
Appendix: Rates of Convergence for Sparse Variational Gaussian Process
Regression

A. Proof Of Lemma 1
Titsias [2014] proves the tighter upper bound,
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Since Qff is symmetric positive semidefinite, Qn is positive
definite with eigenvalues bounded below by σ2

n. Write,
Qn = UΛUT, where U is unitary and Λ is a diagonal
matrix with non-increasing diagonal entries γ1 ≥ γ2 ≥
. . . ≥ γN ≥ σ2

n.

We can rewrite the second term (ignoring the factor of one
half) in Equation 1 as,
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The last inequality comes from noting that the fraction in
the sum attains a maximum when γi is minimized. Since
σ2
n is a lower bound on the smallest eigenvalue of Qn, we

have,
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Lemma 1 follows.

B. KL Divergence Gaussian Distributions
B.1. KL divergence between multivariate Gaussian

distributions

We make use of the formula for KL divergences between
multivariate Gaussian distributions in our proof of Lemma
2, and the univariate case in Proposition 1.

Recall the KL divergence from p1 ∼ N (m1,S1) to p2 ∼
N (m2,S2) both of dimension N is given by
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The inequality is a special case of Jensen’s inequality.

B.2. Proof of Upper Bound in Lemma 2

In the main text we showed,
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In order to complete the proof, we need to show that the
second term on the right hand side is bounded above by
t/(2σ2

n). Using Equation 2:
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The inequality follows from noting the log determinant term
is negative, as Kn � Qn (i.e. Kn−Qn is positive definite).
Simplifying the last term,
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The first inequality uses that for positive semi-definite sym-
metric matrices Tr(AB) ≤ Tr(A)λ1(B) which is a special
case of Hölder’s inequality. The final line uses that the
largest eigenvalue of Q−1n is bounded above by σ−2n . Using
this in Equation 3 finishes the proof.
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B.3. Proof of Proposition 1

Defining ε = 2KL(q‖p),
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Applying the lower bound x− log(x)− 1 ≥ (x− 1)2/2−
(x− 1)3/3,

ε ≥ (x− 1)2/2− (x− 1)3/3.

A bound on |x − 1| that holds for all ε can then be found
with the cubic formula. Under the assumption that ε < 1

5 ,
we have x− log(x) < 1.2 which implies x ∈ [0.493, 1.77].
For x in this range, we have
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Using our bound on the ratio of the variances completes the
proof of Proposition 1.

C. Covariances for Interdomain Features
We compute the covariances for eigenvector and eigenfunc-
tion inducing features.

C.1. Eigenvector inducing features

Recall we have defined eigenvector inducing features by,
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We now recognize this expression as w(m)TKffw(k). Using
the defining property of eigenvectors as well as orthonor-
mality,

cov(um, uk) = λk(Kff )δm,k.
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This is the ith entry of the matrix vector product
Kffw(m) = λm(Kff )w
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i .

C.2. Eigenfunction inducing features

Recall we have defined eigenfunction inducing features by,

um =

∫
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Then,
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The expectation and integration may be interchanged by Fu-
bini’s theorem, as both integrals converge absolutely since
p(x) is a probability density, the φm(x) are in L2(X )p ⊂
L1(X )p and k is bounded.

We may then apply the eigenfunction property to the inner
integral and orthonormality of eigenfunctions to the result
yielding,
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Algorithm 1 Initialization of Inducing Points
Input: Training inputs X = {xi}Ni=1, number of points
to choose, M , kernel k.
Returns: Z, a sample of M inducing points drawn pro-
portional to the determinant of KZ,Z

Initialize Z = {}
while |Z| < M do

for xi ∈ X \ Z do
[kZ,i]m := cov(zm,xi).

Vi = k(xi,xi)− ki,ZK−1Z,ZkZ,i,
end for
Sample xi with probability proportional to Vi
Add xi to Z

end while

D. Sampling from a Discrete k-DPP
In this section, we give the algorithm, Algorithm 1, de-
scribed in Hennig & Garnett [2016] adapted to the discrete
setting which is relevant to our application. We additionally
show that it can be implemented with complexityO(NM2).

D.1. Efficient Implementation of Algorithm 1

Let KZ be the matrix with entries [KZ]m′,m′′ =
k(zm′ , zm′′).
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Additionally,

Vi = k(xi,xi)− kZ,i
Tt′Z,i.

We assume the kernel can be evaluated in constant time. The
second term is an inner product between vectors of length
m, and therefore has computational cost O(m).

We need to show that given t′Z−1,j for all j ≤ N, t′Z,i can
be computed in O(m). Using the formula for K−1Z , and
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Therefore, in iteration m of the outer loop in Algorithm 1
updating each t′Z,i can be done in O(m) by computing
inner products of length m − 1 vectors, there are N such
vectors, and we must iterate through this loop M times,
proving the complexity is O(NM2).

E. Proof of Corollaries
E.1. Corollary 1

From Theorem 3,

KL
(
Q‖P̂

)
≤ C(M + 1)

2σ2
nδ

(
1 +
‖y‖22
σ2
n

)
(5)

Take M = (3+ε) log(N)+logD
log(B−1) . If M ≥ N the KL-

divergence is zero and we are done. Otherwise,C(M+1) <
N2
∑∞
i=M+1 λi. By the geometric series formula,

∞∑
i=M+1

λi = v

√
2a√
A

BM

1−B

Now, BM = N−3−εD−1, so

∞∑
i=M+1

λi = δN−3−ε,

and C(M+1)
2δσ2

n
< N−1−ε. Using this in Equation 5 completes

the proof.

E.2. Corollary 2

It is sufficient to consider the case of isotropic kernels and in-
put distributions.1 From [Seeger et al., 2008] in the isotropic
case (i.e. Bi = Bj =: B for all i, j ≤ D),
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.

1For the general case, the eigenvalues can be bounded above
by constant times the eigenvalues of an operator with an isotropic
kernel with all lengthscales equal to the shortest kernel lengthscale
and the input density standard deviation set to the largest standard
deviation of any one-dimensional marginal of p(x).
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Define M̃ = M −D + 1.
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In the second line, we use that B < 1, so Bs
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minimum on the interval s ∈ [s′, s′+1] at the right endpoint
(i.e. monotonicity). We now define α = − log(B). So,
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In the second line we made the substitution t = αs1/D, so
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as an incomplete gamma function, Γ(D,αM1/D). From
Gradshteyn & Ryzhik [2014, 8.352],
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As M grows as a function of N and D is fixed, for N large
D ≤ αM1/D. This implies that that the largest term in the
sum on the right hand side is the final term, so
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For any fixed D, for this choice of M for any ε > 0 for N
large,

I = O
(
N−γ

′+ε
)
.

By choosing γ′ > 3 + ε′, for some fixed ε′ > 0 the proof is
complete, using a similar argument as the one used in the
proof of the previous corollary.

Note that using the bound proven in Theorem 2 (the tight-
est of our bounds) the exponential scaling in dimension
is unavoidable. If both k and p(x) are isotropic, then the
eigenvalue ( 2a

A )DBm appears
(
m+D−1
D−1

)
times. This fol-

lows from noting that this is the number of ways to write m
as a sum of D non-negative integers. Using the “rising sum”
identity, as well as a standard lower bound for binomial
coefficients

∑K
i=1

(
m+D−1
D−1

)
=
(
K+D
D

)
≥
(
K+D
D

)D
>

C(D)KD. for some constant C(D). Using Theorem 2 we
need to choose M such that λM = O(1/N). This means
choosing K � log(N) in the sum above, leading to at least
α logD(N) features being needed for some constant α. The
constant in this lower bound decays rapidly with D, while
the constant in the upper bound did not exhibit this behavior.
Better understanding this gap is important for understanding
the performance of sparse Gaussian process approximations
in high dimensions.

If the data actually lies on a lower dimensional manifold, we
expect the scaling to only depend on the dimensionality of
the manifold. In particular, if the manifold is linear, then the
kernel matrix only depends on distances along the manifold
(not in the space it is embedded in) so the eigenvalues will
not be effected by the higher dimensional embedding. We
conjecture that similar properties are exhibited when the
data manifold is nonlinear.

F. Smoothness and Sacks-Ylivasker
Conditions

In many instances the precise eigenvalues of the covariance
operator are not available, but the asymptotic properties
are well understood. A notable example is when the data
is distributed uniformly on the unit interval. If the kernel
satisfies the Sacks-Ylivasker condtions of order r:

• k(x, x′) is r-times continuously differentiable on
[0, 1]2 Moreover, k(x, x′) has continuous partial
derivatives up to order r+2 times on (0, 1)2∩(x > x′)
and (0, 1)2∩ (x < x′). These partial derivatives can be
continuously extended to the closure of both regions.

• Let L denote k(r,r)(x, x′), L+ denote the restriction
of L to the upper triangle and L− the restriction to the
lower triangle, then L(1,0)

+ < L
(1,0)
− on the diagonal

x = x′.
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• L(2,0)
+ (s, ·) is an element of the RKHS associated to L

and has norm bounded independent of s.

Notably, Matérn half integer kernels of order r + 1/2 meet
the S-Y condition of order r. See [Ritter et al., 1995] for a
more detailed explanation of these conditions and extensions
to the multivariate case.
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