
Categorical Feature Compression via Submodular Optimization

A. Supplement
A.1. Proof of technical lemmas

Proof of Lemma 1

Proof. Let Z and Z ′ be the random variables corresponding to F (S ∪ {s}) and F (S) respectively. Note that we have

F (S) =
∑
z′∼Z′

∑
c∈{0,1}

Pr [Z ′=z′, C=c] log
Pr [Z ′=z′, C=c]

Pr [Z ′=z′] Pr [C=c]

=
∑
z′∼Z′

Pr [Z ′=z′]
∑
c∈{0,1}

Pr [C=c|Z ′=z′] log
Pr [C=c|Z ′=z′]

Pr [C=c]

=
∑
z′∼Z′

Pr [Z ′ = z′] f(Pr [C = 0|Z ′ = z′]),

where we have
f(t) = t log

t

Pr [C = 0]
+ (1− t) log

1− t
Pr [C = 1]

,

which is a convex function over t ∈ [0, 1]. Next, we have

∆sF (S) = F (S ∪ {s})− F (S)

=
∑
z∼Z

Pr [Z = z] f(Pr [C = 0|Z = z])−
∑
z′∼Z′

Pr [Z ′ = z′] f(Pr [C = 0|Z ′ = z′])

= Pr [Z = s′] f(Pr [C = 0|Z = s′]) + Pr [Z = s] f(Pr [C = 0|Z = s])− Pr [Z ′ = s′] f(Pr [C = 0|Z ′ = s′]).

Notice that Z ′ = s′ implies that Z = s or Z = s′. Hence we have Pr [Z ′ = s′] = Pr [Z = s′] + Pr [Z = s] and

Pr [C = 0|Z ′ = s′] =
Pr [Z=s′] Pr [C=0|Z=s′] + Pr [Z=s] Pr [C=0|Z=s]

Pr [Z=s′] + Pr [Z=s]
.

Now, if we set p = Pr [Z = s′], q = Pr [Z = s], α = Pr [C = 0|Z = s′] and β = Pr [C = 0|Z = s], and combine the
previous two inline equalities, we have

∆sF (S) = pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
.

Some Basic Tools: In Lemmas 2 and 5 we show two basic properties of convex functions that later become handy in our
proof. We use the following property of convex functions to prove Lemma 2. For any convex function f and any three
numbers a < b < c we have

f(b)− f(a)

b− a
≤ f(c)− f(b)

c− b
. (12)

Note that this also implies

f(c)− f(a)

c− a
=

1

c− a
(
f(c)− f(b) + f(b)− f(a)

)
≤ 1

c− a

(
f(c)− f(b) +

b− a
c− b

(
f(c)− f(b)

))
By Inequality 12

=
1

c− a

(c− b+ b− a
c− b

(
f(c)− f(b)

))
=
f(c)− f(b)

c− b
. (13)
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Similarly we have

f(c)− f(a)

c− a
=

1

c− a
(
f(c)− f(b) + f(b)− f(a)

)
≥ 1

c− a

( c− b
b− a

(
f(b)− f(a)

)
+ f(b)− f(a)

)
By Inequality 12

≥ 1

c− a

(c− b+ b− a
b− a

(
f(b)− f(a)

))
=
f(b)− f(a)

b− a
. (14)

Proof of Lemma 2:

Proof. First, we prove

f(pα+ qγ)− f(pα+ qβ)

qγ − qβ
≤ f(γ)− f(β)

γ − β
. (15)

Recall that α ≤ β ≤ γ, and p+ q = 1. Hence we have pα+ qβ ≤ pα+ qγ, β ≤ γ. We prove Inequality 15 in two cases of
pα+ qγ ≤ β, and β < pα+ qγ.
Case 1. In this case we have pα+ qβ ≤ pα+ qγ ≤ β ≤ γ. we have

f(pα+ qγ)− f(pα+ qβ)

qγ − qβ
=
f(pα+ qγ)− f(pα+ qβ)

(pα+ qγ)− (pα+ qβ)

≤ f(β)− f(pα+ qγ)

β − (pα+ qγ)
By Inequality 12

≤ f(γ)− f(β)

γ − β
By Inequality 12

Case 2. In this case we have pα+ qβ ≤ β ≤ pα+ qγ ≤ γ. we have

f(pα+ qγ)− f(pα+ qβ)

qγ − qβ
=
f(pα+ qγ)− f(pα+ qβ)

(pα+ qγ)− (pα+ qβ)

≤ f(pα+ qγ)− f(β)

(pα+ qγ)− β
By Inequality 13

≤ f(γ)− f(β)

γ − β
By Inequality 14.

Next we use Inequality 15 to prove the lemma. By multiplying both sides of Inequality 15 by q(γ − β) we have

f(pα+ qγ)− f(pα+ qβ) ≤ qf(γ)− qf(β).

By rearranging the terms and adding pf(α) to both sides we have(
pf(α) + qf(β)

)
− f(pα+ qβ) ≤

(
pf(α) + qf(γ)

)
− f(pα+ qγ),

as desired.

Proof of Lemma 5:

Proof. We have

p+ q

p+ q′
f
(pα+ qβ

p+ q

)
+
q′ − q
p+ q′

f(β) ≥ f
( p+ q

p+ q′
pα+ qβ

p+ q
+
q′ − q
p+ q′

β
)

By convexity

= f
(pα+ qβ

p+ q′
+
q′ − q
p+ q′

β
)

= f
(pα+ q′β

p+ q′
)
.
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By multiplying both sides by p+ q′ we have

(p+ q)f
(pα+ qβ

p+ q

)
+ q′f(β)− qf(β) ≥ (p+ q′)f

(pα+ q′β

p+ q′
)
.

By rearranging the terms and adding pf(α) to both sides we have

pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
≤ pf(α) + q′f(β)− (p+ q′)f

(pα+ q′β

p+ q′
)
,

as desired.

A.2. Empirical Evaluation Details

We implement the neural network using TensorFlow and train it using the AdamOptimizer (Abadi et al., 2016; Kingma &
Ba, 2014). The following set of neural network hyperparameters are tuned by evaluating 2000 different configurations on
the hold-out set as suggested by a Gaussian Process black-box optimization routine.

hyperparameter search range
hidden layer size [100, 1280]
num hidden layers [1, 5]
learning rate [1e-6, 0.01]
gradient clip norm [1.0, 1000.0]
L2-regularization [0, 1e-4]


