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Abstract
We propose a general framework for denoising
high-dimensional measurements which requires
no prior on the signal, no estimate of the noise,
and no clean training data. The only assumption
is that the noise exhibits statistical independence
across different dimensions of the measurement,
while the true signal exhibits some correlation.
For a broad class of functions (“J -invariant”), it
is then possible to estimate the performance of
a denoiser from noisy data alone. This allows
us to calibrate J -invariant versions of any pa-
rameterised denoising algorithm, from the single
hyperparameter of a median filter to the millions
of weights of a deep neural network. We demon-
strate this on natural image and microscopy data,
where we exploit noise independence between
pixels, and on single-cell gene expression data,
where we exploit independence between detec-
tions of individual molecules. This framework
generalizes recent work on training neural nets
from noisy images and on cross-validation for
matrix factorization.

1. Introduction
We would often like to reconstruct a signal from high-
dimensional measurements that are corrupted, under-
sampled, or otherwise noisy. Devices like high-resolution
cameras, electron microscopes, and DNA sequencers are
capable of producing measurements in the thousands to mil-
lions of feature dimensions. But when these devices are
pushed to their limits, taking videos with ultra-fast frame
rates at very low-illumination, probing individual molecules
with electron microscopes, or sequencing tens of thousands
of cells simultaneously, each individual feature can become
quite noisy. Nevertheless, the objects being studied are of-
ten very structured and the values of different features are
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highly correlated. Speaking loosely, if the “latent dimen-
sion” of the space of objects under study is much lower than
the dimension of the measurement, it may be possible to
implicitly learn that structure, denoise the measurements,
and recover the signal without any prior knowledge of the
signal or the noise.

Traditional denoising methods each exploit a property of
the noise, such as Gaussianity, or structure in the signal,
such as spatiotemporal smoothness, self-similarity, or hav-
ing low-rank. The performance of these methods is limited
by the accuracy of their assumptions. For example, if the
data are genuinely not low rank, then a low rank model
will fit it poorly. This requires prior knowledge of the sig-
nal structure, which limits application to new domains and
modalities. These methods also require calibration, as hy-
perparameters such as the degree of smoothness, the scale of
self-similarity, or the rank of a matrix have dramatic impacts
on performance.

In contrast, a data-driven prior, such as pairs (xi, yi) of
noisy and clean measurements of the same target, can be
used to set up a supervised learning problem. A neural
net trained to predict yi from xi may be used to denoise
new noisy measurements (Weigert et al., 2018). As long
as the new data are drawn from the same distribution, one
can expect performance similar to that observed during
training. Lehtinen et al. demonstrated that clean targets are
unnecessary (2018). A neural net trained on pairs (xi, x′i)
of independent noisy measurements of the same target will,
under certain distributional assumptions, learn to predict the
clean signal. These supervised approaches extend to image
denoising the success of convolutional neural nets, which
currently give state-of-the-art performance for a vast range
of image-to-image tasks. Both of these methods require an
experimental setup in which each target may be measured
multiple times, which can be difficult in practice.

In this paper, we propose a framework for blind denoising
based on self-supervision. We use groups of features whose
noise is independent conditional on the true signal to predict
one another. This allows us to learn denoising functions
from single noisy measurements of each object, with per-
formance close to that of supervised methods. The same
approach can also be used to calibrate traditional image de-
noising methods such as median filters and non-local means,
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Figure 1. (a) The box represents the dimensions of the measurement x. J is a subset of the dimensions, and f is a J-invariant function: it
has the property that the value of f(x) restricted to dimensions in J , f(x)J , does not depend on the value of x restricted to J , xJ . This
enables self-supervision when the noise in the data is conditionally independent between sets of dimensions. Here are 3 examples of
dimension partitioning: (b) two independent image acquisitions, (c) independent pixels of a single image, (d) independently detected RNA
molecules from a single cell.

and, using a different independence structure, denoise highly
under-sampled single-cell gene expression data.

We model the signal y and its noisy measurement x as a pair
of random variables in Rm. If J ⊂ {1, . . . ,m} is a subset
of the dimensions, we write xJ for x restricted to J .

Definition. Let J be a partition of the dimensions
{1, . . . ,m} and let J ∈ J . A function f : Rm → Rm
is J-invariant if f(x)J does not depend on the value of xJ .
It is J -invariant if it is J-invariant for each J ∈ J .

We propose minimizing the self-supervised loss

L(f) = E ‖f(x)− x‖2
, (1)

overJ -invariant functions f . Since f has to use information
from outside of each subset of dimensions J to predict the
values inside of J , it cannot merely be the identity.

Proposition 1. Suppose x is an unbiased estimator of y, i.e.
E[x|y] = y, and the noise in each subset J ∈ J is indepen-
dent from the noise in its complement Jc, conditional on y.
Let f be J -invariant. Then

E ‖f(x)− x‖2
= E ‖f(x)− y‖2

+ E ‖x− y‖2
. (2)

That is, the self-supervised loss is the sum of the ordinary
supervised loss and the variance of the noise. By minimizing
the self-supervised loss over a class ofJ -invariant functions,
one may find the optimal denoiser for a given dataset.

For example, if the signal is an image with independent,
mean-zero noise in each pixel, we may choose J =
{{1}, . . . , {m}} to be the singletons of each coordinate.
Then “donut” median filters, with a hole in the center, form
a class of J -invariant functions, and by comparing the value
of the self-supervised loss at different filter radii, we are
able to select the optimal radius for denoising the image at
hand (See §3).

The donut median filter has just one parameter and therefore
limited ability to adapt to the data. At the other extreme,

we may search over all J -invariant functions for the global
optimum:
Proposition 2. The J -invariant function f∗J minimizing (1)
satisfies

f∗J (x)J = E[yJ |xJc ]

for each subset J ∈ J .

That is, the optimal J -invariant predictor for the dimensions
of y in some J ∈ J is their expected value conditional on
observing the dimensions of x outside of J .

In §4, we use analytical examples to illustrate how the opti-
mal J -invariant denoising function approaches the optimal
general denoising function as the amount of correlation
between features in the data increases.

In practice, we may attempt to approximate the optimal
denoiser by searching over a very large class of functions,
such as deep neural networks with millions of parameters. In
§5, we show that a deep convolutional network, modified to
become J -invariant using a masking procedure, can achieve
state-of-the-art blind denoising performance on three diverse
datasets.

Sample code is available on GitHub1 and deferred proofs
are contained in the Supplement.

2. Related Work
Each approach to blind denoising relies on assumptions
about the structure of the signal and/or the noise. We re-
view the major categories of assumption below, and the
traditional and modern methods that utilize them. Most of
the methods below are described in terms of application to
image denoising, which has the richest literature, but some
have natural extensions to other spatiotemporal signals and
to generic measurements of vectors.

Smoothness: Natural images and other spatiotemporal sig-
nals are often assumed to vary smoothly (Buades et al.,

1https://github.com/czbiohub/noise2self

https://github.com/czbiohub/noise2self
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2005b). Local averaging, using a Gaussian, median, or
some other filter, is a simple way to smooth out a noisy
input. The degree of smoothing to use, e.g., the width of a
filter, is a hyperparameter often tuned by visual inspection.

Self-Similarity: Natural images are often self-similar, in
that each patch in an image is similar to many other patches
from the same image. The classic non-local means algo-
rithm replaces the center pixel of each patch with a weighted
average of central pixels from similar patches (Buades et al.,
2005a). The more robust BM3D algorithm makes stacks
of similar patches, and performs thresholding in frequency
space (Dabov et al., 2007). The hyperparameters of these
methods have a large effect on performance (Lebrun, 2012),
and on a new dataset with an unknown noise distribution it
is difficult to evaluate their effects in a principled way.

Convolutional neural nets can produce images with another
form of self-similarity, as linear combinations of the same
small filters are used to produce each output. The “deep
image prior” of (Ulyanov et al., 2017) exploits this by train-
ing a generative CNN to produce a single output image and
stopping training before the net fits the noise.

Generative: Given a differentiable, generative model of
the data, e.g. a neural net G trained using a generative
adversarial loss, data can be denoised through projection
onto the range of the net (Tripathi et al., 2018).

Gaussianity: Recent work (Zhussip et al., 2018; Metzler
et al., 2018) uses a loss based on Stein’s unbiased risk esti-
mator to train denoising neural nets in the special case that
noise is i.i.d. Gaussian.

Sparsity: Natural images are often close to sparse in e.g. a
wavelet or DCT basis (Chang et al., 2000). Compression
algorithms such as JPEG exploit this feature by thresholding
small transform coefficients (Pennebaker & Mitchell, 1992).
This is also a denoising strategy, but artifacts familiar from
poor compression (like the ringing around sharp edges)
may occur. Hyperparameters include the choice of basis
and the degree of thresholding. Other methods learn an
overcomplete dictionary from the data and seek sparsity in
that basis (Elad & Aharon, 2006; Papyan et al., 2017).

Compressibility: A generic approach to denoising is to
lossily compress and then decompress the data. The accu-
racy of this approach depends on the applicability of the
compression scheme used to the signal at hand and its ro-
bustness to the form of noise. It also depends on choosing
the degree of compression correctly: too much will lose
important features of the signal, too little will preserve all
of the noise. For the sparsity methods, this “knob” is the
degree of sparsity, while for low-rank matrix factorizations,
it is the rank of the matrix.

Autoencoder architectures for neural nets provide a gen-

eral framework for learnable compression. Each sample
is mapped to a low-dimensional representation—the value
of the neural net at the bottleneck layer— then back to the
original space (Gallinari et al., 1987; Vincent et al., 2010).
An autoencoder trained on noisy data may produce cleaner
data as its output. The degree of compression is determined
by the width of the bottleneck layer.

UNet architectures, in which skip connections are added to
a typical autoencoder architecture, can capture high-level
spatially coarse representations and also reproduce fine
detail; they can, in particular, learn the identity function
(Ronneberger et al., 2015). Trained directly on noisy data,
they will do no denoising. Trained with clean targets, they
can learn very accurate denoising functions (Weigert et al.,
2018).

Statistical Independence: Lehtinen et al. observed that a
UNet trained to predict one noisy measurement of a signal
from an independent noisy measurement of the same signal
will in fact learn to predict the true signal (Lehtinen et al.,
2018). We may reformulate the Noise2Noise procedure
in terms of J -invariant functions: if x1 = y + n1 and
x2 = y + n2 are the two measurements, we consider the
composite measurement x = (x1, x2) of a composite signal
(y, y) in R2m and set J = {J1, J2} = {{1, . . . ,m}, {m+
1, . . . , 2m}}. Then f∗J (x)J2 = E[y|x1].

An extension to video, in which one frame is used to com-
pute the pullback under optical flow of another, was ex-
plored in (Ehret et al., 2018).

In concurrent work, Krull et al. train a UNet to predict a col-
lection of held-out pixels of an image from a version of that
image with those pixels replaced (2018). A key difference
between their approach and our neural net examples in §5
is in that their replacement strategy is not quite J -invariant.
(With some probability a given pixel is replaced by itself.)
While their method lacks a theoretical guarantee against
fitting the noise, it performs well in practice, on natural and
microscopy images with synthetic and real noise.

Finally, we note that the “fully emphasized denoising au-
toencoders” in (Vincent et al., 2010) used the MSE between
an autoencoder evaluated on masked input data and the true
value of the masked pixels, but with the goal of learning
robust representations, not denoising.

3. Calibrating Traditional Models
Many denoising models have a hyperparameter controlling
the degree of the denoising—the size of a filter, the thresh-
old for sparsity, the number of principal components. If
ground truth data were available, the optimal parameter θ
for a family of denoisers fθ could be chosen by minimizing
‖fθ(x)− y‖2. Without ground truth, we may nevertheless
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Figure 2.Calibrating a median �lter without ground truth. Different median �lters may be obtained by varying the �lter's radius. Which is
optimal for a given image? The optimal parameter forJ -invariant functions such as the donut median can be read off (red arrows) from
the self-supervised loss.

compute the self-supervised losskf � (x) � xk2. For general
f � , it is unrelated to the ground truth loss, but iff � is J -
invariant, then it is equal to the ground truth loss plus the
noise variance (Eqn. 2), and will have the same minimizer.

In Figure 2, we compare both losses for the median �lter
gr , which replaces each pixel with the median over a disk
of radiusr surrounding it, and the “donut” median �lterf r ,
which replaces each pixel with the median over the same
diskexcluding the center, on an image with i.i.d. Gaussian
noise. ForJ = ff 1g; : : : ; f mgg the partition into single
pixels, the donut median isJ -invariant. For the donut me-
dian, the minimum of the self-supervised losskf r (x) � xk2

(solid blue) sits directly above the minimum of the ground
truth losskf r (x) � yk2 (dashed blue), and selects the op-
timal radiusr = 3 . The vertical displacement is equal to
the variance of the noise. In contrast, the self-supervised
losskgr (x) � xk2 (solid orange) is strictly increasing and
tells us nothing about the ground truth losskgr (x) � yk2

(dashed orange). Note that the median and donut median are
genuinely different functions with slightly different perfor-
mance, but while the former can only be tuned by inspecting
the output images, the latter can be tuned using a principled
loss.

More generally, letg� be any classical denoiser, and letJ be
any partition of the pixels such that neighboring pixels are
in different subsets. Lets(x) be the function replacing each
pixel with the average of its neighbors. Then the function
f � de�ned by

f � (x)J := g� (1J � s(x) + 1J c � x)J ; (3)

for eachJ 2 J , is aJ -invariant version ofg� . Indeed,
since the pixels ofx in J are replaced before applyingg� ,
the output cannot depend onxJ .

In Supp. Figure 1, we show the corresponding loss curves
for J -invariant versions of a wavelet �lter, where we tune
the threshold� , and NL-means, where we tune a cut-off
distanceh (Buades et al., 2005a; Chang et al., 2000; van der
Walt et al., 2014). The partitionJ used is a 4x4 grid. Note
that in all these examples, the functionf � is genuinely differ-
ent thang� , and, because the simple interpolation procedure
may itself be helpful, it sometimes performs better.

In Table 1, we compare all threeJ -invariant denoisers on a
single image. As expected, the denoiser with the best self-
supervised loss also has the best performance as measured
by Peak Signal to Noise Ratio (PSNR).


