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1. Further experimental details
1.1. Datasets

Fashion-MNIST: This dataset serves as a drop-in replace-
ment for the commonly used MNIST dataset (LeCun et al.,
1998), which is not representative of modern computer vi-
sion tasks. It consists of 28 × 28 grayscale images of
clothing and footwear items and has 10 output classes.
The training set contains 60,000 data samples while the
test/validation set has 10,000 samples.

Adult Census: It has over 40,000 samples containing in-
formation about adults from the 1994 US Census. The clas-
sification problem is to determine if the income for a partic-
ular individual is greater (class ‘0’) or less (class ‘1’) than
$50, 000 a year.

2. Implicit Boosting
While the loss is a function of a weight vector w, we can
use the chain rule to obtain the gradient of the loss with re-
spect to the weight update δ, i.e. ∇δL = αm∇wL. Then,
initializing δ to some appropriate δini, the malicious agent
can directly minimize with respect to δ. However, the base-
line attack using implicit boosting (Figure 1) is much less
successful than the explicit boosting baseline, with the ad-
versarial objective only being achieved in 4 of 10 iterations.
Further, it is computationally more expensive, taking an av-
erage of 2000 steps to converge at each time step, which is
about 4× longer than a benign agent. Since consistently
delayed updates from the malicious agent might lead to it
being dropped from the system in practice, we focused on
explicit boosting attacks throughout.

3. Further results
Our technical report (Bhagoji et al., 2018) contains ex-
tended results beyond those presented here. These are for
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Figure 1. Implicit boosting attack metrics

the CIFAR-10 dataset as well as with replicates for each
time step and with larger auxiliary datasets for the Fashion-
MNIST data.

3.1. Results on Adult Census dataset

Results for the 3 different attack strategies on the Adult
Census dataset (Figure 2) confirm the broad conclusions we
derived from the Fashion MNIST data. The baseline attack
is able to induce high confidence targeted misclassification
for a random test example but affects performance on the
benign objective, which drops from 84.8% in the benign
case to just around 80%. The alternating minimization at-
tack is able to ensure misclassification with a confidence of
around 0.7 while maintaining 84% accuracy on the benign
objective.

3.2. Multiple instance poisoning

For completeness, we provide results for the case with
r = 10, i.e. the case when the malicious agent wishes
to classify 10 different examples in specific target classes.
These results are given Figures 3a (targeted model poison-
ing) and 3b (Alternating minimization with stealth). While
targeted model poisoning is able to induce targeted misclas-
sification, it has an adverse impact on the global model’s
accuracy. This is countered by the alternating minimiza-
tion attack, which ensures that the global model converges
while still meeting the malicious objective.
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(a) Targeted model poisoning
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(b) Comparison of weight update distributions for
targeted model poisoning
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(c) Stealthy model poisoning with λ = 20 and ρ = 1e−4
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(d) Comparison of weight update distributions for
stealthy model poisoning
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(e) Alternating minimization with λ = 20 and ρ = 1e−4 and 10
epochs for the malicious agent
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(f) Comparison of weight update distributions for
alternating minimization

Figure 2. Attacks on a fully connected neural network on the Census dataset.
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(a) Targeted model poisoning.
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(b) Alternating minimization with 10 epochs for the malicious
agent and 10 steps for the stealth objective for every step of the
benign objective.

Figure 3. Attacks with multiple targets (r = 10) for a CNN on the Fashion MNIST data.

3.3. Randomized agent selection

When the number of agents increases to k = 100, the ma-
licious agent is not selected in every step. Further, the size
of |Dm| decreases, which makes the benign training step in
the alternating minimization attack more challenging. The
challenges posed in this setting are reflected in Figure 4a,
where although targeted model poisoning is able to intro-
duce a targeted backdoor, it is not present for every step
as there are steps where only benign agents provide up-
dates. Nevertheless, targeted model poisoning is effective
overall, with the malicious objective achieved along with
convergence of the global model at the end of training. The
alternating minimization attack strategy with stealth (Fig-
ure 4b) is also able to introduce the backdoor, as well as
increase the classification accuracy of the malicious model
on test data. However, the improvement in performance is
limited by the paucity of data for the malicious agent. It is
an open question if data augmentation could help improve
this accuracy.

3.4. Bypassing Byzantine-resilient aggregation
mechanisms

In Section 4, we presented the results of successful attacks
on two different Byzantine resilient aggregation mecha-
nisms: Krum (Blanchard et al., 2017) and coordinate-
wise median (coomed) (Yin et al., 2018). In this section,
we present the results for targeted model poisoning when
Krum is used (Figure 5a). The attack uses a boosting factor
of λ = 2 with k = 10. Since there is no need to overcome
the constant scaling factor αm, the attacks can use a much
smaller boosting factor λ to ensure the global model has
the targeted backdoor. With the targeted model poisoning
attack, the malicious agent’s update is the one chosen by
Krum for 34 of 40 time steps but this causes the validation
accuracy on the global model to be extremely low. Thus,
our attack causes Krum to converge to an ineffective model,
in contrast to its stated claims of being Byzantine-resilient.

However, our attack does not achieve its goal of ensuring
that the global model converges to a point with good per-
formance on the test set due to Krum selecting just a single
agent at each time step.

We also consider the effectiveness of the alternating mini-
mization attack strategy when coomed is used for aggre-
gation. While we have shown targeted model poisoning to
be effective even when coomed is used, Figure 5b demon-
strates that alternating minimization, which ensures that the
local model learned at the malicious agent also has high
validation accuracy, is not effective.

4. Visualization of weight update distributions
Figure 4 shows the evolution of weight update distributions
for the 4 different attack strategies on the CNN trained on
the Faishon MNIST dataset. Time slices of this evolution
were shown in the main text of the paper. The baseline and
concatenated training attacks lead to weight update distri-
butions that differ widely for benign and malicious agents.
The alternating minimization attack without distance con-
straints reduces this qualitative difference somewhat but the
closest weight update distributions are obtained with the al-
ternating minimization attack with distance constraints.

5. Interpretability for benign inputs
We provide additional interpretability results for global
models trained with and without the presence of a mali-
cious agent on benign data in Figures 7 and 8 respectively.
These show that the presence of the malicious agent using
targeted model poisoning does not significantly affect how
the global model makes decisions on benign data.
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(a) Targeted model poisoning with λ = 100.
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(b) Alternating minimization with λ = 100, 100 epochs for the
malicious agent and 10 steps for the stealth objective for every
step of the benign objective.

Figure 4. Attacks on federated learning in a setting with K =
100 and a single malicious agent for a CNN on the Fashion
MNIST data.
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(a) Targeted model poisoning with λ = 2 against Krum.
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(b) Alternating minimization attack with λ = 2 against
coomed.

Figure 5. Additional results for attacks on Byzantine-resilient
aggregation mechanisms.

arXiv preprint arXiv:1811.12470, 2018.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. Machine learning with adversaries: Byzantine
tolerant gradient descent. Advances in Neural Informa-
tion Processing Systems, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.
Byzantine-robust distributed learning: Towards optimal
statistical rates. arXiv preprint arXiv:1803.01498, 2018.



Analyzing Federated Learning through an Adversarial Lens

Weight values

0.20
0.10

0.00
0.100.15

Time

0
2

4
6

8
10

0

100000

200000

300000

400000

Benign

Weight values

0.04
0.02

0.00
0.02

0.04

Time

0
2

4
6

8
10

0
20000
40000
60000
80000
100000
120000
140000

Malicious

(a) Targeted model poisoning weight update distribution
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(b) Stealthy model poisoning weight update distribution
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(c) Alternating minimization (only loss stealth) weight update dis-
tribution
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(d) Alternating minimization (both loss and distance stealth) dis-
tance constraints weight update distribution

Figure 6. Weight update distribution evolution over time for all attacks on a CNN for the Fashion MNIST dataset.
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Figure 7. Decision visualizations for global model trained on Fashion MNIST data using only benign agents on benign data.
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Figure 8. Decision visualizations for global model trained on Fashion MNIST data using 9 benign agents and 1 malicious agent using
the baseline attack on benign data.
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