
Blended Conditional Gradients

A. Upper bound on simplicial curvature
Lemma A.1. Let f : P → R be an L-smooth function over
a polytope P with diameter D in some norm ‖·‖. Let S be
a set of vertices of P . Then the function fS from Section 2.1
is smooth with smoothness parameter at most

LfS ≤
LD2|S|

4
.

Proof. Let S = {v1, . . . , vk}. Recall that fS : ∆k → R
is defined on the probability simplex via fS(α) := f(Aα),
whereA is the linear operator defined viaAα :=

∑k
i=1 αivi.

We need to show

fS(α)−fS(β)−∇fS(β)(α−β) ≤ LD2|S|
8

·‖α−β‖22,

α, β ∈ ∆k. (15)

We start by expressing the left-hand side in terms of f and
applying the smoothness of f :

fS(α)− fS(β)−∇fS(β)(α− β)

= f(Aα)− f(Aβ)−∇f(Aβ) · (Aα−Aβ)

≤ L

2
· ‖Aα−Aβ‖2.

(16)

Let γ+ := max{α− β, 0} and γ− := max{β − α, 0} with
the maximum taken coordinatewise. Then α−β = γ+−γ−
with γ+ and γ− nonnegative vectors with disjoint support.
In particular,

‖α− β‖22 = ‖γ+ − γ−‖22 = ‖γ+‖22 + ‖γ−‖22. (17)

Let 1 denote the vector of length k with all its coordinates
1. Since 1α = 1β = 1, we have 1γ+ = 1γ−. Let t denote
this last quantity, which is clearly nonnegative. If t = 0
then γ+ = γ− = 0 and α = β, hence the claimed (15)
is obvious. If t > 0 then γ+/t and γ−/t are points of the
simplex ∆k, therefore

D ≥ ‖A(γ+/t)−A(γ−/t)‖ =
‖Aα−Aβ‖

t
. (18)

Using (17) with k+ and k− denoting the number of non-zero
coordinates of γ+ and γ−, respectively, we obtain

‖α− β‖22 = ‖γ+‖22 + ‖γ−‖22 ≥ t2
(

1

k+
+

1

k−

)
≥ t2 · 4

k+ + k−
≥ 4t2

k
.

(19)

By (18) and (19) we conclude that ‖Aα−Aβ‖2 ≤ kD2‖α−
β‖22/4, which together with (16) proves the claim (15).

Lemma A.2. Let f : P → R be a convex function over a
polytope P with finite simplicial curvature C∆. Then f has
curvature at most

C ≤ 2C∆.

Proof. Let x, y ∈ P be two distinct points of P . The line
through x and y intersects P in a segment [w, z], where w
and z are points on the boundary of P , i.e., contained in
facets of P , which have dimension dimP −1. Therefore by
Caratheodory’s theorem there are vertex sets Sw, Sz of P of
size at most dimP with w ∈ convSw and z ∈ convSz . As
such x, y ∈ convS with S := Sw ∪ Sz and |S| ≤ 2 dimP .

Reusing the notation from the proof of Lemma A.1, let
k := |S| and A be a linear transformation with S =
{Ae1, . . . , Aek} and fS(ζ) = f(Aζ) for all ζ ∈ ∆k. Since
x, y ∈ convS, there are α, β ∈ ∆k with x = Aα and
y = Aβ. Therefore by smoothness of fS together with
LfS ≤ C∆ and ‖β − α‖ ≤

√
2:

f(γy + (1− γ)x)− f(x)− γ∇f(x)(y − x)

= f(γAβ+(1−γ)Aα)−f(Aα)−γ∇f(Aα)·(Aβ−Aα)

= fS(γβ + (1− γ)α)− fS(α)− γ∇fS(α)(β − α)

≤ LfS‖γ(β − α)‖2

2
=
LfS‖β − α‖2

2
· γ2 ≤ C∆γ2

showing that C ≤ 2C∆ as claimed.

B. Algorithmic enhancements
We describe various enhancements that can be made to the
BCG algorithm, to improve its practical performance while
staying broadly within the framework above. Computational
testing with these enhancements is reported in Section D.

B.1. Sparsity and culling of active sets

Sparse solutions (which in the current context means “solu-
tions that are a convex combination of a small number of ver-
tices of P ”) are desirable for many applications. Techniques
for promoting sparse solutions in conditional gradients were
considered in (Rao et al., 2015). In many situations, a sparse
approximate solution can be identified at the cost of some
increase in the value of the objective function.

We explored two sparsification approaches, which can be
applied separately or together, and performed preliminary
computational tests for a few of our experiments in Sec-
tion D.

(i) Promoting drop steps. Here we relax Line 9 in Algo-
rithm 2 from testing f(y) ≥ f(x) to f(y) ≥ f(x)− ε,
where ε := min{max{p,0}

2 , ε0} with ε0 ∈ R some up-
per bound on the accepted potential increase in objec-

Blended Conditional Gradients

tive function value and p being the amount of reduction
in f achieved on the latest iteration. This technique
allows a controlled increase of the objective function
value in return for additional sparsity. The same con-
vergence analysis will apply, with an additional factor
of 2 in the estimates of the total number of iterations.

(ii) Post-optimization. Once the considered algorithm
has stopped with active set S0, solution x0, and dual
gap d0, we re-run the algorithm with the same ob-
jective function f over the facet convS0, i.e., we
solve minx∈conv S0

f(x) terminating when the dual
gap reaches d0.

These approaches can sparsify the solutions of the baseline
algorithms Away-step Frank–Wolfe, Pairwise Frank–Wolfe,
and lazy Pairwise Frank–Wolfe; see (Rao et al., 2015). We
observed, however, that the iterates generated by BCG are
often quite sparse. In fact, the solutions produced by BCG
are sparser than those produced by the baseline algorithms
even when sparsification is used in the benchmarks but not
in BCG! This effect is not surprising, as BCG adds new
vertices to the active vertex set only when really necessary
for ensuring further progress in the optimization.

Two representative examples are shown in Table 1, where
we report the effect of sparsification in the size of the active
set as well as the increase in objective function value.

We also compared evolution of the function value and size of
the active set. BCG decreases function value much more for
the same number of vertices because, by design, it performs
more descent on a given active set; see Figure 2.

B.2. Blending with pairwise steps

Algorithm 1 mixes descent steps with Frank–Wolfe steps.
One might be tempted to replace the Frank–Wolfe steps
with (seemingly stronger) pairwise steps, as the informa-
tion needed for the latter steps is computed in any case. In
our tests, however, this variant did not substantially differ
in practical performance from the one that uses the stan-
dard Frank–Wolfe step (see Figure 9). The explanation
is that BCG uses descent steps that typically provide bet-
ter directions than either Frank–Wolfe steps or pairwise
steps. When the pairwise gap over the active set is small,
the Frank–Wolfe and pairwise directions typically offer a
similar amount of reduction in f .

C. Algorithmic Variations
C.1. Alternative implementations of Oracle 1

Algorithm 2 is probably the least expensive possible imple-
mentation of Oracle 1, in general. We may consider other
implementations, based on projected gradient descent, that

aim to decrease f by a greater amount in each step and
possibly make more extensive reductions to the set S. Pro-
jected gradient descent would seek to minimize fS along
the piecewise-linear path {proj∆k(λ−γ∇fS(λ)) | γ ≥ 0}.
Such a search is more expensive, but may result in a new
active set S′ that is significantly smaller than the current set
S and, since the reduction in fS is at least as great as the
reduction on the interval γ ∈ [0, η] alone, it also satisfies
the requirements of Oracle 1.

More advanced methods for optimizing over the simplex
could also be considered, for example, mirror descent (see
(Nemirovski & Yudin, 1983)) and accelerated versions of
mirror descent and projected gradient descent; see (Lan,
2017) for a good overview. The effects of these alternatives
on the overall convergence rate of Algorithm 1 has not been
studied; the analysis is complicated significantly by the lack
of guaranteed improvement in each (inner) iteration.

The accelerated versions are considered in the computa-
tional tests in Section D, but on the examples we tried, the
inexpensive implementation of Algorithm 2 usually gave
the fastest overall performance. We have not tested mirror
descent versions.

C.2. Simplex Gradient Descent as a stand-alone
algorithm

We describe a variant of Algorithm 1 for the special case in
which P is the probability simplex ∆k. Since optimization
of a linear function over ∆k is trivial, we use the standard
LP oracle in place of the weak-separation oracle (Oracle 2),
resulting in the non-lazy variant Algorithm 3. Observe
that the per-iteration cost is only O(k). In cases of k very
large, we could also formulate a version of Algorithm 3 that
uses a weak-separation oracle (Oracle 2) to evaluate only a
subset of the coordinates of the gradient, as in coordinate
descent. The resulting algorithm would be an interpolation
of Algorithm 3 below and Algorithm 1; details are left to
the reader.

When line search is too expensive, one might replace
Line 14 by xt+1 = (1 − 1/Lf)xt + y/Lf , and Line 17
by xt+1 = (1 − 2/(t + 2))xt + (2/(t + 2))ew. These
employ the standard step sizes for (projected) gradient de-
scent and the Frank–Wolfe algorithm, and yield the required
descent guarantees.

We now describe convergence rates for Algorithm 3, noting
that better constants are available in the convergence rate
expression than those obtained from a direct application of
Theorem 3.1.

Corollary C.1. Let f be an α-strongly convex and Lf -
smooth function over the probability simplex ∆k with k ≥ 2.
Let x∗ be a minimum point of f in ∆k. Then Algorithm 3

Blended Conditional Gradients

Table 1. Size of active set and percentage increase in function value after sparsification. (No sparsification performed for BCG.) Left:
Video Co-localization over netgen 08a. Since we use LPCG and PCG as benchmarks, we report (i) separately as well. Right: Matrix
Completion over movielens100k instance. BCG without sparsification provides sparser solutions than the baseline methods with
sparsification. In the last column, we report the percentage increase in objective function value due to sparsification. (Because this quantity
is not affine invariant, this value should serve only to rank the quality of solutions.)

vanilla (i) (i), (ii) ∆f(x)

PCG 112 62 60 2.6%
LPCG 94 70 64 0.1%
BCG 60 59 40 0.0%

vanilla (i), (ii) ∆f(x)

ACG 300 298 7.4%
PCG 358 255 8.2%
BCG 211 211 0.0%

Algorithm 3 Stand-Alone Simplex Gradient Descent
Input: convex function f
Output: points xt in ∆k for t = 1, . . . , T

1: x0 = e1

2: for t = 0 to T − 1 do
3: St ← {i : xt,i > 0}
4: at ← argmaxi∈St

∇f(xt)i
5: st ← argmini∈St

∇f(xt)i
6: wt ← argmin1≤i≤k∇f(xt)i
7: if ∇f(xt)at −∇f(xt)st > ∇f(xt)xt −∇f(xt)wt

then

8: di =

{
∇f(xt)i −

∑
j∈S ∇f(xt)j/|St| i ∈ St

0 i /∈ St
for i = 1, 2, . . . , k

9: η = max{γ : xt − γd ≥ 0} {ratio test}
10: y = xt − ηd
11: if f(xt) ≥ f(y) then
12: xt+1 ← y {drop step}
13: else
14: xt+1 ← argminx∈[xt,y] f(x) {descent step}
15: end if
16: else
17: xt+1 ← argminx∈[x,ewt] f(x) {FW step}
18: end if
19: end for

converges with rate

f(xT)− f(x∗) ≤
(

1− α

4Lfk

)T
· (f(x0)− f(x∗)) ,

T = 1, 2,

If f is not strongly convex (that is, α = 0), we have

f(xT)− f(x∗) ≤ 8Lf
T

, T = 1, 2,

Proof. The structure of the proof is similar to that of
(Lacoste-Julien & Jaggi, 2015, Theorem 8). Recall from
(Lacoste-Julien & Jaggi, 2015, §B.1) that the pyramidal

width of the probability simplex is W ≥ 2/
√
k, so that the

geometric strong convexity of f is µ ≥ 4α/k. The diameter
of ∆k is D =

√
2, and it is easily seen that C∆ = Lf and

C ≤ LfD2/2 = Lf .

To maintain the same notation as in the proof of Theo-
rem 3.1, we define vAt = eat , vFW−St = est and vFWt =
ewt

. In particular, we have ∇f(xt)wt
= ∇f(xt)v

FW
t ,

∇f(xt)st = ∇f(xt)v
FW−S
t , and ∇f(xt)at = ∇f(xt)v

A
t .

Let ht := f(xt)− f(x∗).

In the proof, we use several elementary estimates. First, by
convexity of f and the definition of the Frank–Wolfe step,
we have

ht = f(xt)− f(x∗) ≤ ∇f(xt)(xt − vFWt). (20)

Second, by Fact 2.1 and the estimate µ ≥ 4α/k for geomet-
ric strong convexity, we obtain

ht ≤
[∇f(xt)(v

A
t − vFWt)]2

8α/k
. (21)

Let us consider a fixed iteration t. Suppose first that we
take a descent step (Line 14), in particular, ∇f(xt)(v

A
t −

vFW−St) ≥ ∇f(xt)(xt − vFWt) from Line 7 which, to-
gether with∇f(xt)xt ≥ ∇f(xt)v

FW−S , yields

2∇f(xt)(v
A
t − vFW−St) ≥ ∇f(xt)(v

A
t − vFWt). (22)

By Lemma 4.1, we have

f(xt)− f(xt+1) ≥
[
∇f(xt)(v

A − vFW−S)
]2

4Lf

≥
[
∇f(xt)(v

A − vFW)
]2

16Lf
≥ α

2Lfk
· ht,

where the second inequality follows from (22) and the third
inequality follows from (21).

If a Frank–Wolfe step is taken (Line 17), we have similarly

Blended Conditional Gradients

to (9) that

f(xt)−f(xt+1) ≥ ∇f(xt)(xt − vFW)

2

·min

{
1,
∇f(xt)(xt − vFW)

2Lf

}
.

Combining with (20), we have either f(xt) − f(xt+1) ≥
ht/2 or

f(xt)− f(xt+1) ≥ [∇f(xt)(xt − vFW)]2

4Lf

≥
[
∇f(xt)(v

A − vFW)
]2

16Lf
≥ α

2Lfk
· ht.

Since α ≤ Lf , the latter is always smaller than the former,
and hence is a lower bound that holds for all Frank–Wolfe
steps.

Since f(xt) − f(xt+1) = ht − ht+1, we have ht+1 ≤
(1−α/(2Lfk))ht for descent steps and Frank–Wolfe steps,
while obviously ht+1 ≤ ht for drop steps (Line 12). For
any given iteration counter T , let Tdesc be the number of
descent steps taken before iteration T , TFW be the number
of Frank–Wolfe steps taken before iteration T , and Tdrop be
the number of drop steps taken before iteration T . We have
Tdrop ≤ TFW, so that similarly to (11)

T = Tdesc + TFW + Tdrop ≤ Tdesc + 2TFW. (23)

By compounding the decrease at each iteration, and using
(23) together with the identity (1− ε/2)2 ≥ (1− ε) for any
ε ∈ (0, 1), we have

hT ≤
(

1− α

2Lfk

)Tdesc+TFW

h0 ≤
(

1− α

2Lfk

)T/2
h0

≤
(

1− α

4Lfk

)T
· h0.

The case for the smooth but not strongly convex functions
is similar: we obtain for descent steps

ht − ht+1 = f(xt)− f(xt+1)

≥
[
∇f(xt)(v

A − vFW−S)
]2

4Lf

≥
[
∇f(xt)(x− vFW)

]2
4Lf

≥ h2
t

4Lf
,

(24)

where the second inequality follows from (20).

For Frank–Wolfe steps, we have by standard estimations

ht+1 ≤

{
ht − h2

t/(4Lf) if ht ≤ 2Lf ,
Lf ≤ ht/2 otherwise.

(25)

Given an iteration T , we define Tdrop, TFW and Tdesc as
above, and show by induction that

hT ≤
4Lf

Tdesc + TFW
, for T ≥ 1. (26)

Equation (26), i.e., hT ≤ 8Lf/T easily follows from this
via Tdrop ≤ TFW. Note that the first step is necessarily a
Frank–Wolfe step, hence the denominator is never 0.

If iteration T is a drop step, then T > 1, and the claim is
obvious by induction from hT ≥ hT−1. Hence we assume
that iteration T is either a descent step or a Frank–Wolfe
step. If Tdesc+TFW ≤ 2 then by (24) or (25) we obtain either
hT ≤ Lf < 2Lf or hT ≤ hT−1 − h2

T−1/(4Lf) ≤ 2Lf ,
without using any upper bound on hT−1, proving (26) in
this case. Note that this includes the case T = 1, the start
of the induction.

Finally, if Tdesc + TFW ≥ 3, then hT−1 ≤ 4Lf/(Tdesc +
TFW−1) ≤ 2Lf by induction, therefore a familiar argument
using (24) or (25) provides

hT ≤
4Lf

Tdesc + TFW − 1
− 4Lf

(Tdesc + TFW − 1)2

≤ 4Lf
Tdesc + TFW

,

proving (26) in this case, too, finishing the proof.

D. Computational experiments
To compare our experiments to previous work we used
problems and instances similar to those in (Lacoste-Julien
& Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015;
Braun et al., 2017; Lan et al., 2017). These problems in-
clude structured regression, sparse regression, video co-
localization, sparse signal recovery, matrix completion, and
Lasso. In particular, we compared our algorithm to the
Pairwise Frank–Wolfe algorithm from (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016) and the lazified Pair-
wise Frank–Wolfe algorithm from (Braun et al., 2017). We
also benchmarked against the lazified versions of the vanilla
Frank–Wolfe and the Away-step Frank–Wolfe as presented
in (Braun et al., 2017) for completeness. We implemented
our code in Python 3.6 using Gurobi (see (Gurobi Op-
timization, 2016)) as the LP solver for complex feasible
regions; as well as obvious direct implementations for the
probability simplex, the cube and the `1-ball. As feasible
regions, we used instances from MIPLIB2010 (see (Koch
et al., 2011)), as done before in (Braun et al., 2017), along
with some of the examples in (Bashiri & Zhang, 2017). We
used quadratic objective functions for the tests with random
coefficients, making sure that the global minimum lies out-
side the feasible region, to make the optimization problem

Blended Conditional Gradients

0 50 100 150 200
Size of Active Set

29

30

31

32

33

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 25 50 75 100 125 150
Size of Active Set

−20

−15

−10

−5

0

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
PCG

Figure 2. Comparison of ACG, PCG and LPCG against BCG in function value and size of the active set. Left: Video Co-Localization
instance. Right: Sparse signal recovery.

non-trivial; see below in the respective sections for more
details.

Every plot contains four diagrams depicting results of a
single instance. The upper row measures progress in the
logarithm of the function value, while the lower row does
so in the logarithm of the gap estimate. The left column
measures performance in the number of iterations, while
the right column does so in wall-clock time. In the graphs
we will compare various algorithms denoted by the follow-
ing abbreviations: Pairwise Frank–Wolfe (PCG), Away-step
Frank–Wolfe (ACG), (vanilla) Frank–Wolfe (CG), blended
conditional gradients (BCG); we indicate the lazified ver-
sions of (Braun et al., 2017) by prefixing with an ‘L’. All
tests were conducted with an instance-dependent, fixed time
limit, which can be easily read off the plots.

The value Φt provided by the algorithm is an estimate of the
primal gap f(xt)− f(x∗). The lazified versions (including
BCG) use it to estimate the required stepwise progress, halv-
ing it occasionally, which provides a stair-like appearance
in the graphs for the dual progress. Note that if the certifi-
cation in the weak-separation oracle that c(z − x) ≥ Φ for
all z ∈ P is obtained from the original LP oracle (which
computes the actual optimum of cy over y ∈ P), then we
update the gap estimate Φt+1 with that value; otherwise the
oracle would continue to return false anyway until Φ drops
below that value. For the non-lazified algorithms, we plot
the dual gap maxv∈P ∇f(xt)(xt − v).

Performance comparison

We implemented Algorithm 1 as outlined above and used
SiGD for the descent steps as described in Section 4. For

line search in Line 13 of Algorithm 2 we perform standard
backtracking line search, and for Line 16 of Algorithm 1, we
do ternary search. We provide four representative example
plots in Figure 1 to summarize our results.

Lasso. We tested BCG on lasso instances and compared
them to vanilla Frank–Wolfe, Away-step Frank–Wolfe, and
Pairwise Frank–Wolfe. We generated Lasso instances simi-
lar to (Lacoste-Julien & Jaggi, 2015), which has also also
been used by several follow-up papers as benchmark. Here
we solve minx∈P ‖Ax− b‖2 with P being the (scaled) `1-
ball. We considered instances of varying sizes and the re-
sults (as well as details about the instance) can be found
in Figure 3. Note that we did not benchmark any of the
lazified versions of (Braun et al., 2017) here, because the
linear programming oracle is so simple that lazification is
not beneficial and we used the LP oracle directly.

Video co-localization instances. We also tested BCG on
video co-localization instances as done in (Lacoste-Julien &
Jaggi, 2015). It was shown in (Joulin et al., 2014) that video
co-localization can be naturally reformulated as optimizing
a quadratic function over a flow (or path) polytope. To this
end, we run tests on the same flow polytope instances as
used in (Lan et al., 2017) (obtained from http://lime.
cs.elte.hu/˜kpeter/data/mcf/road/). We de-
pict the results in Figure 4.

Structured regression. We also compared BCG against
PCG and LPCG on structured regression problems, where
we minimize a quadratic objective function over polytopes
corresponding to hard optimization problems used as bench-
marks in e.g., (Braun et al., 2017; Lan et al., 2017; Bashiri

http://lime.cs.elte.hu/~kpeter/data/mcf/road/
http://lime.cs.elte.hu/~kpeter/data/mcf/road/

Blended Conditional Gradients

& Zhang, 2017). As in Lasso, we minimize a least-squares
objective but instead of the `1-ball, the feasible regions are
the polytopes from MIPLIB2010 (see (Koch et al., 2011)).
Additionally, we compare ACG, PCG, and vanilla CG over
the Birkhoff polytope for which linear optimization is fast
(we are using the Hungarian algorithm), so that there is little
gain to be expected from lazification. See Figures 5 and 6
for results.

Matrix completion. Clearly, our algorithm also works di-
rectly over compact convex sets, even though with a weaker
theoretical bound of O(1/ε) as convex sets need not have a
pyramidal width bounded away from 0, and linear optimiza-
tion might dominate the cost, and hence the advantage of
lazification and BCG might be even greater empirically.

To this end, we also considered Matrix Completion instances
over the spectrahedron S = {X � 0 : Tr [X] = 1} ⊆
Rn×n, where we solve the problem:

min
X∈S

∑
(i,j)∈L

(Xi,j − Ti,j)2,

where D = {Ti,j | (i, j) ∈ L} ⊆ R is a data set.
In our tests we used the data sets Movie Lens 100k
and Movie Lens 1m from https://grouplens.org/
datasets/movielens/ We subsampled in the 1m case
to generate 3 different instances.

As in the case of the Lasso benchmarks, we benchmark
against ACG, PCG, and CG, as the linear programming
oracle is simple and there is no gain to be expected from
lazification. In the case of matrix completion, the perfor-
mance of BCG is quite comparable to ACG, PCG, and CG
in iterations, which makes sense over the spectrahedron,
because the gradient approximations computed by the linear
optimization oracle are essentially identical to the actual
gradient, so that there is no gain from the blending with
descent steps. In wall-clock time, vanilla CG performs best
as the algorithm has the lowest implementation overhead
beyond the oracle calls compared to BCG, ACG, and PCG
(see Figure 7) and in particular does not have to maintain
the (large) active set.

Sparse signal recovery. We also performed computa-
tional experiments on the sparse signal recovery instances
from (Rao et al., 2015), which have the following form:

x̂ = argmin
x∈Rn:‖x‖1≤τ

‖y − Φx‖22.

We chose a variety of parameters in our tests, including one
test that matches the setup in (Rao et al., 2015). As in the
case of the Lasso benchmarks, we benchmark against ACG,
PCG, and CG, as the linear programming oracle is simple
and there is no gain to be expected from lazification. The
results are shown in Figure 8.

PGD vs. SiGD as subroutine

To demonstrate the superiority of SiGD over PGD we also
tested two implementations of BCG, once with standard
PGD as subroutine and once with SiGD as subroutine. The
results can be found in Figure 9 (right): while PGD and
SiGD compare essentially identical in per-iteration progress,
in terms of wall clock time the SiGD variant is much faster.
For comparison, we also plotted LPCG on the same instance.

Pairwise steps vs. Frank–Wolfe steps

As pointed out in Section B.2, a natural extension is to
replace the Frank–Wolfe steps in Line 16 of Algorithm 1
with pairwise steps, since the information required is readily
available. In Figure 9 (left) we depict representative behav-
ior: Little to no advantage when taking the more complex
pairwise step. This is expected as the Frank–Wolfe steps are
only needed to add new vertices as the drop steps are sub-
sumed the steps from the SiDO oracle. Note that BCG with
Frank–Wolfe steps is slightly faster per iteration, allowing
for more steps within the time limit.

Comparison between lazified variants and BCG

For completeness, we also ran tests for BCG against various
other lazified variants of conditional gradient descent. The
results are consistent with our observations from before
which we depict in Figure 10.

Standard vs. accelerated version

Another natural variant of our algorithm is to replace the
SiDO subroutine with its accelerated variant (both possible
for PGD and SiGD). As expected, due to the small size of
the subproblem, we did not observe any significant speedup
from acceleration; see Figure 11.

Comparison to Fully-Corrective Frank–Wolfe

As mentioned in the introduction, BCG is quite different
from FCFW. BCG is much faster and, in fact, FCFW is
usually already outpeformed by the much more efficient
Pairwise-step CG (PCG), except in some special cases. In
Figure 12, the left column compares FCFW and BCG only
across those iterations where FW steps were taken; for com-
pleteness, we also implemented a variant FCFW (fixed steps)
where only a fixed number of descent steps in the correction
subroutine are performed. As expected FCFW has a better
“per-FW-iteration performance,” because it performs full
correction. The excessive cost of FCFW’s correction rou-
tine shows up in the wall-clock time (right column), where
FCFW is outperformed even by vanilla pairwise-step CG.
This becomes even more apparent when the iterations in the
correction subroutine are broken out and reported as well
(see middle column). For purposes of comparison, BCG

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Blended Conditional Gradients

and FCFW used both SiGD steps in the subroutine. (This
actually gives an advantage to FCFW, as SiGD was not
known until the current paper.) The per-iteration progress of
FCFW is poor, due to spending many iterations to optimize
over active sets that are irrelevant for the optimal solution.
Our tests highlight the fact that correction steps do not have
constant cost in practice.

Blended Conditional Gradients

−20

−10

0

10

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 1000 2000
Iterations

0

5

10

15

Lo
g

G
ap

 E
st

im
at

e

0.00 10.02 20.04 30.05 40.07
Wall-clock Time

4

6

8

10

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 5000 10000
Iterations

5

10

15

Lo
g

G
ap

 E
st

im
at

e
0.00 5.02 10.04 15.05 20.07

Wall-clock Time

−40

−20

0

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 1000 2000 3000
Iterations

−10

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0.0 38.2 76.3 114.5 152.7
Wall-clock Time

8

10

12

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 1000 2000 3000
Iterations

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0 20 40 60 80
Wall-clock Time

Figure 3. Comparison of BCG, ACG, PCG and CG on Lasso instances. Upper-left: A is a 400× 2000 matrix with 100 non-zeros. BCG
made 2130 iterations, calling the LP oracle 477 times, with the final solution being a convex combination of 462 vertices giving the
sparsity. Upper-right: A is a 200× 200 matrix with 100 non-zeros. BCG made 13952 iterations, calling the LP oracle 258 times, with the
final solution being a convex combination of 197 vertices giving the sparsity. Lower-left: A is a 500× 3000 matrix with 100 non-zeros.
BCG made 3314 iterations, calling the LP oracle 609 times, with the final solution being a convex combination of 605 vertices giving the
sparsity. Lower-right: A is a 1000× 1000 matrix with 200 non-zeros. BCG made 2328 iterations, calling the LP oracle 1007 times, with
the final solution being a convex combination of 526 vertices giving the sparsity.

Blended Conditional Gradients

−10

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 100 200
Iterations

10

20

30

Lo
g

G
ap

 E
st

im
at

e

0 300 600
Wall-clock Time

5

10

15

20

25

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 100 200
Iterations

20

25

30

Lo
g

G
ap

 E
st

im
at

e
0 300 600

Wall-clock Time

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 20 40
Iterations

15

20

25

Lo
g

G
ap

 E
st

im
at

e

0 37 74 111 148
Wall-clock Time

20

21

22

23

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 1000 2000
Iterations

17.5

20.0

22.5

25.0

Lo
g

G
ap

 E
st

im
at

e

0.00 7.51 15.01 22.52 30.03
Wall-clock Time

Figure 4. Comparison of PCG, Lazy PCG, and BCG on video co-localization instances. Upper-Left: netgen 12b for a 3000-vertex
graph. BCG made 202 iterations, called LPsepP 56 times and the final solution is a convex combination of 56 vertices. Upper-Right:
netgen 12b over a 5000-vertex graph. BCG did 212 iterations, LPsepP was talked 58 times, and the final solution is a convex
combination of 57 vertices. Lower-Left: road paths 01 DC a over a 2000-vertex graph. Even on instances where lazy PCG gains
little advantage over PCG, BCG performs significantly better with empirically higher rate of convergence. BCG made 43 iterations,
LPsepP was called 25 times, and the final convex combination has 25 vertices Lower-Right: netgen 08a over a 800-vertex graph.
BCG made 2794 iterations, LPsepP was called 222 times, and the final convex combination has 106 vertices.

Blended Conditional Gradients

10

12

14

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 1000 2000 3000
Iterations

0

10

Lo
g

G
ap

 E
st

im
at

e

0 700 1400 2100
Wall-clock Time

15.43

15.44

15.45

15.46

15.47

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0.0 87.5 175.0 262.5 350.0
Iterations

0

5

10

15

Lo
g

G
ap

 E
st

im
at

e
0.00 15.05 30.09 45.14 60.18

Wall-clock Time

10

12

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 1000 2000
Iterations

0

5

10

15

Lo
g

G
ap

 E
st

im
at

e

0.00 7.50 14.99 22.49 29.99
Wall-clock Time

−20

0

20

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LPCG
PCG

0 1000 2000
Iterations

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0.0 73.7 147.3 221.0 294.6
Wall-clock Time

Figure 5. Comparison of BCG, LPCG and PCG on structured regression instances. Upper-Left: Over the disctom polytope. BCG made
3526 iterations with 1410 LPsepP calls and the final solution is a convex combination of 85 vertices. Upper-Right: Over a maxcut
polytope over a graph with 28 vertices. BCG made 76 LPsepP calls and the final solution is a convex combination of 13 vertices.
Lower-Left: Over the m100n500k4r1 polytope. BCG made 2137 iterations with 944 LPsepP calls and the final solution is a convex
combination of 442 vertices. Lower-right: Over the spanning tree polytope over the complete graph with 10 nodes. BCG made 1983
iterations with 262 LPsepP calls and the final solution is a convex combination of 247 vertices. BCG outperforms LPCG and PCG, even
in the cases where LPCG is much faster than PCG.

Blended Conditional Gradients

−20

−10

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 1000 2000
Iterations

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0 25 50 75 100
Wall-clock Time

−20

−10

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 39 78 117 156
Iterations

0

10

20

Lo
g

G
ap

 E
st

im
at

e
0.0 17.5 35.0 52.5 70.0

Wall-clock Time

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 500 1000
Iterations

5

10

15

20

Lo
g

G
ap

 E
st

im
at

e

0.00 12.50 25.01 37.51 50.01
Wall-clock Time

−20

0

20

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 200 400
Iterations

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0 20 40 60 80
Wall-clock Time

Figure 6. Comparison of BCG, ACG, PCG and CG over the Birkhoff polytope. Upper-Left: Dimension 50. BCG made 2057 iterations
with 524 LPsepP calls and the final solution is a convex combination of 524 vertices. Upper-Right: Dimension 100. BCG made 151
iterations with 134 LPsepP calls and the final solution is a convex combination of 134 vertices. Lower-Left: Dimension 50. BCG made
1040 iterations with 377 LPsepP calls and the final solution is a convex combination of 377 vertices. Lower-right: Dimension 80. BCG
made 429 iterations with 239 LPsepP calls and the final solution is a convex combination of 239 vertices. BCG outperforms ACG, PCG
and CG in all cases.

Blended Conditional Gradients

6

8

10

12

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 500 1000 1500
Iterations

10

12

14

16

Lo
g

G
ap

 E
st

im
at

e

0 4000 8000
Wall-clock Time

13.0

13.2

13.4

13.6

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0.0 19.5 39.0 58.5 78.0
Iterations

13

14

15

16

Lo
g

G
ap

 E
st

im
at

e

0 1000 2000 3000 4000
Wall-clock Time

Figure 7. Comparison of BCG, ACG, PCG and CG on matrix completion instances over the spectrahedron. Upper-Left: Over the movie
lens 100k data set. BCG made 519 iterations with 346 LPsepP calls and the final solution is a convex combination of 333 vertices.
Upper-Right: Over a subset of movie lens 1m data set. BCG made 78 iterations with 17 LPsepP calls and the final solution is a convex
combination of 14 vertices. BCG performs very similar to ACG, PCG, and vanilla CG as discussed.

Blended Conditional Gradients

−5

0

5

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 200 400
Iterations

0.0

2.5

5.0

7.5

10.0

Lo
g

G
ap

 E
st

im
at

e

0.00 5.00 9.99 14.99 19.99
Wall-clock Time

−20

−10

0

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 500 1000
Iterations

−10

−5

0

5

Lo
g

G
ap

 E
st

im
at

e
0.0 7.5 15.0 22.5 30.0

Wall-clock Time

−60

−40

−20

0

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 500 1000
Iterations

−40

−20

0

Lo
g

G
ap

 E
st

im
at

e

0.00 14.96 29.92 44.88 59.84
Wall-clock Time

−60

−40

−20

0

Lo
g

Fu
nc

tio
n

V
al

ue

ACG
BCG
CG
PCG

0 500 1000 1500
Iterations

−40

−20

0

Lo
g

G
ap

 E
st

im
at

e

0.0 37.5 74.9 112.4 149.9
Wall-clock Time

Figure 8. Comparison of BCG, ACG, PCG and CG on a sparse signal recovery problem. Upper-Left: Dimension is 5000× 1000 density
is 0.1. BCG made 547 iterations with 102 LPsepP calls and the final solution is a convex combination of 102 vertices. Upper-Right:
Dimension is 1000 × 3000 density is 0.05. BCG made 1402 iterations with 155 LPsepP calls and the final solution is a convex
combination of 152 vertices. Lower-Left: Dimension is 10000× 1000 density is 0.05. BCG made 997 iterations with 87 LPsepP calls
and the final solution is a convex combination of 52 vertices. Lower-right: dimension is 5000× 2000 density is 0.05. BCG made 1569
iterations with 124 LPsepP calls and the final solution is a convex combination of 103 vertices. BCG outperforms all other algorithms in
all examples significantly.

Blended Conditional Gradients

23

24

25

Lo
g

Fu
nc

tio
n

V
al

ue
BCG (SiGD)
BCG (Pairwise)

0.0 45.8 91.5 137.2 183.0
Iterations

24

26

Lo
g

G
ap

 E
st

im
at

e

0.0 19.9 39.7 59.6 79.4
Wall-clock Time

23

24

25

Lo
g

Fu
nc

tio
n

V
al

ue

BCG (SiGD)
BCG (PGD)
LPCG

0 300 600 900
Iterations

22

24

26

Lo
g

G
ap

 E
st

im
at

e

0.0 74.7 149.5 224.2 299.0
Wall-clock Time

Figure 9. Comparison of BCG variants on a small video co-localization instance (instance netgen 10a). Left: BCG with vanilla
Frank–Wolfe steps (red) and with pairwise steps (purple). Performance is essentially equivalent here which matches our observations on
other instances. Right: Comparison of oracle implementations PGD and SiGD. SiGD is significantly faster in wall-clock time.

−40

−20

0

20

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LCG
LACG
LPCG

0 1000 2000 3000
Iterations

−10

0

10

20

Lo
g

G
ap

 E
st

im
at

e

0 50 100 150 200
Wall-clock Time

10

12

14

Lo
g

Fu
nc

tio
n

V
al

ue

BCG
LCG
LACG
LPCG

0.0 86.5 173.0 259.5 346.0
Iterations

10

12

14

16

Lo
g

G
ap

 E
st

im
at

e

0.0 49.8 99.6 149.4 199.2
Wall-clock Time

Figure 10. Comparison of BCG, LCG, ACG, and PCG. Left: Structured regression instance over the spanning tree polytope over the
complete graph with 11 nodes demonstrating significant performance difference in improving the function value and closing the dual gap;
BCG made 3031 iterations, LPsepP was called 1501 times (almost always terminated early) and final solution is a convex combination
of 232 vertices only. Right: Structured regression over the disctom polytope; BCG made 346 iterations, LPsepP was called 71 times,
and final solution is a convex combination of 39 vertices only. Observe that not only the function value decreases faster, but the gap
estimate, too.

Blended Conditional Gradients

−10

0

10

20

Lo
g

Fu
nc

tio
n

V
al

ue

BCG (SiGD)
BCG (Fast SiGD)
LPCG

0 100 200
Iterations

5

10

15

20

25

30

Lo
g

G
ap

 E
st

im
at

e

0 300 600
Wall-clock Time

−10

0

10

Lo
g

Fu
nc

tio
n

V
al

ue

BCG (SiGD)
BCG (Fast SiGD)
LPCG

0.0 18.8 37.5 56.2 75.0
Iterations

5

10

15

Lo
g

G
ap

 E
st

im
at

e

0.0 49.5 99.1 148.6 198.2
Wall-clock Time

Figure 11. Comparison of BCG, accelerated BCG and LPCG. Left: On a medium size video co-localization instance (netgen 12b).
Right: On a larger video co-localization instance (road paths 01 DC a). Here the accelerated version is (slightly) better in iterations
but not in wall-clock time though. These findings are representative of all our other tests.

−20

−10

0

10

Lo
g

Fu
nc

tio
n

V
al

ue

BCG (SiGD)
FCFW (fixed steps)
FCFW
PCG

0 90 180 270 360 450
FW Iterations

0

5

10

15

20

25

Lo
g

G
ap

 E
st

im
at

e

0 2000 4000
All Iterations

0 8 16 24 32 40
Wall-clock Time

Figure 12. Comparison to FCFW across FW iterations, (all) iterations, and wall-clock time on a Lasso instance. Test run with 40s time
limit. In this test we explicitly computed the dual gap of BCG, rather than using the estimate Φt.

