataset with more than
100,000 samples and 10,000 features, where the features
selected by the concrete autoencoder outperformed the state-
of-the-art gene subset. Furthermore, because of its gen-
eral formulation, the concrete autoencoder can be easily
extended in many ways. For example, it possible to use con-
crete autoencoders in a supervised manner – to select a set
of features that minimize a cross-entropy loss, for example,
rather than a reconstruction loss. Examples of this approach
and additional extensions are provided in Appendix G.

Advantages of the concrete autoencoder include its general-
ity and ease of use. Implementing the architecture in popular
machine learning frameworks requires only modifying a few
lines of code from a standard autoencoder. Furthermore,
the runtime of the concrete autoencoder is similar to that
of the standard autoencoder and improves with hardware
acceleration and parallelization techniques commonplace in
deep learning. The only additional hyperparameters of the
concrete autoencoder are the initial and final temperatures
used in the annealing schedule. We find that the perfor-
mance does not vary significantly even when the parameters
are varied over two orders of the magnitude, and the default
values used in this paper work well for a variety of datasets.

Concrete autoencoders, like standard autoencoders, are
stochastic; features selected over multiple runs are not neces-
sarily identical. As with the other feature selection methods
we compared with in this paper, they do not provide p-values
or statistical significance quantification. Features discovered
through concrete autoencoders should be validated through
hypothesis testing or additional analysis using relevant do-
main knowledge. We believe that the concrete autoencoder
can be of particular use in simplifying assays and exper-
iments that measure a large number of related quantities,
such as medical lab tests and genotype sequencing.
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