
Invertible Residual Networks

Jens Behrmann * 1 2 Will Grathwohl * 2 Ricky T. Q. Chen 2 David Duvenaud 2 Jörn-Henrik Jacobsen * 2

Abstract
We show that standard ResNet architectures can
be made invertible, allowing the same model to
be used for classification, density estimation, and
generation. Typically, enforcing invertibility re-
quires partitioning dimensions or restricting net-
work architectures. In contrast, our approach only
requires adding a simple normalization step dur-
ing training, already available in standard frame-
works. Invertible ResNets define a generative
model which can be trained by maximum like-
lihood on unlabeled data. To compute likeli-
hoods, we introduce a tractable approximation to
the Jacobian log-determinant of a residual block.
Our empirical evaluation shows that invertible
ResNets perform competitively with both state-
of-the-art image classifiers and flow-based gener-
ative models, something that has not been previ-
ously achieved with a single architecture.

1. Introduction
One of the main appeals of neural network-based models is
that a single model architecture can often be used to solve
a variety of related tasks. However, many recent advances
are based on special-purpose solutions tailored to particu-
lar domains. State-of-the-art architectures in unsupervised
learning, for instance, are becoming increasingly domain-
specific (Van Den Oord et al., 2016b; Kingma & Dhariwal,
2018; Parmar et al., 2018; Karras et al., 2018; Van Den Oord
et al., 2016a). On the other hand, one of the most success-
ful feed-forward architectures for discriminative learning
are deep residual networks (He et al., 2016; Zagoruyko &
Komodakis, 2016), which differ considerably from their
generative counterparts. This divide makes it complicated
to choose or design a suitable architecture for a given task.
It also makes it hard for discriminative tasks to benefit from

*Equal contribution 1University of Bremen, Center for Indus-
trial Mathematics 2Vector Institute and University of Toronto. Cor-
respondence to: Jens Behrmann <jensb@uni-bremen.de>, Jörn-
Henrik Jacobsen <j.jacobsen@vectorinstitute.ai>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Output
Standard ResNet

Output
Invertible ResNet

InputInput

D
ep
th

Figure 1. Dynamics of a standard residual network (left) and in-
vertible residual network (right). Both networks map the interval
[−2, 2] to: 1) noisy x3-function at half depth and 2) noisy iden-
tity function at full depth. Invertible ResNets describe a bijective
continuous dynamics while regular ResNets result in crossing
and collapsing paths (circled in white) which correspond to non-
bijective continuous dynamics. Due to collapsing paths, standard
ResNets are not a valid density model.

unsupervised learning. We bridge this gap with a new class
of architectures that perform well in both domains.

To achieve this, we focus on reversible networks which have
been shown to produce competitive performance on discrim-
inative (Gomez et al., 2017; Jacobsen et al., 2018) and gen-
erative (Dinh et al., 2014; 2017; Kingma & Dhariwal, 2018)
tasks independently, albeit in the same model paradigm.
They typically rely on fixed dimension splitting heuristics,
but common splittings interleaved with non-volume con-
serving elements are constraining and their choice has a
significant impact on performance (Kingma & Dhariwal,
2018; Dinh et al., 2017). This makes building reversible
networks a difficult task. In this work we show that these
exotic designs, necessary for competitive density estimation
performance, can severely hurt discriminative performance.

To overcome this problem, we leverage the viewpoint of
ResNets as an Euler discretization of ODEs (Haber &
Ruthotto, 2018; Ruthotto & Haber, 2018; Lu et al., 2017;
Ciccone et al., 2018) and prove that invertible ResNets (i-
ResNets) can be constructed by simply changing the nor-
malization scheme of standard ResNets.

Invertible Residual Networks

As an intuition, Figure 1 visualizes the differences in the
dynamics learned by standard and invertible ResNets.

This approach allows unconstrained architectures for each
residual block, while only requiring a Lipschitz constant
smaller than one for each block. We demonstrate that this
restriction negligibly impacts performance when building
image classifiers - they perform on par with their non-
invertible counterparts on classifying MNIST, CIFAR10
and CIFAR100 images.

We then show how i-ResNets can be trained as maximum
likelihood generative models on unlabeled data. To com-
pute likelihoods, we introduce a tractable approximation
to the Jacobian determinant of a residual block. Like
FFJORD (Grathwohl et al., 2019), i-ResNet flows have
unconstrained (free-form) Jacobians, allowing them to learn
more expressive transformations than the triangular map-
pings used in other reversible models. Our empirical evalua-
tion shows that i-ResNets perform competitively with both
state-of-the-art image classifiers and flow-based generative
models, bringing general-purpose architectures one step
closer to reality.1

2. Enforcing Invertibility in ResNets
There is a remarkable similarity between ResNet architec-
tures and Euler’s method for ODE initial value problems:

xt+1 xt + g�t(xt)

xt+1 xt + hf�t(xt)

where xt 2 Rd represent activations or states, t represents
layer indices or time, h > 0 is a step size, and g�t is a
residual block. This connection has attracted research at the
intersection of deep learning and dynamical systems (Lu
et al., 2017; Haber & Ruthotto, 2018; Ruthotto & Haber,
2018; Chen et al., 2018). However, little attention has been
paid to the dynamics backwards in time

xt xt+1 � g�t
(xt)

xt xt+1 � hf�t
(xt)

which amounts to the implicit backward Euler discretization.
In particular, solving the dynamics backwards in time would
implement an inverse of the corresponding ResNet. The
following theorem states that a simple condition suffices to
make the dynamics solvable and thus renders the ResNet
invertible:

Theorem 1 (Sufficient condition for invertible ResNets).
Let F� : Rd ! Rd with F� = (F 1

� � : : : � FT�) denote a
ResNet with blocks F t� = I + g�t . Then, the ResNet F� is

1Official code release: https://github.com/
jhjacobsen/invertible-resnet

Algorithm 1. Inverse of i-ResNet layer via fixed-point iteration.
Input: output from residual layer y, contractive residual
block g, number of fixed-point iterations n
Init: x0 := y
for i = 0; : : : ; n do
xi+1 := y � g(xi)

end for

invertible if

Lip(g�t
) < 1; for all t = 1; : : : ; T;

where Lip(g�t) is the Lipschitz-constant of g�t .

Note that this condition is not necessary for invertibility.
Other approaches (Dinh et al., 2014; 2017; Jacobsen et al.,
2018; Chang et al., 2018; Kingma & Dhariwal, 2018) rely
on partitioning dimensions or autoregressive structures to
create analytical inverses.

While enforcing Lip(g) < 1 makes the ResNet invertible,
we have no analytic form of this inverse. However, we
can obtain it through a simple fixed-point iteration, see
Algorithm 1. Note, that the starting value for the fixed-point
iteration can be any vector, because the fixed-point is unique.
However, using the output y = x+g(x) as the initialization
x0 := y is a good starting point since y was obtained from
x only via a bounded perturbation of the identity. From the
Banach fixed-point theorem we have

kx� xnk2 �
Lip(g)n

1� Lip(g)
kx1 � x0k2: (1)

Thus, the convergence rate is exponential in the number of
iterations n and smaller Lipschitz constants will yield faster
convergence.

Additional to invertibility, a contractive residual block also
renders the residual layer bi-Lipschitz.

Lemma 2 (Lipschitz constants of Forward and Inverse). Let
F (x) = x+ g(x) with Lip(g) = L < 1 denote the residual
layer. Then, it holds

Lip(F) � 1 + L and Lip(F � 1) � 1

1� L
:

Hence by design, invertible ResNets offer stability guar-
antees for both their forward and inverse mapping. In the
following section, we discuss approaches to enforce the
Lipschitz condition.

2.1. Satisfying the Lipschitz Constraint

We implement residual blocks as a composition of contrac-
tive nonlinearities � (e.g. ReLU, ELU, tanh) and linear
mappings.

https://github.com/jhjacobsen/invertible-resnet
https://github.com/jhjacobsen/invertible-resnet

Invertible Residual Networks

For example, in our convolutional networksg =
W3� (W2� (W1)) , where Wi are convolutional layers.
Hence,

Lip(g) < 1; if kWi k2 < 1;

wherek � k2 denotes the spectral norm. Note, that regular-
izing the spectral norm of the Jacobian ofg (Sokoli et al.,
2017) only reduces it locally and does not guarantee the
above condition. Thus, we will enforcekWi k2 < 1 for each
layer.

A power-iteration on the parameter matrix as in Miyato et al.
(2018) approximates only a bound onkWi k2 instead of the
true spectral norm, if the �lter kernel is larger than1 � 1,
see Tsuzuku et al. (2018) for details on the bound. Hence,
unlike Miyato et al. (2018), we directly estimate the spectral
norm ofWi by performing power-iteration usingWi and
W T

i as proposed in Gouk et al. (2018). The power-iteration
yields an under-estimate~� i � k Wi k2. Using this estimate,
we normalize via

~Wi =

(
c Wi =~� i ; if c=~� i < 1
Wi ; else

; (2)

where the hyper-parameterc < 1 is a scaling coef�cient.
Since~� i is an under-estimate,kWi k2 � c is not guaran-
teed. However, after training Sedghi et al. (2019) offer an
approach to inspectkWi k2 exactly using the SVD on the
Fourier transformed parameter matrix, which will allow us
to showLip(g) < 1 holds in all cases.

3. Generative Modelling with i-ResNets

We can de�ne a simple generative model for datax 2 Rd

by �rst samplingz � pz (z) wherez 2 Rd and then de�n-
ing x = �(z) for some function� : Rd ! Rd. If � is
invertible and we de�neF = � � 1, then we can compute
the likelihood of anyx under this model using the change
of variables formula

ln px (x) = ln pz (z) + ln j det JF (x)j; (3)

whereJF (x) is the Jacobian ofF evaluated at x. Models
of this form are known as Normalizing Flows (Rezende &
Mohamed, 2015). They have recently become a popular
model for high-dimensional data due to the introduction of
powerful bijective function approximators whose Jacobian
log-determinant can be ef�cienty computed (Dinh et al.,
2014; 2017; Kingma & Dhariwal, 2018; Chen et al., 2018)
or approximated (Grathwohl et al., 2019).

Since i-ResNets are guaranteed to be invertible we can use
them to parameterizeF in Equation(3). Samples from this
model can be drawn by �rst samplingz � p(z) and then
computingx = F � 1(z) with Algorithm 1. In Figure 2 we

Data Samples Glow i-ResNet

Figure 2.Visual comparison of i-ResNet �ow and Glow. Details
of this experiment can be found in Appendix C.3.

show an example of using an i-ResNet to de�ne a genera-
tive model on some two-dimensional datasets compared to
Glow (Kingma & Dhariwal, 2018).

3.1. Scaling to Higher Dimensions

While the invertibility of i-ResNets allows us to use
them to de�ne a Normalizing Flow, we must compute
ln j det JF (x)j to evaluate the data-density under the model.
Computing this quantity has a time cost ofO(d3) in gen-
eral which makes na�̈vely scaling to high-dimensional data
impossible.

To bypass this constraint we present a tractable approxima-
tion to the log-determinant term in Equation(3), which will
scale to high dimensionsd. Previously, Ramesh & LeCun
(2018) introduced the application of log-determinant estima-
tion to non-invertible deep generative models without the
speci�c structure of i-ResNets.

First, we note that the Lipschitz constrained perturbations
x + g(x) of the identity yield positive determinants, hence

j det JF (x)j = det JF (x);

see Lemma 6 in Appendix A. Combining this result with
the matrix identityln det(A) = tr(ln(A)) for non-singular
A 2 Rd� d (see e.g. Withers & Nadarajah (2010)), we have

ln j det JF (x)j = tr(ln JF);

wheretr denotes the matrix trace andln the matrix loga-
rithm. Thus forz = F (x) = (I + g)(x), it is

ln px (x) = ln pz (z) + tr
�
ln

�
I + Jg(x)

��
:

The trace of the matrix logarithm can be expressed as a

Invertible Residual Networks

power series (Hall, 2015)

tr
�
ln

�
I + Jg(x)

��
=

1X

k=1

(� 1)k+1 tr
�
J k

g

�

k
; (4)

which converges ifkJgk2 < 1. Hence, due to the Lipschitz
constraint, we can compute the log-determinant via the
above power series with guaranteed convergence.

Before we present a stochastic approximation to the above
power series, we observe following properties of i-ResNets:
Due toLip(gt) < 1 for the residual block of each layert, we
can provide a lower and upper bound on its log-determinant
with

d
TX

t =1

ln(1 � Lip(gt)) � ln j det JF (x)j

d
TX

t =1

ln(1 + Lip(gt)) � ln j det JF (x)j;

for all x 2 R, see Lemma 7 in Appendix A. Thus, both the
number of layersT and the Lipschitz constant affect the
contraction and expansion bounds of i-ResNets and must be
taken into account when designing such an architecture.

3.2. Stochastic Approximation of log-determinant

Expressing the log-determinant with the power series in
(4) has three main computational drawbacks: 1) Comput-
ing tr(Jg) exactly costsO(d2), or approximately needsd
evaluations ofg as each entry of the diagonal of the Jaco-
bian requires the computation of a separate derivative ofg
(Grathwohl et al., 2019). 2) Matrix powersJ k

g are needed,
which requires the knowledge of the full Jacobian. 3) The
series is in�nite.

Fortunately, drawback 1) and 2) can be alleviated. First,
vector-Jacobian productsvT Jg can be computed at approxi-
mately the same costs as evaluatingg through reverse-mode
automatic differentiation. Second, a stochastic approxima-
tion of the matrix trace ofA 2 Rd� d

tr(A) = Ep(v)
�
vT Av

�
;

known as the Hutchinsons trace estimator, can be used
to estimatetr

�
J k

g

�
. The distributionp(v) needs to ful�ll

E[v] = 0 andCov(v) = I , see (Hutchinson, 1990; Avron &
Toledo, 2011).

While this allows for an unbiased estimate of the matrix
trace, to achieve bounded computational costs, the power
series(4) will be truncated at indexn to address drawback
3). Algorithm 2 summarizes the basic steps. The truncation
turns the unbiased estimator into a biased estimator, where
the bias depends on the truncation error. Fortunately, this
error can be bounded as we demonstrate below.

Algorithm 2.Forward pass of an invertible ResNets with Lipschitz
constraint and log-determinant approximation, SN denotes spectral
normalization based on (2).

Input: data pointx, networkF , residual blockg, number
of power series termsn
for Each residual blockdo

Lip constraint:Ŵj := SN(Wj ; x) for linear LayerWj .
Drawv from N (0; I)
wT := vT

ln det := 0
for k = 1 to n do

wT := wT Jg (vector-Jacobian product)
ln det := ln det +(� 1)k+1 wT v=k

end for
end for

To improve the stability of optimization when using this es-
timator we recommend using nonlinearities with continuous
derivatives such as ELU (Clevert et al., 2015) or softplus
instead of ReLU (See Appendix C.3).

3.3. Error of Power Series Truncation

We estimateln j det(I + Jg)j with the �nite power series

PS(Jg; n) :=
nX

k=1

(� 1)k+1 tr
�
J k

g

�

k
; (5)

where we have (with some abuse of notation)PS(Jg; 1) =
tr(ln(I + Jg)) . We are interested in bounding the trunca-
tion error of the log-determinant as a function of the data
dimensiond, the Lipschitz constantLip(g) and the number
of terms in the seriesn.

Theorem 3(Approximation error of Loss). Let g denote
the residual function andJg the Jacobian as before. Then,
the error of a truncated power series at termn is bounded
as

jPS(Jg; n) � ln det(I + Jg)j

� � d

ln(1 � Lip(g)) +
nX

k=1

Lip(g)k

k

!

:

While the result above gives an error bound for evaluation of
the loss, during training the error in the gradient of the loss
is of greater interest. Similarly, we can obtain the following
bound. The proofs are given in Appendix A.

Theorem 4(Convergence Rate of Gradient Approximation).
Let � 2 Rp denote the parameters of networkF , let g; Jg

be as before. Further, assume bounded inputs and a Lips-
chitz activation function with Lipschitz derivative. Then, we
obtain the convergence rate

kr �
�
ln det

�
I + Jg

�
) � PS

�
Jg; n

��
k1 = O(cn)

Invertible Residual Networks

wherec := Lip(g) andn the number of terms used in the
power series.

In practice, only 5-10 terms must be taken to obtain a bias
less than .001 bits per dimension, which is typically reported
up to .01 precision (See Appendix E).

4. Related Work

4.1. Reversible Architectures

We put our focus on invertible architectures with ef�cient
inverse computation, namely NICE (Dinh et al., 2014), i-
RevNet (Jacobsen et al., 2018), Real-NVP (Dinh et al.,
2017), Glow (Kingma & Dhariwal, 2018) and Neural
ODEs (Chen et al., 2018) and its stochastic density esti-
mator FFJORD (Grathwohl et al., 2019). A summary of the
comparison between different reversible networks is given
in Table 1.

The dimension-splitting approach used in NICE, i-RevNet,
Real-NVP and Glow allows for both analytic forward and
inverse mappings. However, this restriction required the
introduction of additional steps like invertible1 � 1 convo-
lutions in Glow (Kingma & Dhariwal, 2018). These1 � 1
convolutions need to be inverted numerically, making Glow
altogether not analytically invertible. In contrast, i-ResNet
can be viewed as an intermediate approach, where the for-
ward mapping is given analytically, while the inverse can be
computed via a �xed-point iteration.

Furthermore, an i-ResNet block has a Lipschitz bound both
for forward and inverse (Lemma 2), while other approaches
do not have this property by design. Hence, i-ResNets could
be an interesting avenue for stability-critical applications
like inverse problems (Ardizzone et al., 2019) or invariance-
based adversarial vulnerability (Jacobsen et al., 2019).

Neural ODEs (Chen et al., 2018) allow free-form dynamics
similar to i-ResNets, meaning that any architecture could be
used as long as the input and output dimensions are the same.
To obtain discrete forward and inverse dynamics, Neural
ODEs rely on adaptive ODE solvers, which allows for an
accuracy vs. speed trade-off. Yet, scalability to very high
input dimension such as high-resolution images remains
unclear.

4.2. Ordinary Differential Equations

Due to the similarity of ResNets and Euler discretizations,
there are many connections between the i-ResNet and ODEs,
which we review in this section.

Relationship of i-ResNets to Neural ODEs:The view of
deep networks as dynamics over time offers two fundamen-
tal learning approaches: 1) Direct learning of dynamics
using discrete architectures like ResNets (Haber & Ruthotto,

2018; Ruthotto & Haber, 2018; Lu et al., 2017; Ciccone
et al., 2018). 2) Indirect learning of dynamics via parametriz-
ing an ODE with a neural network as in Chen et al. (2018);
Grathwohl et al. (2019).

The dynamicsx(t) of a �xed ResNetF� are only de�ned at
time pointst i corresponding to each blockg� t i

. However, a
linear interpolation in time can be used to generate continu-
ous dynamics. See Figure 1, where the continuous dynam-
ics of a linearly interpolated invertible ResNet are shown
against those of a standard ResNet. Invertible ResNets are
bijective along the continuous path while regular ResNets
may result in crossing or merging paths. The indirect ap-
proach of learning an ODE, on the other hand, adapts the
discretization based on an ODE-solver, but does not have a
�xed computational budget compared to an i-ResNet.

Stability of ODEs: There are two main approaches to study
the stability of ODEs, 1) behavior fort ! 1 and 2) Lip-
schitz stability over �nite time intervals[0; T]. Based on
time-invariant dynamicsf (x(t)) , (Ciccone et al., 2018) con-
structed asymptotically stable ResNets using anti-symmetric
layers such thatRe(� (Jx)) < 0 (with Re(� (�)) denoting
the real-part of eigenvalues,� (�) spectral radius andJx g the
Jacobian at point x). By projecting weights based on the Ger-
shgorin circle theorem, they further ful�lled� (Jx g) < 1,
yielding asymptotically stable ResNets with shared weights
over layers. On the other hand, (Haber & Ruthotto, 2018;
Ruthotto & Haber, 2018) considered time-dependent dy-
namicsf (x(t); � (t)) corresponding to standard ResNets.
They induce stability by using anti-symmetric layers and
projections of the weights. Contrarily, initial value prob-
lems on[0; T] are well-posed for Lipschitz continuous dy-
namics (Ascher, 2008). Thus, the invertible ResNet with
Lip(f) < 1 can be understood as a stabilizer of an ODE
for step sizeh = 1 without a restriction to anti-symmetric
layers as in Ruthotto & Haber (2018); Haber & Ruthotto
(2018); Ciccone et al. (2018).

4.3. Spectral Sum Approximations

The approximation of spectral sums like the log-determinant
is of broad interest for many machine learning problems
such as Gaussian Process regression (Dong et al., 2017).
Among others, Taylor approximation (Boutsidis et al., 2017)
of the log-determinant similar to our approach or Cheby-
shev polynomials (Han et al., 2016) are used. In Boutsidis
et al. (2017), error bounds on the estimation via truncated
power series and stochastic trace estimation are given for
symmetric positive de�nite matrices. However,I + Jg is
not symmetric and thus, their analysis does not apply here.

Recently, unbiased estimates (Adams et al., 2018) and unbi-
ased gradient estimators (Han et al., 2018) were proposed for
symmetric positive de�nite matrices. Furthermore, Cheby-
shev polynomials have been used to approximate the log-

