
Learning Generative Models across Incomparable Spaces

Appendix

A. Training of the GW GAN with Fixed Adversary

adversary fω
not trained henceforth

Figure 6. Results demonstrating the consistency of the GW training objective when fixing adversary fω . Even after holding the adversary
fω fixed and stopping its training after 10000 iterations, the generator does not diverge and remains consistent. All plots display 1000
samples.

B. Influence of Generator Constraints on the GW GAN

GW GAN
with regularization

(ℓ1-penalty, λ=0.001)

GW GAN
without

regularization

Figure 7. The GW GAN recovers relational and geometric properties of the reference distribution. Global aspects can be determined via
constraints of the generator gθ . When learning a mixture of four Gaussians we can enforce centering around the origin by penalizing the
`1-norm of the generated samples. The results show training the GW GAN with and without a `1-penalty. While the GW GAN recovers all
modes in both cases, learning with `1-regularization centers the resulting distribution around the origin and determines its orientation in
the Euclidean plane. All plots display 1000 samples.



Learning Generative Models across Incomparable Spaces

C. Influence of the Adversary

epoch 50epoch 1 epoch 10 epoch 100

GW GAN
no adversary

no tv-loss

GW GAN
no adversary

with tv-loss (𝜆 = 0.5)

GW GAN
with adversary (β = 32)

with tv-loss (𝜆 = 0.5)

iteration 100 iteration 500 iteration 5000 iteration 10000

GW GAN
no adversary

with ℓ1-penalty (𝜆 = 0.01)

GW GAN
with adversary (β = 1)

with ℓ1-penalty (𝜆 = 0.001)

a

b

Figure 8. Learning the intra-space metrics adversarially is crucial for high dimensional applications. a. For simple applications such
as generating 2D Gaussian distributions, the GW GAN performs well irrespective of the use of an adversary. b. However, for higher
dimensional inputs, such as generating MNIST digits, the use of the adversary is crucial. Without the adversary, the GW GAN is not able
to recover the underlying target distributions, while the total variation regularization (tv-loss) effects a clustering of local intensities.



Learning Generative Models across Incomparable Spaces

D. Comparison of the Effectiveness of Orthogonal Regularization Approaches

Orthogonal
Procrustes-based

Regularization
(this paper)

Orthogonal
Regularization
of the Weights

(Brock et al., 2019)

Orthogonal
Regularization
of the Weights

(Brock et al., 2017)

Orthogonal
Initialization

(Saxe et al., 2014)

Figure 9. To avoid arbitrary distortion of the space by the adversary, we propose to regularize fω by (approximately) enforcing it to
define a unitary transformation. We compare different methods of orthogonal regularization of neural networks; including random
initialization of the network’s weights at the beginning of the training (Saxe et al., 2014), and layerwise orthogonality constraints
which penalize deviations of the weights from orthogonality (Rβ(Wk) := β‖W>

k Wk − I‖2F) (Brock et al., 2017). Brock et al. (2019)
remove the diagonal terms from the regularization, which enforces the weights to be orthogonal but does not constrain their norms
(Rβ(Wk) := β‖W>

k Wk � (1− I)‖2F). The approaches of Saxe et al. (2014); Brock et al. (2017; 2019) are not able to tightly constrain
fω . As a result, the adversary is able to stretch the space and thus maximize the Gromov-Wasserstein distance. Only the orthogonal
Procrustes-based orthogonality approach introduced in this paper is able to effectively regularize adversary fω preventing arbitrary
distortions of the intra-space distances in the feature space. All plots display 1000 samples.



Learning Generative Models across Incomparable Spaces

E. Comparison of the GW GAN with Salimans et al. (2018)

OT GAN
(Salimans et al., 2018)

GW GAN
(this paper)

(ℓ1-penalty, λ=0.001)

OT GAN
(Salimans et al., 2018)

GW GAN
(this paper)

(ℓ1-penalty, λ=0.001)

Figure 10. Comparison of the performance of the GW GAN and an OT based generative model proposed by Salimans et al. (2018)
(OT GAN). The GW GAN learns mixture of Gaussians with differing number of modes and arrangements. The approach of Salimans
et al. (2018) is not able to recover a mixture of five Gaussians with a centering distribution. In the case of a mixture of four Gaussian
distributions, both models are able to recover the reference distribution in a similar number of iterations. All plots display 1000 samples.

F. Comparison of Training Times

Model Average Training Time (Seconds per Epoch)
WASSERSTEIN GAN with Gradient Penalty (Gulrajani et al., 2017) 17.57± 2.07
SINKHORN GAN (Genevay et al., 2018) (default configuration, ε = 0.1) 145.52± 1.90
SINKHORN GAN (Genevay et al., 2018) (default configuration, ε = 0.005) 153.86± 1.64
GW GAN (this paper, ε = 0.005) 156.62± 1.06

Table 1. Training time comparisons of PyTorch implementations of different GAN architectures. The generative models were trained on
generating MNIST digits and their average training time per epoch was recorded. All experiments were performed on a single GPU for
consistency.



Learning Generative Models across Incomparable Spaces

G. Training Details of the Style Adversary
We introduce a novel framework which allows a modular application of style transfer tasks by integrating a style adversary
into the architecture of the Gromov-Wasserstein GAN. In order to demonstrate the practicability of this modular framework,
we learn MNIST digits and enforce their font style to be bold via additional design constraints. The style adversary is
parametrized by a binary classifier trained on handwritten letters of the EMNIST dataset (Cohen et al., 2017) which were
assigned bold and thin class labels based on the letterwise `1-norm of each image. As the style adversary is trained based on
a different dataset, it is independent of the original learning task. The binary classifier is parametrized by a convolutional
neural network and trained by computing a binary cross-entropy loss. The dataset, classification results of bold and thin
letters as well as the loss curve of training the binary classifier are shown in figure 11.

Bi
na

ry
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training Iterations

a b

c

d

Figure 11. Training of a binary classifier to discriminate between bold and thin letters. a. Training set of the EMNIST dataset including
bold and thin letters. Output of the trained network of letters labelled as b. bold and c. thin. d. Loss curve corresponding to the training of
the binary classifier.


