A. Supplement

A.1. Proof of technical lemmas

Proof of Lemma 1

Proof. Let Z and Z^{\prime} be the random variables corresponding to $F(S \cup\{s\})$ and $F(S)$ respectively. Note that we have

$$
\begin{aligned}
F(S) & =\sum_{z^{\prime} \sim Z^{\prime}} \sum_{c \in\{0,1\}} \operatorname{Pr}\left[Z^{\prime}=z^{\prime}, C=c\right] \log \frac{\operatorname{Pr}\left[Z^{\prime}=z^{\prime}, C=c\right]}{\operatorname{Pr}\left[Z^{\prime}=z^{\prime}\right] \operatorname{Pr}[C=c]} \\
& =\sum_{z^{\prime} \sim Z^{\prime}} \operatorname{Pr}\left[Z^{\prime}=z^{\prime}\right] \sum_{c \in\{0,1\}} \operatorname{Pr}\left[C=c \mid Z^{\prime}=z^{\prime}\right] \log \frac{\operatorname{Pr}\left[C=c \mid Z^{\prime}=z^{\prime}\right]}{\operatorname{Pr}[C=c]} \\
& =\sum_{z^{\prime} \sim Z^{\prime}} \operatorname{Pr}\left[Z^{\prime}=z^{\prime}\right] f\left(\operatorname{Pr}\left[C=0 \mid Z^{\prime}=z^{\prime}\right]\right),
\end{aligned}
$$

where we have

$$
f(t)=t \log \frac{t}{\operatorname{Pr}[C=0]}+(1-t) \log \frac{1-t}{\operatorname{Pr}[C=1]}
$$

which is a convex function over $t \in[0,1]$. Next, we have

$$
\begin{aligned}
\Delta_{s} F(S) & =F(S \cup\{s\})-F(S) \\
& =\sum_{z \sim Z} \operatorname{Pr}[Z=z] f(\operatorname{Pr}[C=0 \mid Z=z])-\sum_{z^{\prime} \sim Z^{\prime}} \operatorname{Pr}\left[Z^{\prime}=z^{\prime}\right] f\left(\operatorname{Pr}\left[C=0 \mid Z^{\prime}=z^{\prime}\right]\right) \\
& =\operatorname{Pr}\left[Z=s^{\prime}\right] f\left(\operatorname{Pr}\left[C=0 \mid Z=s^{\prime}\right]\right)+\operatorname{Pr}[Z=s] f(\operatorname{Pr}[C=0 \mid Z=s])-\operatorname{Pr}\left[Z^{\prime}=s^{\prime}\right] f\left(\operatorname{Pr}\left[C=0 \mid Z^{\prime}=s^{\prime}\right]\right)
\end{aligned}
$$

Notice that $Z^{\prime}=s^{\prime}$ implies that $Z=s$ or $Z=s^{\prime}$. Hence we have $\operatorname{Pr}\left[Z^{\prime}=s^{\prime}\right]=\operatorname{Pr}\left[Z=s^{\prime}\right]+\operatorname{Pr}[Z=s]$ and

$$
\operatorname{Pr}\left[C=0 \mid Z^{\prime}=s^{\prime}\right]=\frac{\operatorname{Pr}\left[Z=s^{\prime}\right] \operatorname{Pr}\left[C=0 \mid Z=s^{\prime}\right]+\operatorname{Pr}[Z=s] \operatorname{Pr}[C=0 \mid Z=s]}{\operatorname{Pr}\left[Z=s^{\prime}\right]+\operatorname{Pr}[Z=s]}
$$

Now, if we set $p=\operatorname{Pr}\left[Z=s^{\prime}\right], q=\operatorname{Pr}[Z=s], \alpha=\operatorname{Pr}\left[C=0 \mid Z=s^{\prime}\right]$ and $\beta=\operatorname{Pr}[C=0 \mid Z=s]$, and combine the previous two inline equalities, we have

$$
\Delta_{s} F(S)=p f(\alpha)+q f(\beta)-(p+q) f\left(\frac{p \alpha+q \beta}{p+q}\right)
$$

Some Basic Tools: In Lemmas 2 and 5 we show two basic properties of convex functions that later become handy in our proof. We use the following property of convex functions to prove Lemma 2. For any convex function f and any three numbers $a<b<c$ we have

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(b)}{c-b} \tag{12}
\end{equation*}
$$

Note that this also implies

$$
\begin{array}{rlr}
\frac{f(c)-f(a)}{c-a} & =\frac{1}{c-a}(f(c)-f(b)+f(b)-f(a)) \\
& \leq \frac{1}{c-a}\left(f(c)-f(b)+\frac{b-a}{c-b}(f(c)-f(b))\right) \\
& =\frac{1}{c-a}\left(\frac{c-b+b-a}{c-b}(f(c)-f(b))\right) \\
& =\frac{f(c)-f(b)}{c-b} & \text { By Inequality } 12 \\
& \tag{13}
\end{array}
$$

Similarly we have

$$
\begin{array}{rlr}
\frac{f(c)-f(a)}{c-a} & =\frac{1}{c-a}(f(c)-f(b)+f(b)-f(a)) \\
& \geq \frac{1}{c-a}\left(\frac{c-b}{b-a}(f(b)-f(a))+f(b)-f(a)\right) \\
& \geq \frac{1}{c-a}\left(\frac{c-b+b-a}{b-a}(f(b)-f(a))\right) \\
& =\frac{f(b)-f(a)}{b-a} & \text { By Inequality } 12 \tag{14}
\end{array}
$$

Proof of Lemma 2:

Proof. First, we prove

$$
\begin{equation*}
\frac{f(p \alpha+q \gamma)-f(p \alpha+q \beta)}{q \gamma-q \beta} \leq \frac{f(\gamma)-f(\beta)}{\gamma-\beta} \tag{15}
\end{equation*}
$$

Recall that $\alpha \leq \beta \leq \gamma$, and $p+q=1$. Hence we have $p \alpha+q \beta \leq p \alpha+q \gamma, \beta \leq \gamma$. We prove Inequality 15 in two cases of $p \alpha+q \gamma \leq \beta$, and $\beta<p \alpha+q \gamma$.
Case 1. In this case we have $p \alpha+q \beta \leq p \alpha+q \gamma \leq \beta \leq \gamma$. we have

$$
\begin{aligned}
\frac{f(p \alpha+q \gamma)-f(p \alpha+q \beta)}{q \gamma-q \beta} & =\frac{f(p \alpha+q \gamma)-f(p \alpha+q \beta)}{(p \alpha+q \gamma)-(p \alpha+q \beta)} & & \\
& \leq \frac{f(\beta)-f(p \alpha+q \gamma)}{\beta-(p \alpha+q \gamma)} & & \text { By Inequality } 12 \\
& \leq \frac{f(\gamma)-f(\beta)}{\gamma-\beta} & & \text { By Inequality } 12
\end{aligned}
$$

Case 2. In this case we have $p \alpha+q \beta \leq \beta \leq p \alpha+q \gamma \leq \gamma$. we have

$$
\begin{array}{rlr}
\frac{f(p \alpha+q \gamma)-f(p \alpha+q \beta)}{q \gamma-q \beta} & =\frac{f(p \alpha+q \gamma)-f(p \alpha+q \beta)}{(p \alpha+q \gamma)-(p \alpha+q \beta)} & \\
& \leq \frac{f(p \alpha+q \gamma)-f(\beta)}{(p \alpha+q \gamma)-\beta} & \\
& \text { By Inequality } 13 \\
& \leq \frac{f(\gamma)-f(\beta)}{\gamma-\beta} &
\end{array} \text { By Inequality } 14 .
$$

Next we use Inequality 15 to prove the lemma. By multiplying both sides of Inequality 15 by $q(\gamma-\beta)$ we have

$$
f(p \alpha+q \gamma)-f(p \alpha+q \beta) \leq q f(\gamma)-q f(\beta)
$$

By rearranging the terms and adding $p f(\alpha)$ to both sides we have

$$
(p f(\alpha)+q f(\beta))-f(p \alpha+q \beta) \leq(p f(\alpha)+q f(\gamma))-f(p \alpha+q \gamma)
$$

as desired.

Proof of Lemma 5:

Proof. We have

$$
\begin{aligned}
\frac{p+q}{p+q^{\prime}} f\left(\frac{p \alpha+q \beta}{p+q}\right)+\frac{q^{\prime}-q}{p+q^{\prime}} f(\beta) & \geq f\left(\frac{p+q}{p+q^{\prime}} \frac{p \alpha+q \beta}{p+q}+\frac{q^{\prime}-q}{p+q^{\prime}} \beta\right) \quad \quad \text { By convexity } \\
& =f\left(\frac{p \alpha+q \beta}{p+q^{\prime}}+\frac{q^{\prime}-q}{p+q^{\prime}} \beta\right) \\
& =f\left(\frac{p \alpha+q^{\prime} \beta}{p+q^{\prime}}\right)
\end{aligned}
$$

By multiplying both sides by $p+q^{\prime}$ we have

$$
(p+q) f\left(\frac{p \alpha+q \beta}{p+q}\right)+q^{\prime} f(\beta)-q f(\beta) \geq\left(p+q^{\prime}\right) f\left(\frac{p \alpha+q^{\prime} \beta}{p+q^{\prime}}\right)
$$

By rearranging the terms and adding $p f(\alpha)$ to both sides we have

$$
p f(\alpha)+q f(\beta)-(p+q) f\left(\frac{p \alpha+q \beta}{p+q}\right) \leq p f(\alpha)+q^{\prime} f(\beta)-\left(p+q^{\prime}\right) f\left(\frac{p \alpha+q^{\prime} \beta}{p+q^{\prime}}\right)
$$

as desired.

A.2. Empirical Evaluation Details

We implement the neural network using TensorFlow and train it using the AdamOptimizer (Abadi et al., 2016; Kingma \& $\mathrm{Ba}, 2014)$. The following set of neural network hyperparameters are tuned by evaluating 2000 different configurations on the hold-out set as suggested by a Gaussian Process black-box optimization routine.

hyperparameter	search range
hidden layer size	$[100,1280]$
num hidden layers	$[1,5]$
learning rate	$[1 \mathrm{e}-6,0.01]$
gradient clip norm	$[1.0,1000.0]$
L_{2}-regularization	$[0,1 \mathrm{e}-4]$

