
Low Latency Privacy Preserving Inference
Supplementary Material

1 Rings
In this work we consider commutative rings R. A ring is a set which is equipped with addition and
multiplication operations and satisfies several ring axioms such as a + b = b + a for all a, b ∈ R. A
commutative ring is a ring in which the multiplication is commutative., i.e., ab = ba for all a, b ∈ R.
Since all rings we consider are commutative, we use the term “ring” to refer to a commutative ring.

The set Z and the set Zp of integers modulu p are rings. The elements of Zp can be thought of as
sets of the form {i + ap : a ∈ Z}. The notation k ∈ Zp refers to the set {k + ap : a ∈ Z}. Alternatively,
k is a representative of the the set {k + ap : a ∈ Z}.

The set R[x] of polynomials with coefficients in a ring R is itself a ring. Thus, Zp[x] is the
ring of polynomials with coefficients in Zp[x]. Finally, we introduce the ring Zp[x]

xn+1 which is the
ring used in the BFV scheme. The elements of this ring can be thought of as sets of the form
{r(x) + q(x) (xn + 1) | q(x) ∈ Zp[x]}.

The notation t(x) ∈ Zp[x]
xn+1 refers to the set {t(x) + q(x) (xn + 1) | q(x) ∈ Zp[x]}. Conversely, we

say that t(x) is a representative of the set {t(x) + q(x) (xn + 1) | q(x) ∈ Zp[x]}. For each element in
Zp[x]
xn+1 , there is a representative in Zp[x] with degree at most n− 1. Furthermore, any two non-equal
polynomials of degree at most n− 1 in Zp[x], are representatives of different elements in Zp[x]

xn+1 .

2 Parallel Scaling
The performance of the different solutions is affected by the amount of parallelism allowed. The
hardware used for experimentation in this work has 8 cores. Therefore, we tested the performance of
the different solutions with 1, 2, 4, and 8 cores to see how the performance varies. The results of these
experiments are presented in Figure 1. These results show that at least up to 8 cores the performance
of all methods scales linearly when tested on the MNIST data-set. This suggests that the latency can
be further improved by using machines with higher core count. We note that the algorithm utilizes the
cores well and therefore we do not expect large gains from running multiple queries simultaneously.

3 Lola-Dense
LoLa-Dense uses the same network layout as CryptoNets (see Figure 2) and has accuracy of 98.95%.
However, it is implemented differently: the input to the network is a single dense message where the
pixel values are mapped to coordinates in the encoded vector line after line . The first step in processing
this message is breaking it into 25 messages corresponding to the 25 pixels in the convolution map to
generate a convolution representation. Creating each message requires a single vector multiplication.
This is performed by creating 25 masks. The first mask is a vector of zeros and ones that corresponds
to a matrix of size 28×28 such that a one is in the (i, j) coordinate if the i, j pixel in the image appears
as the upper left corner of the 5 × 5 window of the convolution layer. Multiplying point-wise the
input vector by the mask creates the first message in the convolution representation hybrided with the
interleaved representation. Similarly the other messages in the convolution representation are created.

1



Figure 1: Left: latency of the different network implementations for the MNIST task with respect to
the number of available cores. Right: ratio between the latency of each solution and the latency of
LoLa

Note that all masks are shifts of each other which allows using the convolution representation-row
major multiplication to implement the convolution layer. To do that, think of the 25 messages as a
matrix and the weights of a map of the convolution layer as a sparse vector. Therefore, the outputs of
the entire map can be computed using 25 multiplications (of each weight by the corresponding vector)
and 24 additions. Note that there are 169 windows and all of them are computed simultaneously.
However, the process repeats 5 times for the 5 maps of the convolution layer.

The result of the convolution layer are 5 messages, each one of them contains 169 results. They
are united into a single vector by rotating the messages such that they will not have active values
in the same locations and summing the results. At this point, a single message holds all the 845
values (169 windows ×5 maps). This vector is squared, using a single multiplication operation, to
implement the activation function that follows the convolution layer. This demonstrates one of the
main differences between CryptoNets and LoLa; In CryptoNets, the activation layer requires 845
multiplication operations, whereas in LoLa it is a single multiplication. Even if we add the manipulation
of the vector to place all values in a single message, as described above, we add only 4 rotations and 4
additions which are still much fewer operations than in CryptoNets.

Next, we apply a dense layer with 100 maps. LoLa-Dense uses messages of size n = 16384 where
the 845 results of the previous layer, even though they are in interleaving representation, take fewer
than 1024 dimensions. Therefore, 16 copies are stacked together which allows the use of the Stacked
vector – Row Major multiplication method. This allows computing 16 out of the 100 maps in each
operation and therefore, the entire dense layer is computed in 7 iterations resulting in 7 interleaved
messages. By shifting the ith message by i− 1 positions, the active outputs in each of the messages are
no longer in the same position and they are added together to form a single interleaved message that
contains the 100 outputs. The following square activation requires a single point-wise-multiplication of
this message. The final dense layer is applied using the Interleaved vector – Row Major method to
generate 10 messages, each of which contains one of the 10 outputs.1

Overall, applying the entire network takes only 7.2 seconds on the same reference hardware which
is 34.7× faster than CryptoNets and 3.4× faster than CryptoNets 2.3.

4 Secure CIFAR
The neural network used has the following layout: the input is a 3× 32× 32 image (i) 3× 3 linear
convolution with stride of (1, 1) and 128 output maps, (ii) 2× 2 average pooling with (2, 2) stride (iii)

1It is possible, if required, to combine them into a single message in order to save communication.

2



Figure 2: The structure of the network used for MNIST classification.

Layer Input size Representation LoLa-Dense Operation

5× 5 convolution layer
1× 784 dense mask input to create 25 messages
25× 169 convolution-interleave convolution vector – row major mult’
5× 169 interleave combine 5 messages into one

square layer 1× 845 interleave square

dense layer
1× 845 interleave stack 16 copies

1× 13520 stacked-interleave stacked vector – row major mult’
7× 16 interleave combine 7 messages into one

square layer 1× 100 interleave square
dense layer 1× 100 interleave interleaved vector – row major
output layer 10× 1 sparse

Table 1: Message size, message representation and operations in each layer of the LoLa-Dense inference
solution on MNIST. The input size format is number of vectors × dimension

3



Figure 3: The structure of the network used for CIFAR classification.

Layer Input size Output format Description
Preprocess 200× 300 dense apply convolution layers from Alex-Net
Encryption 4096 dense image is encrypted into 1 message
dense layer 101 sparse dense-vector row major multiplication

Table 2: Data representation changes for CalTech 101 task

3× 3 convolution with (1, 1) stride and 83 maps (iv) Square activation (v) 2× 2 average pooling with
(2, 2) stride (vi) 3× 3 convolution with (1, 1) stride and 163 maps (vii) Square activation (vii) 2× 2
average pooling with stride (2, 2) (viii) fully connected layer with 1024 outputs (ix) fully connected
layer with 10 outputs (x) softmax. ADAM was used for optimization Kingma & Ba (2014) together
with dropouts after layers (vii) and (viii). We use zero-padding in layers (i) and (vii). See Figure 3 for
an illustration of the network.

For inference, adjacent linear layers were collapsed to form the following structure: (i) 8× 8× 3
convolutions with a stride of (2, 2, 0) and 83 maps (ii) square activation (iii) 6× 6× 83 convolution
with stride (2, 2, 0) and 163 maps (iv) square activation (v) dense layer with 10 output maps. See
Figure 4 for an illustration.

5 CalTech-101
Table 2 shows the different data representations when using the method proposed for private inference
on the CalTech-101 dataset using deep representations. 2

2In Table 2 we use the terminology of dense vectors also in the first stage of applying Alex-Net before the encryption.

4



Figure 4: The structure of the network used for CIFAR classification after collapsing adjacent layers.

References
Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

5


