Target Tracking for Contextual Bandits:
 Application to Demand Side Management

Supplementary material

Margaux Brégère
 Pierre Gaillard

Yannig Goude
Gilles Stoltz

We provide the proofs in order of appearance of the corresponding result:

- The proof of Lemma 1 in Appendix A
- The proof of Proposition 1 in Appendix B
- The proof of Lemma 2 in Appendix C
- The proof of Lemma 3 in Appendix D
- The proof of Theorem 2 in Appendix E

We also give more details on the numerical expression of the covariance matrix Γ built in the experiments (see Section 5.1) based on real data:

- Details on the covariance matrix Γ in Appendix F.

A. Proof of Lemma 1

The proof below relies on Laplace's method on supermartingales, which is a standard argument to provide confidence bounds on a self-normalized sum of conditionally centered random vectors. See Theorem 2 of Abbasi-Yadkori et al. (2011) or Theorem 20.2 in the monograph by Lattimore \& Szepesvári (2018). Under Model 1 and given the definition of V_{t}, we have the rewriting

$$
\begin{aligned}
\widehat{\theta}_{t} & =V_{t}^{-1} \sum_{s=1}^{t} \phi\left(x_{s}, p_{s}\right) Y_{s, p_{s}} \\
& =V_{t}^{-1} \sum_{s=1}^{t} \phi\left(x_{s}, p_{s}\right)\left(\phi\left(x_{s}, p_{s}\right)^{\mathrm{T}} \theta+p_{s}^{\mathrm{T}} \varepsilon_{s}\right) \\
& =V_{t}^{-1}\left(\left(V_{t}-\lambda \mathrm{I}_{d}\right) \theta+M_{t}\right)=\theta-\lambda V_{t}^{-1} \theta+V_{t}^{-1} M_{t}
\end{aligned}
$$

where we introduced

$$
M_{t}=\sum_{s=1}^{t} \phi\left(x_{s}, p_{s}\right) p_{s}^{\mathrm{T}} \varepsilon_{s}
$$

which is a martingale with respect to $\mathcal{F}_{t}=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{t}\right)$. Therefore, by a triangle inequality,

$$
\begin{aligned}
\left\|V_{t}^{1 / 2}\left(\widehat{\theta}_{t}-\theta\right)\right\| & =\left\|-\lambda V_{t}^{-1 / 2} \theta+V_{t}^{-1 / 2} M_{t}\right\| \\
& \leqslant \lambda\left\|V_{t}^{-1 / 2} \theta\right\|+\left\|V_{t}^{-1 / 2} M_{t}\right\|
\end{aligned}
$$

On the one hand, given that all eigenvalues of the symmetric matrix V_{t} are larger than λ (given the $\lambda \mathrm{I}_{d}$ term in its definition), all eigenvalues of $V_{t}^{-1 / 2}$ are smaller than $1 / \sqrt{\lambda}$ and thus,

$$
\lambda\left\|V_{t}^{-1 / 2} \theta\right\| \leqslant \lambda \frac{1}{\sqrt{\lambda}}\|\theta\|=\sqrt{\lambda}\|\theta\|
$$

We now prove, on the other hand, that with probability at least $1-\delta$,

$$
\left\|V_{t}^{-1 / 2} M_{t}\right\| \leqslant \rho \sqrt{2 \ln \frac{1}{\delta}+d \ln \frac{1}{\lambda}+\ln \operatorname{det}\left(V_{t}\right)}
$$

which will conclude the proof of the lemma.

Step 1: Introducing super-martingales. For all $\nu \in \mathbb{R}^{d}$, we consider

$$
S_{t, \nu}=\exp \left(\nu^{\mathrm{T}} M_{t}-\frac{\rho^{2}}{2} \nu^{\mathrm{T}} V_{t} \nu\right)
$$

and now show that it is an \mathcal{F}_{t}-super-martingale. First, note that since the common distribution of the $\varepsilon_{1}, \varepsilon_{2}, \ldots$ is $\rho-$ sub-Gaussian, then for all \mathcal{F}_{t-1}-measurable random vectors ν_{t-1},

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{e}^{\nu_{t-1}^{\mathrm{T}} \varepsilon_{t}} \mid \mathcal{F}_{t-1}\right] \leqslant \mathrm{e}^{\rho^{2}\left\|\nu_{t-1}\right\|^{2} / 2} \tag{14}
\end{equation*}
$$

Now,

$$
\left.\begin{array}{rl}
S_{t, \nu}=S_{t-1, \nu} & \exp \left(\nu^{\mathrm{T}}\right.
\end{array} \quad \phi\left(x_{t}, p_{t}\right) p_{t}^{\mathrm{T}} \varepsilon_{t}\right)
$$

where, by using the sub-Gaussian assumption (14) and the fact that $\sum_{j} p_{j, t}^{2} \leqslant 1$ for all convex weight vectors p_{t},

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\nu^{\mathrm{T}} \phi\left(x_{t}, p_{t}\right) p_{t}^{\mathrm{T}} \varepsilon_{t} \mid \mathcal{F}_{t-1}\right]\right. \\
& \quad \leqslant \exp (\frac{\rho^{2}}{2} \nu^{\mathrm{T}} \phi\left(x_{t}, p_{t}\right) \underbrace{p_{t}^{\mathrm{T}} p_{t}}_{\leqslant 1} \phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \nu)
\end{aligned}
$$

This implies $\mathbb{E}\left[S_{t, \nu} \mid \mathcal{F}_{t-1}\right] \leqslant S_{t-1, \nu}$.
Note that the rewriting of $S_{t, \nu}$ in its vertex form is, with $m=V_{t}^{-1} M_{t} / \rho^{2}$:

$$
\begin{aligned}
& S_{t, \nu}= \exp \left(\frac{1}{2}(\nu-m)^{\mathrm{T}} \rho^{2} V_{t}(\nu-m)+\frac{1}{2} m^{\mathrm{T}} \rho^{2} V_{t} m\right) \\
&=\exp \left(\frac{1}{2}(\nu-m)^{\mathrm{T}} \rho^{2} V_{t}(\nu-m)\right) \\
& \quad \times \exp \left(\frac{1}{2 \rho^{2}}\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2}\right)
\end{aligned}
$$

Step 2: Laplace's method-integrating $S_{t, \nu}$ over $\nu \in \mathbb{R}^{d}$. The basic observation behind this method is that (given the vertex form) $S_{t, \nu}$ is maximal at $\nu=m=V_{t}^{-1} M_{t} / \rho^{2}$ and then equals $\exp \left(\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2} /\left(2 \rho^{2}\right)\right)$, which is (a transformation of) the quantity to control. Now, because the \exp function quickly vanishes, the integral over $\nu \in \mathbb{R}^{d}$ is close to this maximum. We therefore consider

$$
\bar{S}_{t}=\int_{\mathbb{R}^{d}} S_{t, \nu} \mathrm{~d} \nu
$$

We will make repeated uses of the fact that the Gaussian density functions,

$$
\nu \longmapsto \frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left((\nu-m)^{\mathrm{T}} C^{-1}(\nu-m)\right)
$$

where $m \in \mathbb{R}^{d}$ and C is a (symmetric) positive-definite matrix, integrate to 1 over \mathbb{R}^{d}. This gives us first the rewriting

$$
\bar{S}_{t}=\sqrt{\operatorname{det}\left(2 \pi \rho^{-2} V_{t}^{-1}\right)} \exp \left(\frac{1}{2 \rho^{2}}\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2}\right)
$$

Second, by the Fubini-Tonelli theorem and the supermartingale property

$$
\mathbb{E}\left[S_{t, \nu}\right] \leqslant \mathbb{E}\left[S_{0, \nu}\right]=\exp \left(-\lambda \rho^{2}\|\nu\|^{2} / 2\right)
$$

we also have

$$
\begin{aligned}
& \mathbb{E}\left[\bar{S}_{t}\right] \leqslant \int_{\mathbb{R}^{d}} \exp \left(-\lambda \rho^{2}\|\nu\|^{2} / 2\right) \mathrm{d} \nu \\
&=\sqrt{\operatorname{det}\left(2 \pi \rho^{-2} \lambda^{-1} \mathrm{I}_{d}\right)}
\end{aligned}
$$

Combining the two statements, we proved

$$
\mathbb{E}\left[\exp \left(\frac{1}{2 \rho^{2}}\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2}\right)\right] \leqslant \sqrt{\frac{\operatorname{det}\left(V_{t}\right)}{\lambda^{d}}}
$$

Step 3: Markov-Chernov bound. For $u>0$,

$$
\begin{aligned}
& \mathbb{P}\left[\left\|V_{t}^{-1 / 2} M_{t}\right\|>u\right] \\
& =\mathbb{P}\left[\frac{1}{2 \rho^{2}}\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2}>\frac{u^{2}}{2 \rho^{2}}\right] \\
& \leqslant \exp \left(-\frac{u^{2}}{2 \rho^{2}}\right) \mathbb{E}\left[\exp \left(\frac{1}{2 \rho^{2}}\left\|V_{t}^{-1 / 2} M_{t}\right\|^{2}\right)\right] \\
& \leqslant \exp \left(-\frac{u^{2}}{2 \rho^{2}}+\frac{1}{2} \ln \frac{\operatorname{det}\left(V_{t}\right)}{\lambda^{d}}\right)=\delta
\end{aligned}
$$

for the claimed choice

$$
u=\rho \sqrt{2 \ln \frac{1}{\delta}+d \ln \frac{1}{\lambda}+\ln \operatorname{det}\left(V_{t}\right)}
$$

B. Proof of Proposition 1

Comment: The main difference with the regret analysis of LinUCB provided by Chu et al. (2011) or Lattimore \& Szepesvári (2018) is in the first part of Step 1, as we need to deal with slightly more complicated quantities: not just with linear quantities of the form $\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta$. Steps 2 and 3 are easy consequences of Step 1.
We show below (Step 1) that for all $t \geqslant 2$, if

$$
\begin{align*}
\left\|V_{t-1}^{1 / 2}\left(\widehat{\theta}_{t-1}-\theta\right)\right\| & \leqslant B_{t-1}\left(\delta t^{-2}\right) \\
& \text { and } \quad\left\|\Gamma-\widehat{\Gamma}_{t}\right\|_{\infty} \leqslant \gamma, \tag{15}
\end{align*}
$$

then

$$
\begin{equation*}
\forall p \in \mathcal{P}, \quad\left|\ell_{t, p}-\widehat{\ell}_{t, p}\right| \leqslant \alpha_{t, p} \tag{16}
\end{equation*}
$$

Property (16), for those t for which it is satisfied, entails (Step 2) that the corresponding instantaneous regrets are bounded by

$$
r_{t} \stackrel{\text { def }}{=} \ell_{t, p_{t}}-\min _{p \in \mathcal{P}} \ell_{t, p} \leqslant 2 \alpha_{t, p_{t}}
$$

It only remains to deal (Step 3) with the rounds t when (16) does not hold; they account for the $1-\delta$ confidence level.
Step 1: Good estimation of the losses. When the two events (15) hold, we have

$$
\begin{aligned}
& \left|\ell_{t, p}-\widehat{\ell}_{t, p}\right| \\
& =\mid\left(\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-c_{t}\right)^{2}+p^{\mathrm{T}} \Gamma p \\
& \quad-\left(\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-c_{t}\right)^{2}+p^{\mathrm{T}} \widehat{\Gamma}_{t} p \mid \\
& \leqslant \\
& \leqslant \\
& \quad\left|p^{\mathrm{T}} \Gamma p-p^{\mathrm{T}} \widehat{\Gamma}_{t} p\right| \\
& \quad \quad+\left|\left(\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-c_{t}\right)^{2}-\left(\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-c_{t}\right)^{2}\right|
\end{aligned}
$$

On the one hand, $\left|p^{\mathrm{T}} \Gamma p-p^{\mathrm{T}} \widehat{\Gamma}_{t} p\right| \leqslant \gamma$ while on the other hand,

$$
\begin{aligned}
& \left|\left(\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-c_{t}\right)^{2}-\left(\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-c_{t}\right)^{2}\right| \\
& =\left|\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}\right| \\
& \quad \times\left|\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta+\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-2 c_{t}\right|
\end{aligned}
$$

where by the boundedness assumptions (5), all quantities in the final inequality lie in $[0, C]$, thus

$$
\left|\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta+\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-2 c_{t}\right| \leqslant 2 C
$$

Finally,

$$
\begin{align*}
& \left|\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}\right| \\
& \leqslant\left|\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right| \\
& \leqslant\left\|V_{t-1}^{1 / 2}\left(\theta-\widehat{\theta}_{t-1}\right)\right\|\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\| \tag{17}
\end{align*}
$$

where we used the Cauchy-Schwarz inequality for the second inequality, and the fact that $\left|y-[x]_{C}\right| \leqslant|y-x|$ when $y \in[0, C]$ and $x \in \mathbb{R}$ for the first inequality. Collecting all bounds together, we proved

$$
\begin{aligned}
& \left|\left(\phi\left(x_{t}, p\right)^{\mathrm{T}} \theta-c_{t}\right)^{2}-\left(\left[\phi\left(x_{t}, p\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right]_{C}-c_{t}\right)^{2}\right| \\
& \leqslant 2 C \underbrace{\left\|V_{t-1}^{1 / 2}\left(\theta-\widehat{\theta}_{t-1}\right)\right\|}_{\leqslant B_{t-1}\left(\delta t^{-2}\right)}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\|,
\end{aligned}
$$

but of course, this term is also bounded by the quantity L introduced in Section 3.5. This concludes the proof of the claimed inequality (16).

Step 2: Resulting bound on the instantaneous regrets. We denote by

$$
\begin{equation*}
p_{t}^{\star} \in \underset{p \in \mathcal{P}}{\arg \min }\left\{\ell_{t, p}+p^{\mathrm{T}} \Gamma p\right\} \tag{18}
\end{equation*}
$$

an optimal convex vector to be used at round t. By definition (3) of the optimistic algorithm, we have that the played p_{t} satisfies

$$
\begin{array}{ll}
& \widehat{\ell}_{t, p_{t}}-\alpha_{t, p_{t}} \leqslant \widehat{\ell}_{t, p_{t}^{\star}}-\alpha_{t, p_{t}^{\star}} \\
\text { that is, } & \widehat{\ell}_{t, p_{t}}-\widehat{\ell}_{t, p_{t}^{\star}} \leqslant \alpha_{t, p_{t}}-\alpha_{t, p_{t}^{\star}} .
\end{array}
$$

Now, for those t for which both events (15) hold, the property (16) also holds and yields, respectively for $p=p_{t}$ and $p=p_{t}^{\star}$:

$$
\ell_{t, p_{t}}-\widehat{\ell}_{t, p_{t}} \leqslant \alpha_{t, p_{t}} \quad \text { and } \quad \widehat{\ell}_{t, p_{t}^{\star}}-\ell_{t, p_{t}^{\star}} \leqslant \alpha_{t, p_{t}^{\star}} .
$$

Combining all these three inequalities together, we proved

$$
\begin{aligned}
r_{t} & =\ell_{t, p_{t}}-\ell_{t, p_{t}^{\star}} \\
& =\left(\ell_{t, p_{t}}-\widehat{\ell}_{t, p_{t}}\right)+\left(\widehat{\ell}_{t, p_{t}}-\widehat{\ell}_{t, p_{t}^{\star}}\right)+\left(\widehat{\ell}_{t, p_{t}^{\star}}-\ell_{t, p_{t}^{\star}}\right) \\
& \leqslant \alpha_{t, p_{t}}+\left(\alpha_{t, p_{t}}-\alpha_{t, p_{t}^{\star}}\right)+\alpha_{t, p_{t}^{\star}}=2 \alpha_{t, p_{t}},
\end{aligned}
$$

as claimed. This yields the $2 \sum \alpha_{t, p_{t}}$ in the regret bound, where the sum is for $t \geqslant n+1$.

Step 3: Special cases. We conclude the proof by dealing with the time steps $t \geqslant n+1$ when at least one of the events (15) does not hold. By a union bound, this happens for some $t \geqslant n+1$ with probability at most

$$
\frac{\delta}{2}+\delta \sum_{t \geqslant n+1} t^{-2} \leqslant \frac{\delta}{2}+\delta \int_{2}^{\infty} \frac{1}{t^{2}} \mathrm{~d} t=\delta
$$

where we used $n \geqslant 2$. These special cases thus account for the claimed $1-\delta$ confidence level.

C. Proof of Lemma 2

We derived the proof scheme below from scratch as we could find no suitable result in the literature for estimating Γ in our context.

We first consider the following auxiliary result.
Lemma 4. Let $n \geqslant 1$. Assume that the common distribution of the $\varepsilon_{1}, \varepsilon_{2}, \ldots$ is ρ-sub-Gaussian. Then, no matter how the provider picks the p_{t}, we have, for all $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left\|\sum_{t=1}^{n} p_{t} p_{t}^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \leqslant \kappa_{n} \sqrt{n}
$$

where the quantities κ_{n}, M_{n} and M_{n}^{\prime} are defined as in Lemma 2:

$$
\begin{aligned}
& M_{n} \stackrel{\text { def }}{=} \rho / 2+\ln (6 n / \delta) \\
& M_{n}^{\prime} \stackrel{\text { def }}{=} M_{n}^{2} \sqrt{2 \ln \left(3 K^{2} / \delta\right)}+2 \sqrt{\exp (2 \rho) \delta / 6} \\
& \kappa_{n} \stackrel{\text { def }}{=}\left(C+2 M_{n}\right) B_{n}(\delta / 3)+M_{n}^{\prime}
\end{aligned}
$$

Proof of Lemma 4. We can show that $\widehat{\Gamma}_{n}$ defined in (4) satisfies

$$
\begin{equation*}
\sum_{t=1}^{n} p_{t} p_{t}^{\mathrm{T}} \widehat{\Gamma}_{n} p_{t} p_{t}^{\mathrm{T}}=\sum_{t=1}^{n} \widehat{Z}_{t}^{2} p_{t} p_{t}^{\mathrm{T}} \tag{19}
\end{equation*}
$$

where we recall that $\widehat{Z}_{t} \stackrel{\text { def }}{=} Y_{t, p_{t}}-\left[\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{n}\right]_{C}$. Indeed, with,

$$
\Phi(\widehat{\Gamma}) \stackrel{\text { def }}{=} \sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}-p_{t}^{\mathrm{T}} \widehat{\Gamma} p_{t}\right)^{2}=\sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}-\operatorname{Tr}\left(\widehat{\Gamma} p_{t} p_{t}^{\mathrm{T}}\right)\right)^{2}
$$

using $\nabla_{A} \operatorname{Tr}(A B)=B$, we get

$$
\nabla_{\widehat{\Gamma}} \Phi(\widehat{\Gamma})=\sum_{t=1}^{n} 2 p_{t} p_{t}^{\mathrm{T}}\left(\widehat{Z}_{t}^{2}-p_{t}^{\mathrm{T}} \widehat{\Gamma}_{t}\right)
$$

which leads to (19) by canceling the gradient and keeping in mind that $p_{t}^{\mathrm{T}} \widehat{\Gamma} p_{t}$ is a scalar value.

Let us denote

$$
Z_{t} \stackrel{\text { def }}{=} Y_{t, p_{t}}-\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta=p_{t}^{\mathrm{T}} \varepsilon_{t}
$$

for all $t \geqslant 1$. To prove the lemma, we replace $\widehat{\Gamma}_{n}$ by using (19) and apply a triangular inequality:

$$
\begin{aligned}
& \left\|\sum_{t=1}^{n} p_{t} p_{t}^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \\
& \leqslant\left\|\sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}-Z_{t}^{2}\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty}+\left\|\sum_{t=1}^{n} Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}}-p_{t} p_{t}^{\mathrm{T}} \Gamma p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty}
\end{aligned}
$$

We will consecutively provide bounds for each of the two terms in the right-hand side of the above inequality, each
holding with probability at least $1-\delta / 3$. To do so, we focus on the event defined below where all Z_{t} are bounded:

$$
\begin{equation*}
\mathcal{E}_{n}(\delta) \stackrel{\text { def }}{=}\left\{\forall t=1, \ldots n, \quad\left|Z_{t}\right| \leqslant M_{n}\right\} \tag{21}
\end{equation*}
$$

with M_{n} defined in the statement of the lemma. We will show below that $\mathcal{E}_{n}(\delta)$ takes place with probability at least $1-\delta / 3$. All in all, our obtained global bound will hold with probability at least $1-\delta$, as stated in the lemma.

Bounding the probability of the event $\mathcal{E}_{n}(\delta)$. Recall that p_{t} is $\mathcal{F}_{t-1}=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{t-1}\right)$ measurable. For $t \in\{1, \ldots, n\}$, as ε_{t} is a ρ-sub-Gaussian variable independent of \mathcal{F}_{t-1},

$$
\mathbb{E}\left[\exp \left(p_{t}^{\mathrm{T}} \varepsilon_{t}\right) \mid \mathcal{F}_{t-1}\right] \leqslant \exp \left(\frac{\rho\left\|p_{t}\right\|^{2}}{2}\right) \leqslant \exp \left(\frac{\rho}{2}\right)
$$

see Footnote 1 for a reminder of the definition of a ρ-subGaussian variable. Using the Markov-Chernov inequality, we obtain

$$
\begin{align*}
\mathbb{P}\left(Z_{t} \geqslant M_{n} \mid \mathcal{F}_{t-1}\right) & \leqslant \mathbb{E}\left[\exp \left(Z_{t}\right) \mid \mathcal{F}_{t-1}\right] \exp \left(-M_{n}\right) \\
& \leqslant \exp \left(\frac{\rho}{2}-M_{n}\right)=\frac{\delta}{6 n} \tag{22}
\end{align*}
$$

Symmetrically, we get that $\mathbb{P}\left(Z_{t} \leqslant-M_{n}\right) \leqslant \delta / 6 n$. Combining all these bounds for $t=1, \ldots, n$, the event $\mathcal{E}_{n}(\delta)$ happens with probability at least $1-\delta / 3$.

Upper bound on the first term in (20). By Assumption (5), we have $\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta \in[0, C]$, thus

$$
\left|\widehat{Z}_{t}-Z_{t}\right|=\left|\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta-\left[\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{n}\right]_{C}\right| \leqslant C
$$

and therefore, on $\mathcal{E}_{n}(\delta)$,

$$
\left|\widehat{Z}_{t}+Z_{t}\right| \leqslant\left|\widehat{Z}_{t}-Z_{t}\right|+\left|2 Z_{t}\right| \leqslant C+2 M_{n} \stackrel{\text { def }}{=} M_{n}^{\prime \prime}
$$

Noting that all components of $p_{t} p_{t}^{\mathrm{T}}$ are upper bounded by 1 ,

$$
\begin{aligned}
\| \sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}\right. & \left.-Z_{t}^{2}\right) p_{t} p_{t}^{\mathrm{T}} \|_{\infty} \leqslant \sum_{t=1}^{n}\left|\widehat{Z}_{t}^{2}-Z_{t}^{2}\right| \\
& =\sum_{t=1}^{n}\left|\left(\widehat{Z}_{t}-Z_{t}\right)\left(\widehat{Z}_{t}+Z_{t}\right)\right| \\
& \leqslant M_{n}^{\prime \prime} \sqrt{n \sum_{t=1}^{n}\left(\widehat{Z}_{t}-Z_{t}\right)^{2}}
\end{aligned}
$$

where the last inequality was obtained by $\left|\widehat{Z}_{t}+Z_{t}\right| \leqslant M_{n}^{\prime \prime}$ together with the Cauchy-Schwarz inequality. Using that $\left|y-[x]_{C}\right| \leqslant|y-x|$ when $y \in[0, C]$ and $x \in \mathbb{R}$, we note that

$$
\left|\widehat{Z}_{t}-Z_{t}\right| \leqslant\left|\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}}\left(\widehat{\theta}_{n}-\theta\right)\right| .
$$

All in all, we proved so far

$$
\begin{aligned}
& \left\|\sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}-Z_{t}^{2}\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \\
& \quad \leqslant M_{n}^{\prime \prime} \sqrt{n\left(\widehat{\theta}_{n}-\theta\right)^{\mathrm{T}}\left(\sum_{t=1}^{n} \phi\left(x_{t}, p_{t}\right) \phi\left(x_{t}, p_{t}\right)^{\mathrm{T}}\right)\left(\widehat{\theta}_{n}-\theta\right)} \\
& \quad=M_{n}^{\prime \prime} \sqrt{n\left(\widehat{\theta}_{n}-\theta\right)^{\mathrm{T}}\left(V_{n}-\lambda I\right)\left(\widehat{\theta}_{n}-\theta\right)} \\
& \quad \leqslant M_{n}^{\prime \prime} \sqrt{n\left(\widehat{\theta}_{n}-\theta\right)^{\mathrm{T}} V_{n}\left(\widehat{\theta}_{n}-\theta\right)} \\
& \quad=M_{n}^{\prime \prime}\left\|V_{n}^{1 / 2}\left(\theta-\widehat{\theta}_{n}\right)\right\| \sqrt{n},
\end{aligned}
$$

where $V_{n}=\lambda I+\sum_{t=1}^{n} \phi\left(x_{t}, p_{t}\right) \phi\left(x_{t}, p_{t}\right)^{\mathrm{T}}$ was used for the last steps.

From Lemma 1 and the bound (6), we finally obtain that with probability at least $1-\delta / 3$,

$$
\begin{align*}
\left\|\sum_{t=1}^{n}\left(\widehat{Z}_{t}^{2}-Z_{t}^{2}\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} & \leqslant M_{n}^{\prime \prime} B_{n}(\delta / 3) \sqrt{n} \tag{23}\\
& =\left(C+2 M_{n}\right) B_{n}(\delta / 3) \sqrt{n} \tag{24}
\end{align*}
$$

Upper bound on the second term in (20). Recall that p_{t} is \mathcal{F}_{t-1} measurable and that in Model 1, we defined $Z_{t}=$ $Y_{t, p_{t}}-\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta=p_{t}^{\mathrm{T}} \varepsilon_{t}$, which is a scalar value. These two observations yield

$$
\begin{align*}
& \mathbb{E}\left[Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right]=\mathbb{E}\left[p_{t} Z_{t}^{2} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right] \\
& \quad=\mathbb{E}\left[p_{t} p_{t}^{\mathrm{T}} \varepsilon_{t} \varepsilon_{t}^{\mathrm{T}} p_{t} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right] \\
& \quad=p_{t} p_{t}^{\mathrm{T}} \mathbb{E}\left[\varepsilon_{t} \varepsilon_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right] p_{t} p_{t}^{\mathrm{T}}=p_{t} p_{t}^{\mathrm{T}} \Gamma p_{t} p_{t}^{\mathrm{T}} \tag{25}
\end{align*}
$$

We wish to apply the Hoeffding-Azuma inequality to each component of $Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}}$, however, we need some boundedness to do so. Therefore, we consider instead $Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}}$. The indicated inequality, together with a union bound, entails that with probability at least $1-\delta / 3$,

$$
\begin{align*}
& \| \sum_{t=1}^{n} Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}} p_{t} p_{t}^{\mathrm{T}} \\
& \quad-\quad \sum_{t=1}^{n} \mathbb{E}\left[Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}} p_{t} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right] \|_{\infty} \\
& \leqslant M_{n}^{2} \sqrt{2 n \ln \left(3 K^{2} / \delta\right)} \tag{26}
\end{align*}
$$

Over $\mathcal{E}_{n}(\delta)$, using (25) and applying a triangular inequality,
we obtain

$$
\begin{align*}
& \left\|\sum_{t=1}^{n} Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}}-p_{t} p_{t}^{\mathrm{T}} \Gamma p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \\
& =\left\|\sum_{t=1}^{n} Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}} p_{t} p_{t}^{\mathrm{T}}-\sum_{t=1}^{n} \mathbb{E}\left[Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right]\right\|_{\infty} \\
& \leqslant \| \sum_{t=1}^{n} Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}} p_{t} p_{t}^{\mathrm{T}} \\
& \quad-\sum_{t=1}^{n} \mathbb{E}\left[Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}} \mathbf{1}_{\left\{\left|Z_{t}\right| \leqslant M_{n}\right\}} \mid \mathcal{F}_{t-1}\right] \|_{\infty} \\
& \quad+\sum_{t=1}^{n}\left\|\mathbb{E}\left[Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}} \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right]\right\|_{\infty} \tag{27}
\end{align*}
$$

We just need to bound the last term of the inequality above to conclude this part. Using that $x^{2} \leqslant \exp (x)$ for $x \geqslant 0$, we get

$$
\begin{aligned}
& \mathbb{E}\left[Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right] \\
& \leqslant \mathbb{E}\left[\exp \left(\left|Z_{t}\right|\right) \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right]
\end{aligned}
$$

Applying a conditional Cauchy-Schwarz inequality yields

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\left|Z_{t}\right|\right) \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right] \\
& \leqslant \sqrt{\mathbb{E}\left[\exp \left(2\left|Z_{t}\right|\right) \mid \mathcal{F}_{t-1}\right] \mathbb{E}\left[\mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right]}
\end{aligned}
$$

Now, thanks to the sub-Gaussian property of ε_{t} used with $\nu=2 p_{t}$ and $\nu=-2 p_{t}$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(2\left|Z_{t}\right|\right)\right. \\
& \leqslant \mathbb{E}\left[\exp \left(2 Z_{t}\right) \mid \mathcal{F}_{t-1}\right]+\mathbb{E}\left[\exp \left(-2 Z_{t}\right) \mid \mathcal{F}_{t-1}\right] \\
& \leqslant 2 \exp (2 \rho)
\end{aligned}
$$

The bound (22) and its symmetric version indicate that

$$
\mathbb{P}\left(\left|Z_{t}\right| \geqslant M_{n} \mid \mathcal{F}_{t-1}\right) \leqslant \frac{\delta}{3 n}
$$

We therefore proved

$$
\mathbb{E}\left[\exp \left(\left|Z_{t}\right|\right) \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right] \leqslant \sqrt{2 \exp (2 \rho) \frac{\delta}{3 n}}
$$

Thus, we have $\mathbb{E}\left[Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} \mid \mathcal{F}_{t-1}\right] \leqslant 2 \sqrt{\exp (2 \rho) \delta /(6 n)}$ and as all components of the $p_{t} p_{t}^{\mathrm{T}}$ are in $[0,1]$,

$$
\begin{equation*}
\left\|\mathbb{E}\left[Z_{t}^{2} \mathbf{1}_{\left\{\left|Z_{t}\right|>M_{n}\right\}} p_{t} p_{t}^{\mathrm{T}} \mid \mathcal{F}_{t-1}\right]\right\|_{\infty} \leqslant 2 \sqrt{\exp (2 \rho) \frac{\delta}{6 n}} \tag{28}
\end{equation*}
$$

Finally , combining (27) with (26) and (28), we get with probability $1-\delta / 3$

$$
\begin{aligned}
& \left\|\sum_{t=1}^{n} Z_{t}^{2} p_{t} p_{t}^{\mathrm{T}}-p_{t} p_{t}^{\mathrm{T}} \Gamma p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \\
& \leqslant M_{n}^{2} \sqrt{2 n \ln \left(3 K^{2} / \delta\right)}+2 n \sqrt{\exp (2 \rho) \delta /(6 n)}=M_{n}^{\prime} \sqrt{n}
\end{aligned}
$$

where M_{n}^{\prime} is defined in the statement of the lemma.
Combining the two upper bounds into (20). Combining the above upper bound with (20) and (24), we proved that with probability $1-\delta$,

$$
\begin{aligned}
& \left\|\sum_{t=1}^{n} p_{t} p_{t}^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}\right\|_{\infty} \\
& \quad \leqslant M_{n}^{\prime} \sqrt{n}+M_{n}^{\prime \prime} B_{n}(\delta / 3) \sqrt{n}
\end{aligned}
$$

which concludes the proof.

Conclusion of the proof of Lemma 2

Remember from Section 3.3 that all vectors $p^{(i, j)}$ are played at least n_{0} times in the n exploration rounds.

Proof of Lemma 2. Applying Lemma 4 together with

$$
\begin{align*}
p_{t} p_{t}^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}= & p_{t} \operatorname{Tr}\left(p_{t}^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t}\right) p_{t}^{\mathrm{T}} \\
& =\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}\right) p_{t} p_{t}^{\mathrm{T}} \tag{29}
\end{align*}
$$

we have, with probability at least $1-\delta$, that for all pairs of coordinates $(i, j) \in E$,

$$
\begin{equation*}
\left|\sum_{t=1}^{n} \operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) p_{t} p_{t}^{\mathrm{T}}\right)\left[p_{t} p_{t}^{\mathrm{T}}\right]_{i, j}\right| \leqslant \kappa_{n} \sqrt{n} \tag{30}
\end{equation*}
$$

Remember that in the set E considered in Section 3.3, we only have pairs (i, j) with $i \leqslant j$. However, for symmetry reasons, it will be convenient to also consider the vectors $p^{(i, j)}$ with $i>j$, where the latter vectors are defined in an obvious way. We note that for all $1 \leqslant i, j \leqslant K$,

$$
\begin{equation*}
p^{(i, j)} p^{(i, j)^{\mathrm{T}}}=p^{(j, i)} p^{(j, i)^{\mathrm{T}}} \tag{31}
\end{equation*}
$$

Now, our aim is to control

$$
\begin{equation*}
\left|q^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) q\right|=\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) q q^{\mathrm{T}}\right)\right| \tag{32}
\end{equation*}
$$

uniformly over $q \in \mathcal{P}$. The proof consists of two steps: establishing such a control for the special cases where q is one of the $p^{(i, j)}$ and then, extending the control to arbitrary vectors $q \in \mathcal{P}$, based on a decomposition of $q q^{\mathrm{T}}$ as a weighted sum of $p^{(i, j)} p^{(i, j)^{\mathrm{T}}}$ vectors.

Part 1: The case of the $p^{(i, j)}$ vectors. Consider first the off-diagonal elements $1 \leqslant i<j \leqslant K$. Note that since p_{t} is of the form $p^{\left(i^{\prime}, j^{\prime}\right)}$ for all $1 \leqslant t \leqslant n$, we have

$$
\left[p_{t} p_{t}^{\mathrm{T}}\right]_{i, j}= \begin{cases}1 / 4 & \text { if } p_{t}=p^{(i, j)} \tag{33}\\ 0 & \text { otherwise }\end{cases}
$$

Using that $p_{t}=p^{(i, j)}$ at least for n_{0} rounds, Inequality (30) entails

$$
\frac{n_{0}}{4}\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right)\right| \leqslant \kappa_{n} \sqrt{n}
$$

or put differently,

$$
\begin{equation*}
\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right)\right| \leqslant \frac{4 \kappa_{n} \sqrt{n}}{n_{0}} \tag{34}
\end{equation*}
$$

Now, let us consider the diagonal elements. Let $1 \leqslant i \leqslant K$. We have

$$
\left[p_{t} p_{t}^{\mathrm{T}}\right]_{i, i}= \begin{cases}1 & \text { if } p_{t}=p^{(i, i)} \tag{35}\\ 1 / 4 & \text { if } p_{t}=p^{(i, j)} \text { for some } j>i \\ 1 / 4 & \text { if } p_{t}=p^{(k, i)} \text { for some } k<i \\ 0 & \text { otherwise }\end{cases}
$$

where we recall that the p_{t} are necessarily of the form $p^{(k, \ell)}$ with $k \leqslant \ell$. Therefore, Inequality (30) yields

$$
\begin{aligned}
n_{0} \mid \operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right)\right. & \left(p^{(i, i)} p^{(i, i)^{\mathrm{T}}}+\frac{1}{4} \sum_{j>i} p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right. \\
& \left.\left.+\frac{1}{4} \sum_{k<i} p^{(k, i)} p^{(k, i)^{\mathrm{T}}}\right)\right) \mid \leqslant \kappa_{n} \sqrt{n}
\end{aligned}
$$

which we rewrite by symmetry—see (31)—as

$$
\begin{array}{r}
\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right)\left(p^{(i, i)} p^{(i, i)^{\mathrm{T}}}+\frac{1}{4} \sum_{j \neq i} p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right)\right)\right| \\
\leqslant \frac{\kappa_{n} \sqrt{n}}{n_{0}} \tag{36}
\end{array}
$$

Part 2-1: Decomposing arbitrary vectors $q \in \mathcal{P}$. Now, let $q \in \mathcal{P}$. We show below by means of elementary calculations that

$$
\begin{equation*}
q q^{\mathrm{T}}=\sum_{i=1}^{K} \sum_{j=1}^{K} u(i, j) p^{(i, j)} p^{(i, j)^{\mathrm{T}}} \tag{37}
\end{equation*}
$$

with $u(i, j)=2 q_{i} q_{j}$ if $i \neq j$ and $u(i, i)=2 q_{i}^{2}-q_{i}$.
Indeed, by identification and by imposing $u(i, j)=u(j, i)$ for all pairs i, j, the equalities (33) and the symmetry property (31) entail, for $k \neq k^{\prime}$:

$$
\begin{aligned}
q_{k} q_{k^{\prime}}=\left[q q^{\mathrm{T}}\right]_{k, k^{\prime}} & =\sum_{i=1}^{K} \sum_{j=1}^{K} u(i, j)\left[p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right]_{k, k^{\prime}} \\
& =\frac{u\left(k, k^{\prime}\right)}{4}+\frac{u\left(k^{\prime}, k\right)}{4}=\frac{u\left(k, k^{\prime}\right)}{2}
\end{aligned}
$$

which can be rephrased as $u\left(k, k^{\prime}\right)=u\left(k^{\prime}, k\right)=2 q_{k} q_{k^{\prime}}$. Now, let us calculate the diagonal elements, by identification and by the equalities (35) as well as by the symmetry
property (31):

$$
\begin{aligned}
q_{k}^{2} & =\left[q q^{\mathrm{T}}\right]_{k, k}=\sum_{i=1}^{K} \sum_{j=1}^{K} u(i, j)\left[p^{(i, j)} p^{(i, j)^{\mathrm{T}}}\right]_{k, k} \\
& =u(k, k)+\sum_{i \neq k} \frac{u(i, k)}{4}+\sum_{j \neq k} \frac{u(k, j)}{4} \\
& =u(k, k)+\frac{1}{2} \sum_{i \neq k} u(i, k)=u(k, k)+\sum_{i \neq k} q_{k} q_{i} \\
& =u(k, k)+\sum_{i=1}^{K} q_{k} q_{i}-q_{k}^{2}=u(k, k)+q_{k}-q_{k}^{2}
\end{aligned}
$$

which leads to $u(k, k)=2 q_{k}^{2}-q_{k}$.
We introduce the notation

$$
P^{(i, j)}=p^{(i, j)} p^{(i, j)^{\mathrm{T}}}
$$

and in light of (34) and (36), we rewrite (37) as

$$
\begin{aligned}
q q^{\mathrm{T}}= & \sum_{i=1}^{K} u(i, i)\left(P^{(i, i)}+\frac{1}{4} \sum_{j \neq i} P^{(i, j)}\right) \\
& +\sum_{i=1}^{K} \sum_{j \neq i}\left(u(i, j)-\frac{u(i, i)}{4}\right) P^{(i, j)} .
\end{aligned}
$$

Part 2-2: Controlling arbitrary vectors $q \in \mathcal{P}$. Therefore, substituting this decomposition of $q q^{\mathrm{T}}$ into the aim (32), and using the linearity of the trace as well as the triangle inequality for absolute values, we obtain

$$
\begin{aligned}
& \left|q^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) q\right|=\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) q q^{\mathrm{T}}\right)\right| \\
& \leqslant \sum_{i=1}^{K}|u(i, i)|\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right)\left(P^{(i, i)}+\frac{1}{4} \sum_{j \neq i} P^{(i, j)}\right)\right)\right| \\
& \quad+\sum_{i=1}^{K} \sum_{j \neq i}\left|u(i, j)-\frac{u(i, i)}{4}\right|\left|\operatorname{Tr}\left(\left(\widehat{\Gamma}_{n}-\Gamma\right) P^{(i, j)}\right)\right|
\end{aligned}
$$

We then substitute the upper bounds (34) and (36) and get

$$
\begin{aligned}
& \left|q^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) q\right| \\
\leqslant & \frac{\kappa_{n} \sqrt{n}}{n_{0}}\left(\sum_{i=1}^{K}|u(i, i)|+4 \sum_{i=1}^{K} \sum_{j \neq i}\left|u(i, j)-\frac{u(i, i)}{4}\right|\right) .
\end{aligned}
$$

By the triangle inequality, by the values $2 q_{i} q_{j}$ of the coeffi-
cients $u(i, j)$ when $i \neq j$ and by using $|u(i, i)| \leqslant q_{i}$,

$$
\begin{aligned}
& \sum_{i=1}^{K}|u(i, i)|+4 \sum_{i=1}^{K} \sum_{j \neq i}\left|u(i, j)-\frac{u(i, i)}{4}\right| \\
& \leqslant K \sum_{i=1}^{K}|u(i, i)|+4 \sum_{i=1}^{K} \sum_{j \neq i}|u(i, j)| \\
& \leqslant K \sum_{i=1}^{K} q_{i}+8 \sum_{i=1}^{K} \sum_{j \neq i} q_{i} q_{j} \\
& =K+8 \sum_{i=1}^{K} q_{i}\left(1-q_{i}\right) \leqslant K+8
\end{aligned}
$$

Putting all elements together, we proved

$$
\sup _{q \in \mathcal{P}}\left|q^{\mathrm{T}}\left(\widehat{\Gamma}_{n}-\Gamma\right) q\right| \leqslant \frac{\kappa_{n} \sqrt{n}}{n_{0}}(K+8)
$$

which concludes the proof of Lemma 2.

D. Proof of Lemma 3

We recall that this lemma is a straightforward adaptation/generalization of Lemma 19.1 of the monograph by Lattimore \& Szepesvári (2018); see also a similar result in Lemma 3 by Chu et al. (2011).

We consider the worst case when all summations would start at $n+1=2$.

By definition, the quantity \bar{B} upper bounds all the $B_{t-1}\left(\delta t^{-2}\right)$. It therefore suffices to upper bound

$$
\begin{aligned}
& \sum_{t=2}^{T} \min \left\{L, 2 C \bar{B}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p_{t}\right)\right\|\right\} \\
& \leqslant \sqrt{T} \sqrt{\sum_{t=2}^{T} \min \left\{L^{2},(2 C \bar{B})^{2}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p_{t}\right)\right\|^{2}\right\}} \\
& =\sqrt{T} \sqrt{\sum_{t=2}^{T} \min \left\{L^{2},(2 C \bar{B})^{2}\left(\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}-1\right)\right\}}
\end{aligned}
$$

where we applied first the Cauchy-Schwarz inequality and used second the equality

$$
\begin{aligned}
1+\| & V_{t-1}^{-1 / 2} \phi\left(x_{t}, p_{t}\right) \|^{2} \\
& =1+\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} V_{t-1}^{-1} \phi\left(x_{t}, p_{t}\right)=\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}
\end{aligned}
$$

that follows from a standard result in online matrix theory, namely, Lemma 5 below.
Now, we get a telescoping sum with the logarithm function by using the inequality

$$
\begin{equation*}
\forall b>0, \quad \forall u>0, \quad \min \{b, u\} \leqslant b \frac{\ln (1+u)}{\ln (1+b)} \tag{38}
\end{equation*}
$$

which is proved below. Namely, we further bound the sum above by

$$
\begin{aligned}
& \sum_{t=2}^{T} \min \left\{L^{2},(2 C \bar{B})^{2}\left(\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}-1\right)\right\} \\
& \leqslant(2 C \bar{B})^{2} \sum_{t=2}^{T} \min \left\{\frac{L^{2}}{(2 C \bar{B})^{2}}, \frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}-1\right\} \\
& \leqslant(2 C \bar{B})^{2} \sum_{t=2}^{T} \frac{L^{2} /(2 C \bar{B})^{2}}{\ln \left(1+L^{2} /(2 C \bar{B})^{2}\right)} \ln \left(\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}\right) \\
& =\frac{L^{2}}{\ln \left(1+L^{2} /(2 C \bar{B})^{2}\right)} \ln \left(\frac{\operatorname{det}\left(V_{T}\right)}{\operatorname{det}\left(V_{2}\right)}\right) \\
& \leqslant \frac{L^{2}}{\ln \left(1+L^{2} /(2 C \bar{B})^{2}\right)} d \ln \frac{\lambda+T}{\lambda}
\end{aligned}
$$

where we used (5) and one of its consequences to get the last inequality.

Finally, we use $1 / \ln (1+u) \leqslant 1 / u+1 / 2$ for all $u \geqslant 0$ to get a more readable constant:

$$
\frac{L^{2}}{\ln \left(1+L^{2} /(2 C \bar{B})^{2}\right)} \leqslant(2 C \bar{B})^{2}+\frac{L^{2}}{2}
$$

The proof is concluded by collecting all pieces.
Finally, we now provide the proofs of two either straightforward or standard results used above.

D.1. A Standard Result in Online Matrix Theory

The following result is extremely standard in online matrix theory (see, among many others, Lemma 11.11 in CesaBianchi \& Lugosi, 2006 or the proof of Lemma 19.1 in the monograph by Lattimore \& Szepesvári, 2018).
Lemma 5. Let M a $d \times d$ full-rank matrix, let $u, v \in \mathbb{R}^{d}$ be two arbitrary vectors. Then

$$
1+v^{\mathrm{T}} M^{-1} u=\frac{\operatorname{det}\left(M+u v^{\mathrm{T}}\right)}{\operatorname{det}(M)}
$$

The proof first considers the case $M=\mathrm{I}_{d}$. We are then left with showing that $\operatorname{det}\left(\mathrm{I}_{d}+u v^{\mathrm{T}}\right)=1+v^{\mathrm{T}} u$, which follows from taking the determinant of every term of the equality

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{I}_{d} & 0 \\
v^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I}_{d}+u v^{\mathrm{T}} & u \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I}_{d} & 0 \\
-v^{\mathrm{T}} & 1
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\mathrm{I}_{d} & u \\
0 & 1+v^{\mathrm{T}} u
\end{array}\right] . }
\end{aligned}
$$

Now, we can reduce the case of a general M to this simpler case by noting that

$$
\begin{aligned}
\operatorname{det}\left(M+u v^{\mathrm{T}}\right) & =\operatorname{det}(M) \operatorname{det}\left(\mathrm{I}_{d}+\left(M^{-1} u\right) v^{\mathrm{T}}\right) \\
& =\operatorname{det}(M)\left(1+v^{\mathrm{T}} M^{-1} u\right)
\end{aligned}
$$

D.2. Proof of Inequality (38)

This inequality is used in Lemma 19.1 of the monograph by Lattimore \& Szepesvári (2018), in the special case $b=1$. The extension to $b>0$ is straightforward.

We fix $b>0$. We want to prove that

$$
\begin{equation*}
\forall u>0, \quad \min \{b, u\} \leqslant b \frac{\ln (1+u)}{\ln (1+b)} \tag{39}
\end{equation*}
$$

We first note that

$$
\min \{b, u\}=b \frac{\ln (1+u)}{\ln (1+b)} \quad \text { for } u=b
$$

and that $\min \{b, u\}=b$ for $u \geqslant b$, with the right-hand side of (39) being an increasing function of u. Therefore, it suffices to prove (39) for $u \in[0, b]$, where $\min \{b, u\}=u$. Now,

$$
u \longmapsto b \frac{\ln (1+u)}{\ln (1+b)}-u
$$

is a concave and (twice) differentiable function, vanishing at $u=0$ and $u=b$, and is therefore non-negative on $[0, b]$. This concludes the proof.

E. Proof of Theorem 2

Comment: The key observation lies in Step 1 (and is tagged as such); the rest is standard maths.
Because of the expression for the expected losses (8) and the consequence (10) of attainability, the regret can be rewritten as

$$
R_{T}=\sum_{t=1}^{T} \ell_{t, p_{t}}=\sum_{t=1}^{T}\left(\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta-c_{t}\right)^{2}
$$

We first successively prove (Step 1) that for $t \geqslant 2$, if the bound of Lemma 1 holds, namely,

$$
\begin{equation*}
\left\|V_{t-1}^{1 / 2}\left(\theta-\widehat{\theta}_{t-1}\right)\right\| \leqslant B_{t-1}\left(\delta t^{-2}\right) \tag{40}
\end{equation*}
$$

then

$$
\begin{align*}
& \ell_{t, p_{t}} \leqslant 2 \beta_{t, p_{t}}+2 \tilde{\ell}_{t, p_{t}} \tag{41}\\
& \tilde{\ell}_{t, p_{t}} \leqslant \beta_{t, p_{t}}+\tilde{\ell}_{t, p_{t}^{\star}}-\beta_{t, p_{t}^{\star}} \tag{42}\\
& \tilde{\ell}_{t, p_{t}^{\star}} \leqslant \beta_{t, p_{t}^{\star}} \tag{43}
\end{align*}
$$

These inequalities collectively entail the bound $\ell_{t, p_{t}} \leqslant 4 \beta_{t, p_{t}}$. Of course, because of the boundedness assumptions (5), we also have $\ell_{t, p_{t}} \leqslant C^{2}$. It then suffices to bound the sum (Step 2) of the $\ell_{t, p_{t}}$ by the sum of the $\min \left\{C^{2}, 4 \beta_{t, p_{t}}\right\}$ and control for the probability of (40).

Step 1: Proof of (41)-(43). Inequality (42) holds by definition of the algorithm. For (43) and (41), we re-use the inequality (17) proved earlier: for all $p \in \mathcal{P}$,

$$
\begin{align*}
& \left(\phi\left(x_{t}, p\right)^{\mathrm{T}}\left(\theta-\widehat{\theta}_{t-1}\right)\right)^{2} \\
& \leqslant\left\|V_{t-1}^{1 / 2}\left(\theta-\widehat{\theta}_{t-1}\right)\right\|^{2}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\|^{2} \tag{44}\\
& \leqslant B_{t-1}\left(\delta t^{-2}\right)^{2}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\|^{2} \stackrel{\text { def }}{=} \beta_{t, p} \tag{45}
\end{align*}
$$

where we used the bound (40) for the last inequality. This inequality directly yields (43) by taking $p=p_{t}^{\star}$.

Now comes the specific improvement and our key observation: using that $(u+v)^{2} \leqslant 2 u^{2}+2 v^{2}$, we have

$$
\begin{aligned}
\ell_{t, p_{t}}= & \left(\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta-\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right. \\
& \left.+\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{t-1}-c_{t}\right)^{2} \\
\leqslant & 2\left(\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \theta-\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{t-1}\right)^{2} \\
& +2 \underbrace{\left(\phi\left(x_{t}, p_{t}\right)^{\mathrm{T}} \widehat{\theta}_{t-1}-c_{t}\right)^{2}}_{=\widetilde{\ell}_{t, p_{t}}}
\end{aligned}
$$

which yields (41) via (45) used with $p=p_{t}$.
Step 2: Summing the bounds. First, the bound (40) holds, by Lemma 1 , with probability at least $1-\delta t^{-2}$ for a given $t \geqslant 2$.

By a union bound, it holds for all $t \geqslant 2$ with probability at least $1-\delta$. By bounding $\ell_{t, p_{t}}$ by C^{2} and the $B_{t-1}\left(\delta t^{-2}\right)$ by \bar{B}, we therefore get, from Step 1 , that with probability at least $1-\delta$,

$$
\bar{R}_{T} \leqslant C^{2}+\sum_{t=2}^{T} \min \left\{C^{2}, 4 \bar{B}^{2}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\|^{2}\right\}
$$

Now, as in the proof of Lemma 3 above (Appendix D),

$$
\begin{aligned}
& \sum_{t=2}^{T} \min \left\{C^{2}, 4 \bar{B}^{2}\left\|V_{t-1}^{-1 / 2} \phi\left(x_{t}, p\right)\right\|^{2}\right\} \\
& =\sum_{t=2}^{T} \min \left\{C^{2}, 4 \bar{B}^{2}\left(\frac{\operatorname{det}\left(V_{T}\right)}{\operatorname{det}\left(V_{1}\right)}-1\right)\right\} \\
& \leqslant 4 \bar{B}^{2} \sum_{t=2}^{T} \frac{C^{2} /\left(4 \bar{B}^{2}\right)}{\ln \left(1+C^{2} /\left(4 \bar{B}^{2}\right)\right)} \ln \left(\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{t-1}\right)}\right) \\
& =\frac{C^{2}}{\ln \left(1+C^{2} /\left(4 \bar{B}^{2}\right)\right)} \ln \left(\frac{\operatorname{det}\left(V_{T}\right)}{\operatorname{det}\left(V_{1}\right)}\right) \\
& \leqslant\left(4 \bar{B}^{2}+\frac{C^{2}}{2}\right) d \ln \frac{\lambda+T}{\lambda}
\end{aligned}
$$

This concludes the proof.

F. Numerical expression of the covariance matrix Γ built on data

The covariance matrix Γ was built based on historical data as indicated in Section 5.1. Namely, we considered the time series of residuals associated with our estimation of the consumption. The diagonal coefficients $\Gamma_{j, j}$ were given by the empirical variance of the residuals associated with tariff j, while non-diagonal coefficients $\Gamma_{j, j^{\prime}}$ were given by the empirical covariance between residuals of tariffs j and j^{\prime} at times t and $t \pm 48$. (A more realistic model might consider a noise which depends on the half-hour of the day).
Numerical expression obtained. More precisely, the variance terms $\Gamma_{1,1}, \Gamma_{2,2}$, and $\Gamma_{3,3}$ were computed with respectively 788,15072 and 1660 observations, while the non-diagonal coefficients were based on fewer observations: 1318 for $\Gamma_{2,3}$ and 620 for $\Gamma_{1,2}$, but only 96 for $\Gamma_{1,3}$. The resulting matrix Γ is

$$
\Gamma=\sigma^{2}\left(\begin{array}{lll}
1.11 & 0.46 & 0.04 \\
0.46 & 1.00 & 0.56 \\
0.04 & 0.56 & 2.07
\end{array}\right) \quad \text { with } \quad \sigma=0.02
$$

To get an idea of the orders of magnitude at stake, we indicate that in the data set considered, the mean consumption remained between 0.08 and 0.21 kWh per half-hour and that its empirical average equals 0.46 .
Off-diagonal coefficients are non-zero. We may test, for each $j \neq j^{\prime}$, the null hypothesis $\Gamma_{j, j^{\prime}}=0$ using the Pearson correlation test; we obtain low p -values (smaller than something of the order of 10^{-13}), which shows that Γ is significantly different from a diagonal matrix. We may conduct a similar study to show that it is not proportional to the all-ones matrix, nor to any matrix with a special form.

