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Abstract
We propose a general framework for denoising
high-dimensional measurements which requires
no prior on the signal, no estimate of the noise,
and no clean training data. The only assumption
is that the noise exhibits statistical independence
across different dimensions of the measurement,
while the true signal exhibits some correlation.
For a broad class of functions (“J -invariant”), it
is then possible to estimate the performance of
a denoiser from noisy data alone. This allows
us to calibrate J -invariant versions of any pa-
rameterised denoising algorithm, from the single
hyperparameter of a median filter to the millions
of weights of a deep neural network. We demon-
strate this on natural image and microscopy data,
where we exploit noise independence between
pixels, and on single-cell gene expression data,
where we exploit independence between detec-
tions of individual molecules. This framework
generalizes recent work on training neural nets
from noisy images and on cross-validation for
matrix factorization.

1. Introduction
We would often like to reconstruct a signal from high-
dimensional measurements that are corrupted, under-
sampled, or otherwise noisy. Devices like high-resolution
cameras, electron microscopes, and DNA sequencers are
capable of producing measurements in the thousands to mil-
lions of feature dimensions. But when these devices are
pushed to their limits, taking videos with ultra-fast frame
rates at very low-illumination, probing individual molecules
with electron microscopes, or sequencing tens of thousands
of cells simultaneously, each individual feature can become
quite noisy. Nevertheless, the objects being studied are of-
ten very structured and the values of different features are
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highly correlated. Speaking loosely, if the “latent dimen-
sion” of the space of objects under study is much lower than
the dimension of the measurement, it may be possible to
implicitly learn that structure, denoise the measurements,
and recover the signal without any prior knowledge of the
signal or the noise.

Traditional denoising methods each exploit a property of
the noise, such as Gaussianity, or structure in the signal,
such as spatiotemporal smoothness, self-similarity, or hav-
ing low-rank. The performance of these methods is limited
by the accuracy of their assumptions. For example, if the
data are genuinely not low rank, then a low rank model
will fit it poorly. This requires prior knowledge of the sig-
nal structure, which limits application to new domains and
modalities. These methods also require calibration, as hy-
perparameters such as the degree of smoothness, the scale of
self-similarity, or the rank of a matrix have dramatic impacts
on performance.

In contrast, a data-driven prior, such as pairs (xi, yi) of
noisy and clean measurements of the same target, can be
used to set up a supervised learning problem. A neural
net trained to predict yi from xi may be used to denoise
new noisy measurements (Weigert et al., 2018). As long
as the new data are drawn from the same distribution, one
can expect performance similar to that observed during
training. Lehtinen et al. demonstrated that clean targets are
unnecessary (2018). A neural net trained on pairs (xi, x′i)
of independent noisy measurements of the same target will,
under certain distributional assumptions, learn to predict the
clean signal. These supervised approaches extend to image
denoising the success of convolutional neural nets, which
currently give state-of-the-art performance for a vast range
of image-to-image tasks. Both of these methods require an
experimental setup in which each target may be measured
multiple times, which can be difficult in practice.

In this paper, we propose a framework for blind denoising
based on self-supervision. We use groups of features whose
noise is independent conditional on the true signal to predict
one another. This allows us to learn denoising functions
from single noisy measurements of each object, with per-
formance close to that of supervised methods. The same
approach can also be used to calibrate traditional image de-
noising methods such as median filters and non-local means,
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Figure 1. (a) The box represents the dimensions of the measurement x. J is a subset of the dimensions, and f is a J-invariant function: it
has the property that the value of f(x) restricted to dimensions in J , f(x)J , does not depend on the value of x restricted to J , xJ . This
enables self-supervision when the noise in the data is conditionally independent between sets of dimensions. Here are 3 examples of
dimension partitioning: (b) two independent image acquisitions, (c) independent pixels of a single image, (d) independently detected RNA
molecules from a single cell.

and, using a different independence structure, denoise highly
under-sampled single-cell gene expression data.

We model the signal y and its noisy measurement x as a pair
of random variables in Rm. If J ⊂ {1, . . . ,m} is a subset
of the dimensions, we write xJ for x restricted to J .

Definition. Let J be a partition of the dimensions
{1, . . . ,m} and let J ∈ J . A function f : Rm → Rm
is J-invariant if f(x)J does not depend on the value of xJ .
It is J -invariant if it is J-invariant for each J ∈ J .

We propose minimizing the self-supervised loss

L(f) = E ‖f(x)− x‖2 , (1)

overJ -invariant functions f . Since f has to use information
from outside of each subset of dimensions J to predict the
values inside of J , it cannot merely be the identity.

Proposition 1. Suppose x is an unbiased estimator of y, i.e.
E[x|y] = y, and the noise in each subset J ∈ J is indepen-
dent from the noise in its complement Jc, conditional on y.
Let f be J -invariant. Then

E ‖f(x)− x‖2 = E ‖f(x)− y‖2 + E ‖x− y‖2 . (2)

That is, the self-supervised loss is the sum of the ordinary
supervised loss and the variance of the noise. By minimizing
the self-supervised loss over a class ofJ -invariant functions,
one may find the optimal denoiser for a given dataset.

For example, if the signal is an image with independent,
mean-zero noise in each pixel, we may choose J =
{{1}, . . . , {m}} to be the singletons of each coordinate.
Then “donut” median filters, with a hole in the center, form
a class of J -invariant functions, and by comparing the value
of the self-supervised loss at different filter radii, we are
able to select the optimal radius for denoising the image at
hand (See §3).

The donut median filter has just one parameter and therefore
limited ability to adapt to the data. At the other extreme,

we may search over all J -invariant functions for the global
optimum:
Proposition 2. The J -invariant function f∗J minimizing (1)
satisfies

f∗J (x)J = E[yJ |xJc ]

for each subset J ∈ J .

That is, the optimal J -invariant predictor for the dimensions
of y in some J ∈ J is their expected value conditional on
observing the dimensions of x outside of J .

In §4, we use analytical examples to illustrate how the opti-
mal J -invariant denoising function approaches the optimal
general denoising function as the amount of correlation
between features in the data increases.

In practice, we may attempt to approximate the optimal
denoiser by searching over a very large class of functions,
such as deep neural networks with millions of parameters. In
§5, we show that a deep convolutional network, modified to
become J -invariant using a masking procedure, can achieve
state-of-the-art blind denoising performance on three diverse
datasets.

Sample code is available on GitHub1 and deferred proofs
are contained in the Supplement.

2. Related Work
Each approach to blind denoising relies on assumptions
about the structure of the signal and/or the noise. We re-
view the major categories of assumption below, and the
traditional and modern methods that utilize them. Most of
the methods below are described in terms of application to
image denoising, which has the richest literature, but some
have natural extensions to other spatiotemporal signals and
to generic measurements of vectors.

Smoothness: Natural images and other spatiotemporal sig-
nals are often assumed to vary smoothly (Buades et al.,

1https://github.com/czbiohub/noise2self

https://github.com/czbiohub/noise2self
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2005b). Local averaging, using a Gaussian, median, or
some other filter, is a simple way to smooth out a noisy
input. The degree of smoothing to use, e.g., the width of a
filter, is a hyperparameter often tuned by visual inspection.

Self-Similarity: Natural images are often self-similar, in
that each patch in an image is similar to many other patches
from the same image. The classic non-local means algo-
rithm replaces the center pixel of each patch with a weighted
average of central pixels from similar patches (Buades et al.,
2005a). The more robust BM3D algorithm makes stacks
of similar patches, and performs thresholding in frequency
space (Dabov et al., 2007). The hyperparameters of these
methods have a large effect on performance (Lebrun, 2012),
and on a new dataset with an unknown noise distribution it
is difficult to evaluate their effects in a principled way.

Convolutional neural nets can produce images with another
form of self-similarity, as linear combinations of the same
small filters are used to produce each output. The “deep
image prior” of (Ulyanov et al., 2017) exploits this by train-
ing a generative CNN to produce a single output image and
stopping training before the net fits the noise.

Generative: Given a differentiable, generative model of
the data, e.g. a neural net G trained using a generative
adversarial loss, data can be denoised through projection
onto the range of the net (Tripathi et al., 2018).

Gaussianity: Recent work (Zhussip et al., 2018; Metzler
et al., 2018) uses a loss based on Stein’s unbiased risk esti-
mator to train denoising neural nets in the special case that
noise is i.i.d. Gaussian.

Sparsity: Natural images are often close to sparse in e.g. a
wavelet or DCT basis (Chang et al., 2000). Compression
algorithms such as JPEG exploit this feature by thresholding
small transform coefficients (Pennebaker & Mitchell, 1992).
This is also a denoising strategy, but artifacts familiar from
poor compression (like the ringing around sharp edges)
may occur. Hyperparameters include the choice of basis
and the degree of thresholding. Other methods learn an
overcomplete dictionary from the data and seek sparsity in
that basis (Elad & Aharon, 2006; Papyan et al., 2017).

Compressibility: A generic approach to denoising is to
lossily compress and then decompress the data. The accu-
racy of this approach depends on the applicability of the
compression scheme used to the signal at hand and its ro-
bustness to the form of noise. It also depends on choosing
the degree of compression correctly: too much will lose
important features of the signal, too little will preserve all
of the noise. For the sparsity methods, this “knob” is the
degree of sparsity, while for low-rank matrix factorizations,
it is the rank of the matrix.

Autoencoder architectures for neural nets provide a gen-

eral framework for learnable compression. Each sample
is mapped to a low-dimensional representation—the value
of the neural net at the bottleneck layer— then back to the
original space (Gallinari et al., 1987; Vincent et al., 2010).
An autoencoder trained on noisy data may produce cleaner
data as its output. The degree of compression is determined
by the width of the bottleneck layer.

UNet architectures, in which skip connections are added to
a typical autoencoder architecture, can capture high-level
spatially coarse representations and also reproduce fine
detail; they can, in particular, learn the identity function
(Ronneberger et al., 2015). Trained directly on noisy data,
they will do no denoising. Trained with clean targets, they
can learn very accurate denoising functions (Weigert et al.,
2018).

Statistical Independence: Lehtinen et al. observed that a
UNet trained to predict one noisy measurement of a signal
from an independent noisy measurement of the same signal
will in fact learn to predict the true signal (Lehtinen et al.,
2018). We may reformulate the Noise2Noise procedure
in terms of J -invariant functions: if x1 = y + n1 and
x2 = y + n2 are the two measurements, we consider the
composite measurement x = (x1, x2) of a composite signal
(y, y) in R2m and set J = {J1, J2} = {{1, . . . ,m}, {m+
1, . . . , 2m}}. Then f∗J (x)J2 = E[y|x1].

An extension to video, in which one frame is used to com-
pute the pullback under optical flow of another, was ex-
plored in (Ehret et al., 2018).

In concurrent work, Krull et al. train a UNet to predict a col-
lection of held-out pixels of an image from a version of that
image with those pixels replaced (2018). A key difference
between their approach and our neural net examples in §5
is in that their replacement strategy is not quite J -invariant.
(With some probability a given pixel is replaced by itself.)
While their method lacks a theoretical guarantee against
fitting the noise, it performs well in practice, on natural and
microscopy images with synthetic and real noise.

Finally, we note that the “fully emphasized denoising au-
toencoders” in (Vincent et al., 2010) used the MSE between
an autoencoder evaluated on masked input data and the true
value of the masked pixels, but with the goal of learning
robust representations, not denoising.

3. Calibrating Traditional Models
Many denoising models have a hyperparameter controlling
the degree of the denoising—the size of a filter, the thresh-
old for sparsity, the number of principal components. If
ground truth data were available, the optimal parameter θ
for a family of denoisers fθ could be chosen by minimizing
‖fθ(x)− y‖2. Without ground truth, we may nevertheless
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Figure 2. Calibrating a median filter without ground truth. Different median filters may be obtained by varying the filter’s radius. Which is
optimal for a given image? The optimal parameter for J -invariant functions such as the donut median can be read off (red arrows) from
the self-supervised loss.

compute the self-supervised loss ‖fθ(x)− x‖2. For general
fθ, it is unrelated to the ground truth loss, but if fθ is J -
invariant, then it is equal to the ground truth loss plus the
noise variance (Eqn. 2), and will have the same minimizer.

In Figure 2, we compare both losses for the median filter
gr, which replaces each pixel with the median over a disk
of radius r surrounding it, and the “donut” median filter fr,
which replaces each pixel with the median over the same
disk excluding the center, on an image with i.i.d. Gaussian
noise. For J = {{1}, . . . , {m}} the partition into single
pixels, the donut median is J -invariant. For the donut me-
dian, the minimum of the self-supervised loss ‖fr(x)− x‖2
(solid blue) sits directly above the minimum of the ground
truth loss ‖fr(x)− y‖2 (dashed blue), and selects the op-
timal radius r = 3. The vertical displacement is equal to
the variance of the noise. In contrast, the self-supervised
loss ‖gr(x)− x‖2 (solid orange) is strictly increasing and
tells us nothing about the ground truth loss ‖gr(x)− y‖2
(dashed orange). Note that the median and donut median are
genuinely different functions with slightly different perfor-
mance, but while the former can only be tuned by inspecting
the output images, the latter can be tuned using a principled
loss.

More generally, let gθ be any classical denoiser, and let J be
any partition of the pixels such that neighboring pixels are
in different subsets. Let s(x) be the function replacing each
pixel with the average of its neighbors. Then the function
fθ defined by

fθ(x)J := gθ(1J · s(x) + 1Jc · x)J , (3)

for each J ∈ J , is a J -invariant version of gθ. Indeed,
since the pixels of x in J are replaced before applying gθ,
the output cannot depend on xJ .

In Supp. Figure 1, we show the corresponding loss curves
for J -invariant versions of a wavelet filter, where we tune
the threshold σ, and NL-means, where we tune a cut-off
distance h (Buades et al., 2005a; Chang et al., 2000; van der
Walt et al., 2014). The partition J used is a 4x4 grid. Note
that in all these examples, the function fθ is genuinely differ-
ent than gθ, and, because the simple interpolation procedure
may itself be helpful, it sometimes performs better.

In Table 1, we compare all three J -invariant denoisers on a
single image. As expected, the denoiser with the best self-
supervised loss also has the best performance as measured
by Peak Signal to Noise Ratio (PSNR).
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Table 1. Comparison of optimally tuned J -invariant versions of
classical denoising models. Performance is better than original
method at default parameter values, and can be further improved
(+) by adding an optimal amount of the noisy input to the J -
invariant output (§4.2).

METHOD LOSS PSNR
J-INVT J-INVT J-INVT+ DEFAULT

MEDIAN 0.0107 27.5 28.2 27.1
WAVELET 0.0113 26.0 26.9 24.6
NL-MEANS 0.0098 30.4 30.8 28.9

3.1. Single-Cell

In single-cell transcriptomic experiments, thousands of in-
dividual cells are isolated, lysed, and their mRNA are ex-
tracted, barcoded, and sequenced. Each mRNA molecule is
mapped to a gene, and that ∼20,000-dimensional vector of
counts is an approximation to the gene expression of that
cell. In modern, highly parallel experiments, only a few
thousand of the hundreds of thousands of mRNA molecules
present in a cell are successfully captured and sequenced
(Milo et al., 2010). Thus the expression vectors are very un-
dersampled, and genes expressed at low levels will appear
as zeros. This makes simple relationships among genes,
such as co-expression or transitions during development,
difficult to see.

If we think of the measurement as a set of molecules cap-
tured from a given cell, then we may partition the molecules
at random into two sets J1 and J2. Summing (and normaliz-
ing) the gene counts in each set produces expression vectors
xJ1 and xJ2 which are independent conditional on the true
mRNA content y. We may now attempt to denoise x by
training a model to predict xJ2 from xJ1 and vice versa.

We demonstrate this on a dataset of 2730 bone marrow
cells from Paul et al. using principal component regression
(Paul et al., 2015), where we use the self-supervised loss
to find an optimal number of principal components. The
data contain a population of stem cells which differentiate
either into erythroid or myeloid lineages. The expression
of genes preferentially expressed in each of these cell types
is shown in Figure 3 for both the (normalized) noisy data
and data denoised with too many, too few, and an optimal
number of principal components. In the raw data, it is
difficult to discern any population structure. When the data
is under-corrected, the stem cell marker Ifitm1 is still not
visible. When it is over-corrected, the stem population
appears to express substantial amounts of Klf1 and Mpo. In
the optimally corrected version, Ifitm1 expression coincides
with low expression of the other markers, identifying the
stem population, and its transition to the two more mature
states is easy to see.
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Figure 3. Self-supervised loss calibrates a linear denoiser for single
cell data. (a) Raw expression of three genes: a myeloid cell marker
(Mpo), an erythroid cell marker (Klf1), and a stem cell marker
(Ifitm1). Each point corresponds to a cell. (e) Self-supervised
loss for principal component regression. In (d) we show the the
denoised data for the optimal number of principal components (17,
red arrow). In (c) we show the result of using too few compo-
nents and in (b) that of using too many. X-axes show square-root
normalised counts.

3.2. PCA

Cross-validation for choosing the rank of a PCA requires
some care, since adding more principal components will
always produce a better fit, even on held-out samples (Bro
et al., 2008). Owen and Perry recommend splitting the
feature dimensions into two sets J1 and J2 as well as
splitting the samples into train and validation sets (Owen
& Perry, 2009). For a given k, they fit a rank k princi-
pal component regression fk : Xtrain,J1 7→ Xtrain,J2 and
evaluate its predictions on the validation set, computing
‖fk(Xvalid,J1)−Xvalid,J2‖

2. They repeat this, permuting
train and validation sets and J1 and J2. Simulations show
that if X is actually a sum of a low-rank matrix plus Gaus-
sian noise, then the k minimizing the total validation loss
is often the optimal choice (Owen & Perry, 2009; Owen
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& Wang, 2016). This calculation corresponds to using the
self-supervised loss to train and cross-validate a {J1, J2}-
invariant principal component regression.

4. Theory
In an ideal situation for signal reconstruction, we have a
prior p(y) for the signal and a probabilistic model of the
noisy measurement process p(x|y). After observing some
measurement x, the posterior distribution for y is given by
Bayes’ rule:

p(y|x) = p(x|y)p(y)∫
p(x|y)p(y)dy

.

In practice, one seeks some function f(x) approximating a
relevant statistic of y|x, such as its mean or median. The
mean is provided by the function minimizing the loss:

Ex ‖f(x)− y‖2

(The L1 norm would produce the median) (Murphy, 2012).

Fix a partition J of the dimensions {1, . . . , n} of x and
suppose that for each J ∈ J , we have

p(x|y) = p(xJ |y)p(xJc |y),

i.e., xJ and xJc are independent conditional on y. We
consider the loss

Ex ‖f(x)− x‖2 = Ex,y ‖f(x)− y‖2 + ‖x− y‖2

− 2〈f(x)− y, x− y〉.

If f is J -invariant, then for each j the random variables
f(x)j |y and xj |y are independent. The third term reduces to∑
j Ey(Ex|y[f(x)j − yj ])(Ex|y[xj − yj ]), which vanishes

when E[x|y] = y. This proves Prop. 1.

Any J -invariant function can be written as a collection of
ordinary functions fJ : R|Jc| → R|J|, where we separate
the output dimensions of f based on which input dimensions
they depend on. Then

L(f) =
∑
J∈J

E ‖fJ(xJc)− xJ‖2 .

This is minimized at

f∗J (xJc) = E[xJ |xJc ] = E[yJ |xJc ].

We bundle these functions into f∗J , proving Prop. 2.

4.1. How good is the optimum?

How much information do we lose by giving up xJ when
trying to predict yJ? Roughly speaking, the more the fea-
tures in J are correlated with those outside of it, the closer
f∗J (x) will be to E[y|x] and the better both will estimate y.
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Figure 4. The optimal J -invariant predictor converges to the opti-
mal predictor. Example images for Gaussian processes of different
length scales. The gap in image quality between the two predictors
tends to zero as the length scale increases.

Figure 4 illustrates this phenomenon for the example of
Gaussian Processes, a computationally tractable model of
signals with correlated features. We consider a process on
a 33 × 33 toroidal grid. The value of y at each node is
standard normal and the correlation between the values at
p and q depends on the distance between them: Kp,q =

exp(−‖p− q‖2 /2`2), where ` is the length scale. The
noisy measurement x = y + n, where n is white Gaussian
noise with standard deviation 0.5.

While
E
∥∥y − f∗J (x)∥∥2 ≥ E

∥∥y − E[y|x]
∥∥2

for all `, the gap decreases quickly as the length scale in-
creases.

The Gaussian process is more than a convenient example; it
actually represents a worst case for the recovery error as a
function of correlation.

Proposition 3. Let x, y be random variables and let xG and
yG be Gaussian random variables with the same covariance
matrix. Let f∗J and f∗,GJ be the corresponding optimal J -
invariant predictors. Then

E
∥∥y − f∗J (x)∥∥2 ≤ E

∥∥y − f∗,GJ (x)
∥∥2.

Proof. See Supplement.

Gaussian processes represent a kind of local texture with no
higher structure, and the functions f∗,GJ turn out to be linear
(Murphy, 2012).
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Figure 5. For any dataset, the error of the optimal predictor (blue) is lower than that for a Gaussian Process (red) with the same covariance
matrix. We show this for a dataset of noisy digits: the quality of the denoising is visibly better for the Alphabet than the Gaussian Process
(samples at σ = 0.8).

At the other extreme is data drawn from finite collec-
tion of templates, like symbols in an alphabet. If the
alphabet consists of {a1, . . . , ar} ∈ Rm and the noise
is i.i.d. mean-zero Gaussian with variance σ2, then the
optimal J-invariant prediction independent is a weighted
sum of the letters from the alphabet. The weights wi =
exp(−‖(ai − x) · 1Jc‖2 /2σ2) are proportional to the pos-
terior probabilities of each letter. When the noise is low, the
output concentrates on a copy of the closest letter; when the
noise is high, the output averages many letters.

In Figure 5, we demonstrate this phenomenon for an alpha-
bet consisting of 30 16x16 handwritten digits drawn from
MNIST (LeCun et al., 1998). Note that almost exact re-
covery is possible at much higher levels of noise than the
Gaussian process with covariance matrix given by the em-
pirical covariance matrix of the alphabet. Any real-world
dataset will exhibit more structure than a Gaussian process,
so nonlinear functions can generate significantly better pre-
dictions.

4.2. Doing better

If f is J -invariant, then by definition f(x)j contains no
information from xj , and the right linear combination
λf(x)j + (1 − λ)xj will produce an estimate of yj with
lower variance than either. The optimal value of λ is given
by the variance of the noise divided by the value of the
self-supervised loss. The performance gain depends on the
quality of f : for example, if f improves the PSNR by 10 dB,
then mixing in the optimal amount of x will yield another
0.4 dB. (See Table 1 for an example and Supplement for
proofs.)

5. Deep Learning Denoisers
The self-supervised loss can be used to train a deep convolu-
tional neural net with just one noisy sample of each image in

a dataset. We show this on three datasets from different do-
mains (see Figure 6) with strong and varied heteroscedastic
synthetic noise applied independently to each pixel. For the
datasets Hànzı̀ and ImageNet we use a mixture of Poisson,
Gaussian, and Bernoulli noise. For the CellNet microscopy
dataset we simulate realistic sCMOS camera noise. We use
a random partition of 25 subsets for J , and we make the
neural net J -invariant as in Eq. 3, except we replace the
masked pixels with random values instead of local averages.
We train two neural net architectures, a UNet and a purely
convolutional net, DnCNN (Zhang et al., 2017). To acceler-
ate training, we only compute the net outputs and loss for
one partition J ∈ J per minibatch.

As shown in Table 2, both neural nets trained with self-
supervision (Noise2Self) achieve superior performance to
the classic unsupervised denoisers NLM and BM3D (at
default parameter values), and comparable performance to
the same neural net architectures trained with clean tar-
gets (Noise2Truth) and with independently noisy targets
(Noise2Noise).

The result of training is a neural net gθ, which, when
converted into a J -invariant function fθ, has low self-
supervised loss. We found that applying gθ directly to the
noisy input gave slightly better (0.5 dB) performance than
using fθ. The images in Figure 6 use gθ.

Remarkably, it is also possible to train a deep CNN to
denoise a single noisy image. The DnCNN architecture,
with 560,000 parameters, trained with self-supervision on
the noisy camera image from §3, with 260,000 pixels,
achieves a PSNR of 31.2.

6. Discussion
We have demonstrated a general framework for denoising
high-dimensional measurements whose noise exhibits some
conditional independence structure. We have shown how
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Figure 6. Performance of classic, supervised, and self-supervised denoising methods on natural images, Chinese characters, and fluores-
cence microscopy images. Blind denoisers are NLM, BM3D, and neural nets (UNet and DnCNN) trained with self-supervision (N2S).
We compare to neural nets supervised with a second noisy image (N2N) and with the ground truth (N2T).

to use a self-supervised loss to calibrate or train any J -
invariant class of denoising functions.

There remain many open questions about the optimal choice
of partition J for a given problem. The structure of J must
reflect the patterns of dependence in the signal and indepen-
dence in the noise. The relative sizes of each subset J ∈ J
and its complement creates a bias-variance tradeoff in the
loss, exchanging information used to make a prediction for
information about the quality of that prediction.

For example, the measurements of single-cell gene expres-
sion could be partitioned by molecule, gene, or even path-
way, reflecting different assumptions about the kind of
stochasticity occurring in transcription.

We hope this framework will find application to other do-
mains, such as sensor networks in agriculture or geology,
time series of whole brain neuronal activity, or telescope
observations of distant celestial bodies.

Table 2. Performance of different denoising methods by Peak Sig-
nal to Noise Ratio (PSNR) on held-out test data. Error bars for
CNNs from training five models.

METHOD HÀNZÌ IMAGENET CELLNET

RAW 6.5 9.4 15.1
NLM 8.4 15.7 29.0
BM3D 11.8 17.8 31.4
UNET (N2S) 13.8 ± 0.3 18.6 32.8 ± 0.2
DNCNN (N2S) 13.4 ± 0.3 18.7 33.7 ± 0.2

UNET (N2N) 13.3 ± 0.5 17.8 34.4 ± 0.1
DNCNN (N2N) 13.6 ± 0.2 18.8 34.4 ± 0.1

UNET (N2T) 13.1 ± 0.7 21.1 34.5 ± 0.1
DNCNN (N2T) 13.9 ± 0.6 22.0 34.4 ± 0.4



Noise2Self: Blind Denoising by Self-Supervision

Acknowledgements
Thank you to James Webber, Jeremy Freeman, David
Dynerman, Nicholas Sofroniew, Jaakko Lehtinen, Jenny
Folkesson, Anitha Krishnan, and Vedran Hadziosmanovic
for valuable conversations. Thank you to Jack Kamm for
discussions on Gaussian Processes and shrinkage estima-
tors. Thank you to Martin Weigert for his help running
BM3D. Thank you to the referees for suggesting valuable
clarifications. Thank you to the Chan Zuckerberg Biohub
for financial support.

References
Bro, R., Kjeldahl, K., Smilde, A. K., and Kiers, H. A. L.

Cross-validation of component models: A critical look at
current methods. Analytical and Bioanalytical Chemistry,
390(5):1241–1251, March 2008.

Buades, A., Coll, B., and Morel, J.-M. A non-local algo-
rithm for image denoising. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), volume 2, pp. 60–65. IEEE, 2005a.

Buades, A., Coll, B., and Morel, J.-M. A review of im-
age denoising algorithms, with a new one. Multiscale
Modeling & Simulation, 4(2):490–530, 2005b.

Chang, S. G., Yu, B., and Vetterli, M. Adaptive wavelet
thresholding for image denoising and compression. IEEE
transactions on image processing, 9(9):1532–1546, 2000.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Image
denoising by sparse 3-D transform-domain collaborative
filtering. IEEE Transactions on Image Processing, 16(8):
2080–2095, August 2007.

Ehret, T., Davy, A., Facciolo, G., Morel, J.-M., and Arias, P.
Model-blind video denoising via frame-to-frame training.
arXiv:1811.12766 [cs], November 2018.

Elad, M. and Aharon, M. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Transactions on Image Processing, 15(12):3736–3745,
December 2006.

Gallinari, P., Lecun, Y., Thiria, S., and Soulie, F. Memoires
associatives distribuees: Une comparaison (Distributed
associative memories: A comparison). Proceedings of
COGNITIVA 87, Paris, La Villette, May 1987, 1987.

Krull, A., Buchholz, T.-O., and Jug, F. Noise2Void
- learning denoising from single noisy images.
arXiv:1811.10980 [cs], November 2018.

Lebrun, M. An analysis and implementation of the BM3D
image denoising method. Image Processing On Line, 2:
175–213, August 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras,
T., Aittala, M., and Aila, T. Noise2Noise: Learning
image restoration without clean data. In International
Conference on Machine Learning, pp. 2971–2980, 2018.

Ljosa, V., Sokolnicki, K. L., and Carpenter, A. E. Annotated
high-throughput microscopy image sets for validation.
Nature Methods, 9(7):637–637, July 2012.

Metzler, C. A., Mousavi, A., Heckel, R., and Baraniuk,
R. G. Unsupervised learning with Stein’s unbiased risk
estimator. arXiv:1805.10531 [cs, stat], May 2018.

Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer,
M. BioNumbers – the database of key numbers in molecu-
lar and cell biology. Nucleic Acids Research, 38(suppl 1):
D750–D753, January 2010.

Murphy, K. P. Machine Learning: a Probabilistic Perspec-
tive. Adaptive computation and machine learning series.
MIT Press, Cambridge, MA, 2012. ISBN 978-0-262-
01802-9.

Owen, A. B. and Perry, P. O. Bi-cross-validation of the SVD
and the nonnegative matrix factorization. The Annals of
Applied Statistics, 3(2):564–594, June 2009.

Owen, A. B. and Wang, J. Bi-cross-validation for factor
analysis. Statistical Science, 31(1):119–139, 2016.

Papyan, V., Romano, Y., Sulam, J., and Elad, M. Con-
volutional dictionary learning via local processing.
arXiv:1705.03239 [cs], May 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS-W,
2017.

Paul, F., Arkin, Y., Giladi, A., Jaitin, D., Kenigsberg, E.,
Keren-Shaul, H., Winter, D., Lara-Astiaso, D., Gury, M.,
Weiner, A., David, E., Cohen, N., Lauridsen, F., Haas, S.,
Schlitzer, A., Mildner, A., Ginhoux, F., Jung, S., Trumpp,
A., Porse, B., Tanay, A., and Amit, I. Transcriptional
heterogeneity and lineage commitment in myeloid pro-
genitors. Cell, 163(7):1663–1677, December 2015.

Pennebaker, W. B. and Mitchell, J. L. JPEG still image data
compression standard. Van Nostrand Reinhold, New
York, 1992. ISBN 978-0-442-01272-4.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Con-
volutional networks for biomedical image segmentation.
arXiv:1505.04597 [cs], May 2015.



Noise2Self: Blind Denoising by Self-Supervision

Tripathi, S., Lipton, Z. C., and Nguyen, T. Q. Correction by
projection: Denoising images with generative adversarial
networks. arXiv:1803.04477 [cs], March 2018.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep image
prior. arXiv:1711.10925 [cs, stat], November 2017.

van der Walt, S., Schnberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
Yu, T., and contributors, t. s.-i. scikit-image: image pro-
cessing in Python. PeerJ, 2:e453, 2014.

van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P.,
Carr, A. J., Burdziak, C., Moon, K. R., Chaffer, C. L.,
Pattabiraman, D., Bierie, B., Mazutis, L., Wolf, G., Krish-
naswamy, S., and Peer, D. Recovering gene interactions
from single-cell data using data diffusion. Cell, 174(3):
716–729.e27, July 2018.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-
zagol, P.-A. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local de-
noising criterion. Journal of machine learning research,
11(Dec):3371–3408, 2010.

Weigert, M., Schmidt, U., Boothe, T., Mller, A., Dibrov,
A., Jain, A., Wilhelm, B., Schmidt, D., Broaddus, C.,
Culley, S., Rocha-Martins, M., Segovia-Miranda, F., Nor-
den, C., Henriques, R., Zerial, M., Solimena, M., Rink,
J., Tomancak, P., Royer, L., Jug, F., and Myers, E. W.
Content-Aware image restoration: Pushing the limits of
fluorescence microscopy. July 2018.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.
Beyond a Gaussian denoiser: Residual learning of deep
CNN for image denoising. IEEE Transactions on Image
Processing, 26(7):3142–3155, July 2017.

Zhussip, M., Soltanayev, S., and Chun, S. Y. Training
deep learning based image denoisers from undersampled
measurements without ground truth and without image
prior. arXiv:1806.00961 [cs], June 2018.


