
Deep Counterfactual Regret Minimization

A. Rules for Heads-Up Limit Texas Hold’em and Flop Hold’em Poker
Heads-up limit Texas hold’em is a two-player zero-sum game. There are two players and the position of the two players
alternate after each hand. On each betting round, each player can choose to either fold, call, or raise. Folding results in the
player losing and the money in the pot being awarded to the other player. Calling means the player places a number of chips
in the pot equal to the opponent’s share. Raising means that player adds more chips to the pot than the opponent’s share. A
round ends when a player calls (if both players have acted). There cannot be more than three raises in the first or second
betting round or more than four raises in the third or fourth betting round, so there is a limited number of actions in the
game. Raises in the first two rounds are $100 and raises in the second two rounds are $200.

At the start of each hand of HULH, both players are dealt two private cards from a standard 52-card deck. P1 must place
$50 in the pot and P2 must place $100 in the pot. A round of betting then occurs starting with P1. When the round ends,
three community cards are dealt face up that both players can ultimately use in their final hands. Another round of betting
occurs, starting with P2 this time. Afterward another community card is dealt face up and another betting round occurs.
Then a final card is dealt face up and a final betting round occurs. At the end of the betting round, unless a player has folded,
the player with the best five-card poker hand constructed from their two private cards and the five community cards wins the
pot. In the case of a tie, the pot is split evenly.

Flop Hold’em Poker is identical to HULH except there are only the first two betting rounds.

B. Proofs of Theorems
B.1. Review of MCCFR

We begin by reviewing the derivation of convergence bounds for external sampling MCCFR from Lanctot et al. 2009.

An MCCFR scheme is completely specified by a set of blocks Q = {Qi} which each comprise a subset of all terminal
histories Z. On each iteration MCCFR samples one of these blocks, and only considers terminal histories within that block.
Let qj > 0 be the probability of considering block Qj in an iteration.

Let ZI be the set of terminal nodes that contain a prefix in I , and let z[I] be that prefix. Define πσ(h→ z) as the probability
of playing to z given that player p is at node h with both players playing σ.

πσ(h→ z) =
∑
z∈ZI

πσ(z[I])

πσ(I)
πσ(z).

πσ(I → z) is undefined when π(I) = 0.

Let q(z) =
∑
j:z∈Qj qj be the probability that terminal history z is sampled in an iteration of MCCFR. For external sampling

MCCFR, q(z) = πσ−i(z).

The sampled value ṽσi (I|j) when sampling block j is

ṽσp (I|j) =
∑

z∈Qj∩ZI

1

q(z)
up(z)π

σ
−p(z[I])πσ(z[I]→ z) (6)

For external sampling, the sampled value reduces to

ṽσp (I|j) =
∑

z∈Qj∩ZI

up(z)π
σ
p (z[I]→ z) (7)

The sampled value is an unbiased estimator of the true value vp(I). Therefore the sampled instantaneous regret r̃t(I, a) =

ṽσ
t

p (I, a)− ṽσtp (I) is an unbiased estimator of rt(I, a).

The sampled regret is calculated as R̃T (I, a) =
∑T
t=1 r̃

t(I, a).

We first state the general bound shown in (Lanctot, 2013), Theorem 3.
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Lanctot 2013 defines Bp to be a set with one element per distinct action sequence ~a played by p, containing all infosets that
may arise when p plays ~a. Mp is then defined by

∑
B∈Bp |B|. Let ∆ be the difference between the maximum and minimum

payoffs in the game.

Theorem 2. (Lanctot 2013, Theorem 3) For any p ∈ (0, 1], when using any algorithm in the MCCFR family such that for
all Q ∈ Q and B ∈ Bp, ∑

I∈B

 ∑
z∈Q∩ZI

πσ(z[I]→ z)πσ−p(z[I])

q(z)

2

≤ 1

δ2
(8)

where δ ≤ 1, then with probability at least 1− ρ, total regret is bounded by

RTp ≤

(
Mp +

√
2|Ip||Bp|√

ρ

)(
1

δ

)
∆
√
|A|T (9)

.

For the case of external sampling MCCFR, q(z) = πσ−i(z). Lanctot et al. 2009, Theorem 9 shows that for external sampling,
for which q(z) = πσ−i(z), the inequality in (8) holds for δ = 1, and thus the bound implied by (9) is

R̄Tp ≤

(
Mp +

√
2|Ip||Bp|√

ρ

)
∆

√
|A|√
T

(10)

≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

because |Bp| ≤Mp ≤ |Ip| (11)

.

B.2. Proof of Lemma 1

We show
EQj∼Q

[
ṽσ

t

p (I)
∣∣∣ZI ∩Qj 6= ∅] = vσ

t

(I)/πσ
t

−p(I).

Let qj = P (Qj).

EQj∼Q
[
ṽσ

t

p (I)
∣∣∣ZI ∩Q 6= ∅] =

EQj∼Q
[
ṽσ

t

p (I)
]

PQj∼Q(ZI ∩Qj 6= ∅)

=

∑
Qj∈Q qj

∑
z∈ZI∩Qj up(z)π

σt

−p(z[I])πσ
t

(z[I]→ z)/q(z)

πσ
t

−p(I)

=

∑
z∈ZI∩Qj

(∑
Qj :z∈Qj qj

)
up(z)π

σt

−p(z[I])πσ
t

(z[I]→ z)/q(z)

πσ
t

−p(I)

=

∑
z∈ZI q(z)up(z)π

σt

−p(z[I])πσ
t

(z[I]→ z)/q(z)

πσ
t

−p(I)
By definition of q(z)

=
vσ

t

(I)

πσ
t

−p(I)

The result now follows directly.

B.3. K-external sampling

We first show that performing MCCFR withK external sampling traversals per iteration (K-ES) shares a similar convergence
bound with standard external sampling (i.e. 1-ES). We will refer to this result in the next section when we consider the full
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Deep CFR algorithm. This convergence bound is rather obvious and the derivation pedantic, so the reader is welcome to
skip this section.

We model T rounds of K-external sampling as T ×K rounds of external sampling, where at each round t ·K + d (for
integer t ≥ 0 and integer 0 ≤ d < K) we play

σtK+d(a) =


R+
tK(a)

R+
Σ,tK

if R+
Σ,tK > 0

arbitrary, otherwise
(12)

In prior work, σ is typically defined to play 1
|A| when R+

Σ,T (a) ≤ 0, but in fact the convergence bounds do not constraint σ’s
play in these situations, which we will demonstrate explicitly here. We need this fact because minimizing the loss L(V ) is
defined only over the samples of (visited) infosets and thus does not constrain the strategy in unvisited infosets.

Lemma 2. If regret matching is used in K-ES, then for 0 ≤ d < K∑
a∈A

R+
tK(a)rtK+d(a) ≤ 0 (13)

Proof. If R+
Σ,tK ≤ 0, then R+

tK(a) = 0 for all a and the result follows directly. For R+
Σ,tK > 0,

∑
a∈A

R+
tK(a)rtK+d(a) =

∑
a∈A

R+
T (a)(utK+d(a)− utK+d(σtK)) (14)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(
utK+d(σtK)

∑
a∈A

R+
tK(a)

)
(15)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

σtK+d(a)utK+d(a)

)
R+

Σ,tK(a) (16)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

R+
tK(a)

R+
Σ,tK(a)

utK+d(a)

)
R+

Σ,tK(a) (17)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

R+
tK(a)(a)utK+d(a)

)
(18)

= 0 (19)

Theorem 3. Playing according to Equation 12 guarantees the following bound on total regret∑
a∈A

(R+
TK(a))2 ≤ |A|∆2K2T (20)

Proof. We prove by recursion on T .

∑
a∈A

(R+
TK(a))2 ≤

∑
a∈A

(
R+

(T−1)K(a) +

K−1∑
d=0

rtK−d(a)

)2

(21)

=
∑
a∈A

(
R+

(T−1)K(a)2 + 2

K−1∑
d=0

rd(a)R+
(T−1)K(a) +

K−1∑
d=0

K−1∑
d′=0

rTK−d(a)rTK−d′(a)

)
(22)

By Lemma 2,



Deep Counterfactual Regret Minimization

∑
a∈A

(R+
TK(a))2 ≤

∑
a∈A

(R+
(T−1)K(a))2 +

∑
a∈A

K−1∑
d=0

K−1∑
d′=0

rTK−d(a)rTK−d′(a) (23)

By induction, ∑
a∈A

(R+
(T−1)K(a))2 ≤ |A|∆2(T − 1) (24)

From the definition, |rTK−d(a)| ≤ ∆

∑
a∈A

(R+
TK(a))2 ≤ |A|∆2(T − 1) +K2|A|∆2 = |A|∆2K2T (25)

Theorem 4. (Lanctot 2013, Theorem 3 & Theorem 5) After T iterations of K-ES, average regret is bounded by

R̄TKp ≤

(
1 +

√
2√
ρK

)
|Ip|∆

√
|A|√
T

(26)

with probability 1− ρ.

Proof. The proof follows Lanctot 2013, Theorem 3. Note that K-ES is only different from ES in terms of the choice of
σT , and the proof in Lanctot 2013 only makes use of σT via the bound on (

∑
aR

T
+(a))2 that we showed in Theorem 3.

Therefore, we can apply the same reasoning to arrive at

R̃TKp ≤
∆Mp

√
|A|TK
δ

(27)

(Lanctot 2013, Eq. (4.30)).

Lanctot et al. 2009 then shows that R̃TKp and RTKp are similar with high probability, leading to

E


∑
I∈Ip

(RTKp (I)− R̃TKp (I))

2
 ≤ 2|Ip||Bp||A|TK∆2

δ2
(28)

(Lanctot 2013, Eq. (4.33), substituting T → TK).

Therefore, by Markov’s inequality, with probability at least 1− ρ,

RTKp ≤
√

2|Ip||Bp||A|TK∆

δ
√
ρ

+
∆M

√
|A|TK
δ

(29)

, where external sampling permits δ = 1 (Lanctot, 2013).

Using the fact that M ≤ |Ip| and |Bp| < |Ip| and dividing through by KT leads to the simplified form

R̄TKp ≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

(30)

with probability 1− ρ.
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We point out that the convergence of K-ES is faster as K increases (up to a point), but it still requires the same order of
iterations as ES.

B.4. Proof of Theorem 1

Proof. Assume that an online learning scheme plays

σt(I, a) =

{
yt+(I,a)∑
a y

t
+(I,a)

if
∑
a y

t
+(I, a) > 0

arbitrary, otherwise
. (31)

Morrill 2016, Corollary 3.0.6 provides the following bound on the total regret as a function of the L2 distance between y+
t

and RT,+ at each infoset.

max
a∈A

(RT (I, a))2 ≤ |A|∆2T + 4∆|A|
T∑
t=1

∑
a∈A

√
(Rt+(I, a)− yt+(I, a))2 (32)

≤ |A|∆2T + 4∆|A|
T∑
t=1

∑
a∈A

√
(Rt(I, a)− yt(I, a))2 (33)

Since σt(I, a) from Eq. 31 is invariant to rescaling across all actions at an infoset, it’s also the case that for any C(I) > 0

max
a∈A

(RT (I, a))2 ≤ |A|∆2T + 4∆|A|
T∑
t=1

∑
a∈A

√
(Rt(I, a)− C(I)yt(I, a))2 (34)

Let xt(I) be an indicator variable that is 1 if I was traversed on iteration t. If I was traversed then r̃t(I) was stored in MV,p,
otherwise r̃t(I) = 0. Assume for now thatMV,p is not full, so all sampled regrets are stored in the memory.

Let Πt(I) be the fraction of iterations on which xt(I) = 1, and let

εt(I) =
∥∥Et [r̃t(I)|xt(I) = 1

]
− V (I, a|θt)

∥∥
2
.

Inserting canceling factors of
∑t
t′=1 x

t′(I) and setting C(I) =
∑t
t′=1 x

t′(I),7

max
a∈A

(R̃T (I, a))2 ≤|A|∆2T + 4∆|A|
T∑
t=1

(
t∑

t′=1

xt
′
(I)

)∑
a∈A

√√√√( R̃t(I, a)∑t
t′=1 x

t′(I)
− yt(I, a)

)2

(35)

=|A|∆2T + 4∆|A|
T∑
t=1

(
t∑

t′=1

xt
′
(I)

)∥∥Et [r̃t(I)|xt(I) = 1
]
− V (I, a|θt)

∥∥
2

(36)

=|A|∆2T + 4∆|A|
T∑
t=1

tΠt(I)εt(I) by definition (37)

≤|A|∆2T + 4∆|A|T
T∑
t=1

Πt(I)εt(I) (38)

(39)

The first term of this expression is the same as Theorem 3, while the second term accounts for the approximation error.

7The careful reader may note that C(I) = 0 for unvisited infosets, but σt(I, a) can play an arbitrary strategy at these infosets so it’s
okay.
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In the case of K-external sampling, the same derivation as shown in Theorem 3 leads to

max
a∈A

(R̃T (I, a))2 ≤ |A|∆2TK2 + 4∆
√
|A|TK2

T∑
t=1

Πt(I)εt(I) (40)

in this case. We elide the proof.

The new regret bound in Eq. (40) can be plugged into Lanctot 2013, Theorem 3 as we do for Theorem 4, leading to

R̄Tp ≤
∑
I∈Ip

(1 +

√
2√
ρK

)
∆

√
|A|√
T

+
4√
T

√√√√|A|∆ T∑
t=1

Πt(I)εt(I)

 (41)

Simplifying the first term and rearranging,

R̄Tp ≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

+
4
√
|A|∆√
T

∑
I∈Ip

√√√√ T∑
t=1

Πt(I)εt(I) (42)

R̄Tp ≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

+
4
√
|A|∆√
T
|Ip|

∑
I∈Ip
|Ip|

√√√√ T∑
t=1

Πt(I)εt(I) Adding canceling factors (43)

≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

+
4
√
|A|∆|Ip|√
T

√√√√ T∑
t=1

∑
I∈Ip

Πt(I)εt(I) by Jensen’s inequality (44)

Now, lets consider the average MSE loss LTV (MT ) at time T over the samples in memoryMT .

We start by stating two well-known lemmas:

Lemma 3. The MSE can be decomposed into bias and variance components

Ex[(x− θ)2] = (θ − E[x])2 + Var(θ) (45)

Lemma 4. The mean of a random variable minimizes the MSE loss

argmin
θ

Ex[(x− θ)2] = E[x] (46)

and the value of the loss at when θ = E[x] is Var(x).

LTV =
1∑

I∈Ip
∑T
t=1 x

t(I)

∑
I∈Ip

T∑
t=1

xt(I)
∥∥r̃t(I)− V (I|θT )

∥∥2

2
(47)

≥ 1

|Ip|T
∑
I∈Ip

T∑
t=1

xt(I)
∥∥r̃t(I)− V (I|θT )

∥∥2

2
(48)

=
1

|Ip|
∑
I∈Ip

ΠT (I) Et
[∥∥r̃t(I)− V (I|θT )

∥∥2

2

∣∣∣xt(I) = 1
]

(49)

Let V ∗ be the model that minimizes LT onMT . Using Lemmas 3 and 4,
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LTV ≥
1

|Ip|T
∑
I∈Ip

ΠT (I)
(∥∥V (I|θT )− Et

[
r̃t(I)

∣∣xt(I) = 1
]∥∥2

2
+ LTV ∗

)
(50)

So,

LTV − LTV ∗ ≥
1

|Ip|
∑
I∈Ip

ΠT (I) εT (I) (51)

∑
I∈Ip

ΠT (I) εT (I) ≤ |Ip|(LTV − LTV ∗) (52)

Plugging this into Eq. 42, we arrive at

R̄Tp ≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

+
4
√
|A|∆|Ip|√
T

√√√√|Ip| T∑
t=1

(LtV − LtV ∗) (53)

≤

(
1 +

√
2√
ρK

)
∆|Ip|

√
|A|√
T

+ 4|Ip|
√
|A|∆εL (54)

So far we have assumed thatMV contains all sampled regrets. The number of samples in the memory at iteration t is
bounded by K · |Ip| · t. Therefore, if K · |Ip| · T < |MV | then the memory will never be full, and we can make this
assumption.8

B.5. Proof of Corollary 1

Proof. Let ρ = T−1/4.

P

(
R̄Tp >

(
1 +

√
2√
K

)
∆|Ip|

√
|A|

T−1/4
+ 4|Ip|

√
|A|∆εL

)
< T−1/4 (55)

Therefore, for any ε > 0,

lim
T→∞

P
(
R̄Tp − 4|Ip|

√
|A|∆εL > ε

)
= 0. (56)

8We do not formally handle the case where the memories become full in this work. Intuitively, reservoir sampling should work well
because it keeps an ‘unbiased’ sample of previous iterations’ regrets. We observe empirically in Figure 4 that reservoir sampling performs
well while using a sliding window does not.
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C. Network Architecture
In order to clarify the network architecture used in this work, we provide a PyTorch (Paszke et al., 2017) implementation
below.

import t o r c h
import t o r c h . nn as nn
import t o r c h . nn . f u n c t i o n a l a s F

c l a s s CardEmbedding ( nn . Module ) :
def i n i t ( s e l f , dim ) :

super ( CardEmbedding , s e l f ) . i n i t ( )
s e l f . r ank = nn . Embedding ( 1 3 , dim )
s e l f . s u i t = nn . Embedding ( 4 , dim )
s e l f . c a r d = nn . Embedding ( 5 2 , dim )

def f o r w a r d ( s e l f , input ) :
B , num cards = input . shape
x = input . view (−1)

v a l i d = x . ge ( 0 ) . f l o a t ( ) # −1 means ’ no card ’
x = x . clamp ( min =0)

embs = s e l f . c a r d ( x ) + s e l f . r ank ( x / / 4 ) + s e l f . s u i t ( x % 4)
embs = embs ∗ v a l i d . unsqueeze ( 1 ) # z e r o o u t ’ no card ’ embeddings

# sum a c r o s s t h e c a r d s i n t h e h o l e / board
re turn embs . view (B , num cards , −1).sum ( 1 )

c l a s s DeepCFRModel ( nn . Module ) :
def i n i t ( s e l f , n c a r d t y p e s , n b e t s , n a c t i o n s , dim = 2 5 6 ) :

super ( DeepCFRModel , s e l f ) . i n i t ( )

s e l f . c a r d e m b e d d i n g s = nn . Modu leL i s t (
[ CardEmbedding ( dim ) f o r in range ( n c a r d t y p e s ) ] )

s e l f . c a r d 1 = nn . L i n e a r ( dim ∗ n c a r d t y p e s , dim )
s e l f . c a r d 2 = nn . L i n e a r ( dim , dim )
s e l f . c a r d 3 = nn . L i n e a r ( dim , dim )

s e l f . b e t 1 = nn . L i n e a r ( n b e t s ∗ 2 , dim )
s e l f . b e t 2 = nn . L i n e a r ( dim , dim )

s e l f . comb1 = nn . L i n e a r (2 ∗ dim , dim )
s e l f . comb2 = nn . L i n e a r ( dim , dim )
s e l f . comb3 = nn . L i n e a r ( dim , dim )

s e l f . a c t i o n h e a d = nn . L i n e a r ( dim , n a c t i o n s )

def f o r w a r d ( s e l f , c a r d s , b e t s ) :

”””
c a r d s : ( ( N x 2 ) , (N x 3 ) [ , (N x 1 ) , (N x 1 ) ] ) # ( ho le , board , [ tu rn , r i v e r ] )
b e t s : N x n b e t f e a t s
”””

# 1 . card branch
# embed hole , f l o p , and o p t i o n a l l y t u r n and r i v e r
ca rd embs = [ ]
f o r embedding , c a r d g r o u p in z i p ( s e l f . c a rd embedd ings , c a r d s ) :

ca rd embs . append ( embedding ( c a r d g r o u p ) )
ca rd embs = t o r c h . c a t ( card embs , dim =1)

x = F . r e l u ( s e l f . c a r d 1 ( ca rd embs ) )
x = F . r e l u ( s e l f . c a r d 2 ( x ) )
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x = F . r e l u ( s e l f . c a r d 3 ( x ) )

# 1 . b e t branch
b e t s i z e = b e t s . clamp ( 0 , 1 e6 )
b e t o c c u r r e d = b e t s . ge ( 0 )
b e t f e a t s = t o r c h . c a t ( [ b e t s i z e , b e t o c c u r r e d . f l o a t ( ) ] , dim =1)
y = F . r e l u ( s e l f . b e t 1 ( b e t f e a t s ) )
y = F . r e l u ( s e l f . b e t 2 ( y ) + y )

# 3 . combined t r u n k
z = t o r c h . c a t ( [ x , y ] , dim =1)
z = F . r e l u ( s e l f . comb1 ( z ) )
z = F . r e l u ( s e l f . comb2 ( z ) + z )
z = F . r e l u ( s e l f . comb3 ( z ) + z )

z = n o r m a l i z e ( z ) # ( z − mean ) / s t d
re turn s e l f . a c t i o n h e a d ( z )


