
Switching Linear Dynamics for Variational Bayes Filtering

A. Lower Bound Derivation
For brevity we omit conditioning on control inputs u1:T .

log p(x1:T) = log

∫
z1:T

∫
s2:T

qφ(z1:T , s2:T | x1:T)

pθ(x1:T | z1:T)pθ(z1:T , s2:T)

qφ(z1:T , s2:T | x1:T)

≥
∫
z1:T

∫
s2:T

qφ(z1:T , s2:T | x1:T)

log
pθ(x1:T | z1:T)pθ(z1:T , s2:T)

qφ(z1:T , s2:T | x1:T)

=

∫
z1:T

∫
s2:T

qφ(z1:T , s2:T | x1:T) log pθ(xt | zt, st)

+

∫
z1:T

∫
s2:T

qφ(z1:T , s2:T | x1:T)

log
pθ(z1:T , s2:T)

qφ(z1:T , s2:T | x1:T)

=

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1 | x1:T)q(s2 | z1, x1:T) . . .

. . . q(sT | zT –1, sT –1, x1:T)q(zT | zT –1, sT , x1:T)

log pθ(x1 | zt, st) . . . pθ(xT | zT , sT)

−KL(q(z1:T , s2:T | x1:T) || pθ(z1:T , s2:T))

=Ez1∼q(z1|·)[p(x1 | z1)]

+

T∑
t=2

Est∼q(st|·)
[
Ezt∼q(zt|·)[p(xt | zt, st)]

]
−KL(q(z1:T , s2:T | x1:T) || p(z1:T , s2:T))

A.1. Factorization of the KL Divergence

The dependencies on data x1:T and u1:T as well as parame-
ters φ and θ are omitted in the following for convenience.

KL(q(z1, s2, . . . , sT , zT) || p(z1, s2, . . . , sT , zT))

(Factorization of the variational approximation)

=

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . .

. . . q(sT | zT –1, sT –1)q(zT | zT –1, sT)

log
q(z1)q(s2 | z1) . . . q(zT | zT –1, sT)

p(z1, s2, . . . , sT , zT)

(Factorization of the prior)

=

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . .

. . . q(sT | zT –1, sT –1)q(zT | zT –1, sT)

log
q(z1)q(s2 | z1) . . . q(zT | zT –1, sT)

p(z1)p(s2 | z1) . . . p(zT | zT –1, sT)

(Expanding the logarithm by the product rule)

=

∫
z1

q(z1) log
q(z1)

p(z1)

+

∫
z1

∫
s2

q(z1)q(s2 | z1) log
q(s2 | z1)

p(s2 | z1)

+

T∑
t=2

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . .

. . . q(zT | zT –1, sT) log
q(zt | zt–1, st)
p(zt | zt–1, st)

+

T∑
t=3

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . .

. . . q(zT | zT –1, sT) log
q(st | zt–1, st–1)

p(st | zt–1, st–1)

(Ignoring constants)

= KL(q(z1) || p(z1))

+ Ez1∼q(z1)[KL(q(s2 | z1) || p(s2 | z1))]

+

T−1∑
t=2

Ezt–1∼q(zt–1|·)

[
Est∼q(st|·)

[
KL(q(zt | zt–1, st) || p(zt | zt–1, st))

]]
+

T−1∑
t=3

Est–1∼q(st–1|·)

[
Ezt–1∼q(zt–1|·)

[
KL(q(st | zt–1, st–1) || p(st | zt–1, st–1))

]]
B. Comparison to Previous Models
We want to emphasize some subtle differences to previously
proposed architectures that make an empirical difference, in
particular for the case when st is chosen to be continuous.
In Watter et al. (2015) and Karl et al. (2017a), the latent
space is already used to draw transition matrices, however
they do not extract features such as walls or joint constraints.
There are a few key differences to our approach.

First, our latent switching variables st are only involved in
predicting the current observation xt through the transition
selection process. The likelihood model therefore does not
need to learn to ignore some input dimensions which are
only helpful for reconstructing future observations but not
the current one.

There is also a clearer restriction on how st and zt may
interact: st may now only influence zt by determining the
dynamics, while previously zt influenced both the choice
of transition function as well as acted inside the transition
itself. These two opposing roles lead to conflicting gradients
as to what should be improved. Furthermore, the learning
signal for st is rather weak so that scaling down the KL-
regularization was necessary to detect good features.

Switching Linear Dynamics for Variational Bayes Filtering

Table 2: Dimensionality of environments.

Dimensionality of Observation Space Control Input Space Ground Truth State Space

Reacher 7 2 9
Hopper 8 3 15
Multi Agent Maze 6 6 12
Image Ball in Box 32× 32 0 4
FitzHugh-Nagumo 2 1 2

Lastly, a locally linear transition may not be a good fit
for variables determining dynamics as such variables may
change very abruptly. Therefore, it might be beneficial to
have part of the latent space evolve according to locally
linear dynamics and other parts according to a general pur-
pose neural network transition. Overall, our structure of
choosing a transition gives a stronger bias towards learning
such features when compared to other methods.

C. Training
Overall, training the Concrete distribution has given us the
biggest challenge as it was very susceptible to various hy-
perparameters. We made use of the fact that we can use a
different temperature for the prior and approximate posterior
(Maddison et al., 2017) and we do independent hyperparam-
eter search over both. For us, the best values were 0.75 for
the posterior and 2 for the prior. Additionally, we employ
an exponential annealing scheme for the temperature hy-
perparameter of the Concrete distribution. This leads to a
more uniform combination of base matrices early in train-
ing which has two desirable effects. First, all matrices are
scaled to a similar magnitude, making initialization less crit-
ical. Second, the model initially tries to fit a globally linear
model, leading to a good starting state for optimization.
With regards to optimizing the KL-divergence, there is no
closed-form analytical solution for two Concrete distribu-
tions. We therefore had to resort to a Monte Carlo estimation
with n samples where we tried n between 1 and 1000. While
using a single samples was (numerically) unstable, using
a large number of samples also didn’t result in observable
performance improvements. We therefore settled on using
10 samples for all experiments.

In all experiments, we train everything end-to-end with
the ADAM optimizer (Kingma & Ba, 2015). We start with
learning rate of 5e−4 and use an exponential decay schedule
with rate λ ∈ {0.95, 0.97, 0.98} (see table 3) every 2000
iterations.

D. Experimental Setup
D.1. Data Set Generation

D.1.1. ROBOSCHOOL REACHER

To generate data, we follow a Uniform distribution U ∼
[−1, 1] as the exploration policy. Before we record data,
we take 20 warm-up steps in the environment to randomize
our starting state. We take the data as is without any other
preprocessing.

D.1.2. MULTI AGENT MAZE

Observations are normalized to be in [−1, 1]. Both position
and velocity is randomized for the starting state. We again
follow a Uniform distribution U ∼ [−1, 1] as the exploration
policy.

D.2. Network Architecture

For most networks, we use MLPs implemented as residual
nets (He et al., 2016) with ReLU activations.

Networks used for the reacher and maze experiments.

• qmeas(zt | x≥t, u≥t): MLP consisting of two residual
blocks with 256 neurons each. We only condition on
the current observation xt although we could condition
on the entire sequence. This decision was taken based
on empirical results.

• qtrans(zt | zt–1, ut–1, st): In the case of Concrete ran-
dom variables, we just combine the base matrices and
apply the transition dynamics to zt–1. For the Normal
case, the combination of matrices is preceded by a
linear combination with softmax activation. (see equa-
tion 15)

• qmeas(st | x≥t, u≥t): is implemented by a backward
LSTM with 256 hidden units. We reuse the preprocess-
ing of qmeas(zt | xt) and take the last hidden layer of
that network as the input to the LSTM.

• qtrans(st | st–1, zt–1, ut–1): MLP consisting of one
residual block with 256 neurons.

Switching Linear Dynamics for Variational Bayes Filtering

Table 3: Overview of hyperparameters.

Multi Agent Maze Reacher Image Ball in Box FitzHugh-Nagumo

episodes 50000 20000 5000 100
episode length 20 30 20 400
batch size 256 128 256 32
dimension of z 32 16 8 4
dimension of s 16 8 8 8
posterior temperature 0.75 0.75 0.67 0.67
prior temperature 2 2 2 2
temperature annealing steps 100 100 100 100
temperature annealing rate 0.97 0.97 0.98 0.95
β (KL-scaling of switching variables) 0.1 0.1 0.1 0.1

• qinitial(w | x1:T , u1:T): MLP consisting of two resid-
ual block with 256 neurons optionally followed by a
backward LSTM. We only condition on the first 3 or 4
observations for our experiments.

• qinitial(s2 | x1:T , u1:T): The first switching variable
in the sequence has no predecessor. We therefore re-
quire a replacement for qtrans(st | st–1, zt–1, ut–1) in
the first time step, which we achieve by independently
parameterizing another MLP.

• p(xt | zt): MLP consisting of two residual block with
256 neurons.

• p(zt | zt–1, ut–1, st): Shared parameters with
qtrans(zt | zt–1, ut–1, st).

• p(st | st–1, zt–1, ut–1): Shared parameters with
qtrans(st | st–1, zt–1, ut–1).

We use the same architecture for the image ball in a box
experiment, however we increase number of neurons of
qmeas(zt | x≥t, u≥t) to 1024.

For the FitzHugh-Nagumo model we downsize our model
and restrict all networks to a single hidden layer with 128
neurons.

E. On Scaling Issues of Switching Linear
Dynamical Systems

Let’s consider a simple representation of a ball in a rectan-
gular box where its state is represented by its position and
velocity. Given a small enough ∆t, we can approximate the
dynamics decently by just 3 systems: no interaction with the
wall, interaction with a vertical or horizontal wall (ignoring
the corner case of interacting with two walls at the same
time). Now consider the growth of required base systems
if we increase the number of balls in the box (even if these
balls cannot interact with each other). We would require a

system for all combinations of a single ball’s possible states:
32. This will grow exponentially with the number of balls
in the environment.

One way to alleviate this problem that requires only a linear
growth in base systems is to independently turn individual
systems on and off and let the resulting system be the sum
of all activated systems. A base system may then represent
solely the transition for a single ball being in specific state,
while the complete system is then a combination of N such
systems where N is the number of balls. Practically, this
can be achieved by replacing the softmax by a sigmoid
activation function or by replacing the categorical variable
s of dimension M by M Bernoulli variables indicating
whether a single system is active or not. We make use of
this parameterization in the multiple bouncing balls in a
maze environment.

Theoretically, a preferred approach would be to disentangle
multiple systems (like balls, joints) and apply transitions
only to their respective states. This, however, would require
a proper and unsupervised separation of (mostly) indepen-
dent components. We defer this to future work.

F. Further Results

Switching Linear Dynamics for Variational Bayes Filtering

Figure 8: First row: data, second row: reconstructions, third row: predictions. The first 4 steps are used to find a stable
starting state, predictions start with step 5 (after the red line). These results have been produced with Gaussian distributed
switching variables.

