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Abstract

Suppose that we wish to estimate a user’s prefer-

ence vector w from paired comparisons of the

form “does user w prefer item p or item q?,”

where both the user and items are embedded in a

low-dimensional Euclidean space with distances

that reflect user and item similarities. Such obser-

vations arise in numerous settings, including psy-

chometrics and psychology experiments, search

tasks, advertising, and recommender systems. In

such tasks, queries can be extremely costly and

subject to varying levels of response noise; thus,

we aim to actively choose pairs that are most in-

formative given the results of previous compar-

isons. We provide new theoretical insights into

the benefits and challenges of greedy informa-

tion maximization in this setting, and develop

two novel strategies that maximize lower bounds

on information gain and are simpler to analyze

and compute respectively. We use simulated re-

sponses from a real-world dataset to validate our

strategies through their similar performance to

greedy information maximization, and their su-

perior preference estimation over state-of-the-art

selection methods as well as random queries.

1. Introduction

We consider the task of user preference learning, where we

have a set of items (e.g., movies, music, or food) embedded

in a Euclidean space and aim to represent the preferences

of a user as a continuous point in the same space (rather

than simply a rank ordering over the items) so that their

preference point is close to items the user likes and far from

items the user dislikes. To estimate this point, we consider

a system using the method of paired comparisons, where

during a sequence of interactions a user chooses which of

two given items they prefer (David, 1963). For instance,
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to characterize a person’s taste in food, we might ask them

which one of two dishes they would rather eat for a number

of different pairs of dishes. The recovered preference point

can be used in various tasks, for instance in the recommen-

dation of nearby items, personalized product creation, or

clustering of users with similar preferences. We refer to

the entire process of querying via paired comparisons and

continuous preference point estimation as pairwise search,

and note that this is distinct from the problem of searching

for a single discrete item in the fixed dataset. A key goal

of ours is to actively choose the items in each query and

demonstrate the advantage over non-adaptive selection.

More specifically, given N items, there are O(N2) possible

paired comparisons. Querying all such pairs is not only

prohibitively expensive for large datasets, but also unneces-

sary since not all queries are informative; some queries are

rendered obvious by the accumulation of evidence about the

user’s preference point, while others are considered ambigu-

ous due to noise in the comparison process. Given these

considerations, the main contribution of this work is the

design and analysis of two new query selection algorithms

for pairwise search that select the most informative pairs by

directly modeling redundancy and noise in user responses.

While previous active algorithms have been designed for

related paired comparison models, none directly account for

probabilistic user behavior as we do here. To the best of

our knowledge our work is the first attempt to search a low-

dimensional embedding for a continuous point via paired

comparisons while directly modeling noisy responses.

Our approach builds upon the popular technique in active

learning and Bayesian experimental design of greedily max-

imizing information gain (Settles, 2012; Lindley, 1956;

MacKay, 1992). In our setting, this corresponds to selecting

pairs that maximize the mutual information between the

user’s response and the unknown location of their prefer-

ence point. We provide new theoretical and computational

insights into relationships between information gain max-

imization and estimation error minimization in pairwise

search, and present a lower bound on the estimation error

achievable by any query strategy.

Due to the known difficulty of analyzing greedy information

gain maximization (Chen et al., 2015) and the high compu-

tational cost of estimating mutual information for each pair
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in a pool, we propose two strategies that each maximize new

lower bounds on information gain and are simpler to ana-

lyze and compute respectively. We present upper and lower

bounds on the performance of our first strategy, which then

motivates the use of our second, computationally cheaper

strategy. We then demonstrate through simulations using a

real-world dataset how both strategies perform comparably

to information maximization while outperforming state-of-

the-art techniques and randomly selected queries.

2. Background

2.1. Observation Model

Our goal in this paper is to estimate a user’s preference

point (denoted as vector w) with respect to a given low-

dimensional embedding of items constructed such that dis-

tances between items are consistent with item similarities,

where similar items are close together and dissimilar items

are far apart. While many items (e.g., images) exist in their

raw form in a high-dimensional space (e.g., pixel space),

this low-dimensional representation of items and user prefer-

ences offers the advantage of simple Euclidean relationships

that directly capture notions of preference and similarity,

as well as mitigating the effects of the curse of dimension-

ality in estimating preferences. Specifically, we suppose

user preferences can be captured via an ideal point model

in which each item and user is represented using a common

set of parameters in R
d, and that a user’s overall preference

for a particular item decreases with the distance between

that item and the user’s ideal point w (Coombs, 1950). This

means that any item placed exactly at the user would be

considered “ideal” and would be the most preferred over

all other items. Although this model can be applied to the

situation where a particular item is sought, in general we do

not assume the user point w to be co-located with any item.

The embedding of the items can be constructed through

a training set of triplet comparisons (paired comparisons

regarding similarity of two items to a third reference

item) using one of several standard non-metric embedding

techniques such as the Crowd Kernel Learning (Tamuz

et al., 2011) or Stochastic Triplet Embedding methods (Van

Der Maaten & Weinberger, 2012). In this study, we as-

sume that such an embedding is given, presumably acquired

through a large set of crowdsourced training triplet com-

parisons. We do not consider this training set to be part of

the learning cost in measuring a pairwise search algorithm’s

efficiency, since our focus here is on efficiently choosing

paired comparisons to search an existing embedding.

In this work, we assume a noisy ideal point model where

the probability of a user located at w choosing item p over

item q in a paired comparison is modeled using

P (p ≺ q) = f(kpq(‖w − q‖2 − ‖w − p‖2)), (1)

Figure 1. Paired comparisons between items can be thought of as

a set of noisy hyperplane queries. In the high-fidelity case, this

uniquely identifies a convex region of Rd. In general, we have a

posterior distribution which only approximates the shape of the

ideal cell around the true user point, depicted with an x.

where p ≺ q denotes “item p is preferred to item q,” f(x) =
1/(1+ e−x) is the logistic function, and kpq ∈ [0,∞) is the

pair’s noise constant, which represents roughly the signal-

to-noise ratio of a particular query and may depend on the

values of p and q. This type of logistic noise model is

common in psychometrics literature and bears similarity to

the Bradley–Terry model (Bradley & Terry, 1952).

Note that (1) can also be written as

P (p ≺ q) = f(kpq(a
Tw − b)),

where a = 2(p−q) and b = ‖p‖2−‖q‖2 encode the normal

vector and threshold of a hyperplane bisecting items p and

q. After a number of such queries, the response model in (1)

for each query can be multiplied to form a posterior belief

about the location of w, as depicted in Fig. 1.

Note that we allow the noise constant kpq to differ for each

item pair to allow for differing user behavior depending on

the geometry of the items being compared. When kpq →
∞, this supposes a user’s selection is made with complete

certainty and cannot be erroneous. Conversely, kpq = 0
corresponds to choosing items randomly with probability

1/2. Varying kpq allows for differing reliability when items

are far apart versus when they are close together. Some

concrete examples for setting this parameter are:

constant : k(1)pq = k0, (K1)

normalized : k(2)pq = k0‖a‖−1
=

1

2
k0‖(p− q)‖−1

, (K2)

decaying : k(3)pq = k0 exp(−‖a‖)
= k0 exp(−2‖(p− q)‖). (K3)

2.2. Related Work

There is a rich literature investigating statistical inference

from paired comparisons and related ordinal query types.

However, many of these works target a different problem



Active Embedding Search via Noisy Paired Comparisons

than considered here, such as constructing item embeddings

(Tamuz et al., 2011), training classifiers (Guo et al., 2018),

selecting arms of bandits (Jamieson et al., 2015), and learn-

ing rankings (Wauthier et al., 2013; Cao et al., 2007; Chen

& Suh, 2015; Eriksson, 2013; Shah & Wainwright, 2017) or

scores (Shah et al., 2016; Negahban et al., 2012) over items.

Paired comparisons have also been used for learning user

preferences: (Qian et al., 2015) models user preferences as a

vector, but preferences are modeled as linear weightings of

item features rather than by relative distances between the

user and items in an embedding, resulting in a significantly

different model (e.g., monotonic) of preference. (Brochu

et al., 2008) considers the task of actively estimating the

maximizer of an unknown preference function over items,

while (Houlsby et al., 2012) and (Chu & Ghahramani, 2005)

actively approximate the preference function itself, the for-

mer study notably using information gain as a metric for

selecting queries. Yet, these approaches are not directly

comparable to our methods since they do not consider a

setting where user points are assigned within an existing

low-dimensional item embedding. (Tamuz et al., 2011) does

consider the same item embedding structure as our setting

and actively chooses paired comparisons that maximize in-

formation gain for search, but only seeks discrete items

within a fixed dataset rather than estimating a continuous

preference vector as we do here. Furthermore we provide

novel insights into selecting pairs via information gain max-

imization, and mainly treat information gain for pairwise

search as a baseline in this work since our primary focus

is instead on the development, analysis, and evaluation of

alternative strategies inspired by this approach.

The most directly relevant prior work to our setting con-

sists of the theory and algorithms developed in (Massimino

& Davenport, 2018) and (Jamieson & Nowak, 2011). In

(Massimino & Davenport, 2018), item pairs are selected in

stages to approximate a Gaussian point cloud that surrounds

the current user point estimate and dyadically shrinks in

size with each new stage. In (Jamieson & Nowak, 2011),

previous query responses define a convex polytope in d di-

mensions (as in Fig. 1), and their algorithm only selects

queries whose bisecting hyperplanes intersect this feasible

region. While this algorithm in its original form only pro-

duces a rank ordering over the embedding items, for the

sake of a baseline comparison we extend it to produce a

preference point estimate from the feasible region. Neither

of these studies fundamentally models or handles noise in

their active selection algorithms; slack variables are used in

the user point estimation of (Massimino & Davenport, 2018)

to allow for contradicting query responses, but the presence

of noise is not considered when selecting queries. In an

attempt to filter non-persistent noise (the type encountered

in our work), (Jamieson & Nowak, 2011) simply repeat each

query multiple times and take a majority vote as the user re-

sponse, but the items in the query pair are still selected using

the same method as in the noiseless setting. Nevertheless,

these methods provide an important baseline.

3. Query Selection

We now proceed to describe the pair selection problem

in detail along with various theoretical and computational

considerations. We show that the goal of selecting pairwise

queries to minimize estimation error leads naturally to the

strategy of information maximization and subsequently to

the development of our two novel selection strategies.

3.1. Minimizing Estimation Error

Let W ∈ R
d (d ≥ 2) denote a random vector encoding

the user’s preference point, assumed for the sake of anal-

ysis to be drawn from a uniform distribution over the hy-

percube [− 1
2 ,

1
2 ]

d denoted by the prior density of p0(w).
Unless noted otherwise, we denote random variables with

uppercase letters, and specific realizations with lowercase

letters. Let Yi ∈ {0, 1} denote the binary response to the ith

paired comparison involving items pi and qi, with Yi = 0
indicating a preference for qi and Yi = 1 a preference

for pi. After i queries, we have the vector of responses

Y i = {Y1, Y2, . . . Yi}. We assume that each response Yi

is conditionally independent from previous responses Y i−1

when conditioned on preference W . Applying this assump-

tion in conjunction with a recursive application of Bayes’

rule, after i queries we have a posterior density of

pi(w) ≡ p(w|Y i) =
p0(w)

∏i
j=1 p(Yj |w)

p(Yi|Y i−1)
(2)

where p(Yi|w) is given by the model in (1). This logis-

tic likelihood belongs to the class of log-concave (LCC)

distributions, whose probability density functions f(w) sat-

isfy f(αw1 + (1 − α)w2) ≥ f(w1)
αf(w2)

1−α for any

w1, w2 ∈ R
d and 0 ≤ α ≤ 1. Since p0(w) is log-concave

and products of log-concave functions are also log-concave

(Saumard & Wellner, 2014), we have that the posterior den-

sity given in (2) is log-concave.

Suppose that after i queries, the posterior pi(w) is used

to produce a Bayesian user point estimate Ŵi. We de-

note the mean squared error for this estimate by MSEi =

EW |Y i [‖W − Ŵi‖22], which provides a direct measure of

our estimation error and is a quantity we wish to minimize

by adaptively selecting queries based on previous responses.

One approach might be to greedily select an item pair such

that MSEi+1 is minimized in expectation after the user re-

sponds. However, this would require both updating the

posterior distribution and estimating MSEi+1 for each pos-

sible response over all item pairs. This would be very com-

putationally expensive since under our model there is no
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closed-form solution for MSEi+1, and so each such evalua-

tion requires a “lookahead” batch of Monte Carlo samples

from the posterior. Specifically, if S posterior samples are

generated for each MSEi+1 evaluation over a candidate pool

of M pairs at a computational cost of C per sample genera-

tion, and MSEi+1 is estimated with O(dS) operations per

pair, this strategy requires O((C + d)SM) computations to

select each query. This is undesirable for adaptive querying

settings where typically data sets are large (resulting in a

large number of candidate pairwise queries) and queries

need to be selected in or close to real-time.

Instead, consider the covariance matrix of the user point

posterior after i queries, denoted as

ΣW |Y i = E[(W − E[W |Y i])(W − E[W |Y i])T |Y i].

For the minimum mean squared error (MMSE) estimator,

given by the posterior mean Ŵi = E[W |Y i], we have

MSEi = Tr(ΣW |Y i) ≥ d|ΣW |Y i | 1d

where the last inequality follows from the arithmetic-

geometric mean inequality (AM–GM) (Boyd & Vanden-

berghe, 2004). This implies that a necessary condition for

a low MSE is for the posterior volume, defined here as the

determinant of the posterior covariance matrix, to also be

low. Unfortunately, actively selecting queries that greedily

minimize posterior volume is too computationally expen-

sive to be useful in practice since this also requires a set of

“lookahead” posterior samples for each candidate pair and

possible response, resulting in a computational complexity

of O(((C + d2)S + d3)M) to select each query from the

combined cost per pair of generating samples (O(CS)), esti-

mating ΣW |Y i (O(d2S)), and calculating |ΣW |Y i | (O(d3)).

3.2. Information Theoretic Framework

By utilizing statistical tools from information theory, we

can select queries that approximately minimize posterior

volume (and hence tend to encourage low MSE) at a more

reasonable computationally cost. Furthermore, an informa-

tion theoretic approach provides convenient analytical tools

which we use to provide performance guarantees for the

query selection methods we present.

Towards this end, we define the posterior entropy as the dif-

ferential entropy of the posterior distribution after i queries:

hi(W ) ≡ h(W |yi) = −
∫

w

pi(w) log2(pi(w))dw. (3)

As we show in the following lemma, the posterior entropy

of LCC distributions is both upper and lower bounded by

a monotonically increasing function of posterior volume,

implying that low posterior entropy is both necessary and

sufficient for low posterior volume, and hence a necessary

condition for low MSE. The proofs of this lemma and sub-

sequent results are provided in the supplementary material.

Lemma 3.1. For a LCC posterior distribution p(w|Y i) in

d ≥ 2 dimensions, where cd = e2d2/(4
√
2(d+ 2)),

d

2
log2

2|ΣW |Y i | 1d
e2cd

≤ hi(W ) ≤ d

2
log2(2πe|ΣW |Y i | 1d ).

This relationship between MSE, posterior volume, and pos-

terior entropy suggests a strategy of selecting queries that

minimize the posterior entropy after each query. Since

the actual user response is unknown at the time of query

selection, we seek to minimize the expected posterior en-

tropy after a response is made, i.e., EYi+1
[hi+1(W )|yi].

Using a standard result from information theory, we

have EYi
[hi(W )|yi−1] = hi(W ) − I(W ;Yi|yi−1), where

I(W ;Yi|yi−1) is the mutual information between the loca-

tion of the unknown user point and the user response, con-

ditioned on previous responses (Cover & Thomas, 2012).

Examining this identity, we observe that selecting queries

that minimize the expected posterior entropy is equivalent

to selecting queries that maximize the mutual information

between the user point and the user response, referred to

here as the information gain.

In this setting, it is generally difficult to obtain sharp per-

formance bounds for query selection via information gain

maximization. Instead, we use information theoretic tools

along with Lemma 3.1 to provide a lower bound on MSE

for any estimator and query selection scheme in a manner

similar to (Prasad, 2010) and (Cover & Thomas, 2012):

Theorem 3.2. For any user point estimate given by Ŵi after

i queries, the MSE (averaged over user points and query

responses) for any selection strategy is bounded by

EW,Y i‖W − Ŵi‖22 ≥
d2−2 i

d

2πe
.

This result implies that the best rate of decrease in MSE one

can hope for is exponential in the number of queries and

slows down in a matter inversely proportional to the dimen-

sion, indicating quicker possible preference convergence in

settings with lower dimensional embeddings. To estimate

the information gain of a query, we can use the symmetry

of mutual information to write

I(W ;Yi|yi−1) = H(Yi|yi−1)−H(Yi|W, yi−1) (4)

H(Yi|yi−1) = −
∑

Yi∈{0,1}
p(Yi|yi−1) log2 p(Yi|yi−1) (5)

H(Yi|w, yi−1) = −
∑

Yi∈{0,1}
p(Yi|w) log2 p(Yi|w) (6)

H(Yi|W, yi−1) = EW |yi−1 [H(Yi|W, yi−1)]. (7)
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Unlike the greedy MSE and posterior volume minimization

strategies, information gain estimation only requires a single

batch of posterior samples at each round of query selection,

which is used to estimate the discrete entropy quantities in

(4)–(7). (4) can be estimated in O(dS) operations per pair,

resulting in a computational cost of O(dSM) for selecting

each query, which although more computationally feasible

than the methods proposed so far is still likely prohibitive

for highly accurate information gain estimates over a large

pool of candidate pairs.

Because of these analytical and computational challenges,

we develop two strategies that mimic the action of maxi-

mizing information gain while being more analytically and

computationally tractable, respectively. In the next section

we present our first strategy, which we analyze for more

refined upper and lower bounds on the number of queries

needed to shrink the posterior to a desired volume. Then

we introduce a second strategy which benefits from reduced

computational complexity while still remaining theoretically

coupled to maximizing information gain.

3.3. Strategy 1: Equiprobable, Max-variance

In developing an approximation for information gain max-

imization, consider the scenario where arbitrary pairs of

items can be generated (unconstrained to a given dataset),

resulting in a bisecting hyperplane parameterized by (ai, bi).
In practice, such queries might correspond to the generation

of synthetic items via tools such as generative adversarial

networks (Goodfellow et al., 2014). With this freedom, we

could consider an equiprobable query strategy where bi is

selected so that each item in the query will be chosen by the

user with probability 1
2 . This strategy is motivated by the

fact that the information gain of query i is upper bounded by

H(Yi|yi−1), which is maximized if and only if the response

probability is equiprobable (Cover & Thomas, 2012).

To motivate the selection of query hyperplane directions,

we define a query’s projected variance, denoted as σ2
i , as

the variance of the posterior marginal in the direction of

a query’s hyperplane, i.e., σ2
i = aTi ΣW |yi−1ai. This cor-

responds to a measure of how far away the user point is

from the hyperplane query, in expectation over the posterior

distribution. With this notation, we have the following lower

bound on information gain for equiprobable queries.

Proposition 3.3. For any “equiprobable” query scheme

with noise constant ki and projected variance σ2
i , for any

choice of constant 0 ≤ c ≤ 1 we have

I(W ;Yi|yi−1) ≥
(
1−hb

(
f
(ckiσi

2

)))
(1−c) =: Lc,ki

(σi)

where hb(p) = −p log2 p− (1− p) log2(1− p).

This lower bound is monotonically increasing with kiσi and

achieves a maximum information gain of 1 bit at ki →∞

and/or σi → ∞ (with an appropriate choice of c). This

suggests choosing ai that maximize projected variance in

addition to selecting bi according to the equiprobable strat-

egy. Together, we refer to the selection of equiprobable

queries in the direction of largest projected variance as the

equiprobable-max-variance scheme, or EPMV for short.

Our primary result concerns the expected number of compar-

isons (or query complexity) sufficient to reduce the posterior

volume below a specified threshold set a priori, using EPMV.

Theorem 3.4. For the EPMV query scheme with each

selected query satisfying ki‖ai‖ ≥ kmin for some con-

stant kmin > 0, consider the stopping time Tε = min{i :

|ΣW |yi | 1d < ε} for stopping threshold ε > 0. For τ1 =
d
2 log2(

1
2πeε ) and τ2 = d

2 log2
e2cd
2ε , we have

τ1 ≤ E[Tε] ≤ τ2 +
τ2 + 1

l(τ2)
− 1

l(τ2)

∫ τ2

0

l(x)dx

where l(x) = Lc,kmin

(
2

−x
d√
2πe

)
for any constant 0 ≤ c ≤ 1 as

defined in Proposition 3.3. Furthermore, the lower bound is

true for any query selection scheme.

This result follows from a martingale stopping-time analysis

of the entropy at each query. Our next theorem presents a

looser upper bound, but is more easily interpretable.

Theorem 3.5. The EPMV scheme, under the same assump-

tions as in Theorem 3.4, satisfies

E[Tε] = O

(
d log

1

ε
+

(
1

εk2min

)
d2 log

1

ε

)
.

Furthermore, for any query scheme, E[Tε] = Ω
(
d log 1

ε

)
.

This result has a favorable dependence on the dimension

d, and the upper bound can be interpreted as a blend be-

tween two rates, one of which matches that of the generic

lower bound. The second term in the upper bound provides

some evidence that our ability to recover w worsens as kmin

decreases. This is intuitively unsurprising since small kmin

corresponds to the case where queries are very noisy. We

hypothesize that the absence of such a penalty term in the

lower bound is an artifact of our analysis, since increasing

noise levels (i.e., decreasing kmin) should limit achievable

performance by any querying strategy. On the other hand,

for asymptotically large ki, we have the following corollary:

Corollary 3.1. In the noiseless setting (kmin →∞), EPMV

has optimal expected stopping time complexity for posterior

volume stopping.

Proof. When kmin → ∞, from Theorem 3.5 E[Tε] =
O
(
d log 1

ε

)
; for any scheme, E[Tε] = Ω

(
d log 1

ε

)
.

Taken together, these results suggest that EPMV is opti-

mal with respect to posterior volume minimization up to a
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penalty term which decreases to zero for large noise con-

stants. While low posterior volume is only a necessary

condition for low MSE, this result could be strengthened to

an upper bound on MSE by bounding the condition number

of the posterior covariance matrix, which is left to future

work. Yet, as we empirically demonstrate in Section 4, in

practice our methods are very successful in reducing MSE.

While EPMV was derived under the assumption of arbi-

trary hyperplane queries, depending on the application we

may have to select a pair from a fixed pool of items in a

given dataset. For this purpose we propose a metric for

any candidate pair that, when maximized over all pairs in

a pool, approximates the behavior of EPMV. For a pair

with items p and q in item pool P , let apq = 2(p− q) and

bpq = ‖p‖2−‖q‖2 denote the weights and threshold param-

eterizing the bisecting hyperplane. We choose a pair that

maximizes the utility function (for some λ > 0)

η1(p, q;λ) = kpq

√
aTpqΣW |Y i−1apq − λ

∣∣∣p̂1 −
1

2

∣∣∣ (8)

p̂1 = P (Yi=1|Y i−1) = EW |Y i−1 [f(kpq(a
T
pqW − bpq))].

This has the effect of selecting queries which are close to

equiprobable and align with the direction of largest variance,

weighted by kpq to prefer higher fidelity queries. While

ΣW |Y i−1 can be estimated once from a batch of poste-

rior samples, p̂1 must be estimated for each candidate pair

in O(dS) operations, resulting in a computational cost of

O(dSM) which is on the same order as directly maximizing

information gain. For this reason, we develop a second strat-

egy that approximates EPMV while significantly reducing

the computational cost.

3.4. Strategy 2: Mean-cut, Max-variance

Our second strategy is a mean-cut strategy where bi is se-

lected such that the query hyperplane passes through the

posterior mean, i.e. aTi E[W |Y i−1] − bi = 0. For such a

strategy, we have the following proposition:

Proposition 3.6. For mean-cut queries with noise constant

ki and projected variance σ2
i we have

∣∣∣p(Yi|yi−1)− 1

2

∣∣∣ ≤ e− 2

2e
+

ln 2

kiσi

and, I(W ;Yi|yi−1) ≥ hb

(
1

e
− ln 2

kiσi

)
− π2(log2 e)

3kiσi
.

For large projected variances, we observe that |p(Yi|yi−1)−
1
2 | / 0.14, suggesting that mean-cut queries are somewhat

of an approximation to equiprobable queries in this setting.

Furthermore, notice that the lower bound to information

gain in Proposition 3.6 is a monotonically increasing func-

tion of the projected variance. As σi → ∞, this bound

approaches hb(1/e) ≈ 0.95 which is nearly sharp since a

Algorithm 1: Pairwise search with noisy comparisons

Input: item set X , parameters S, β, λ
P ← set of all pairwise queries from items in X
W̃0, µ0,Σ0 ← initialize from samples of prior

for i = 1 to T do

Pβ ← uniformly downsample P at rate 0 < β ≤ 1

InfoGain: pi, qi ← argmax
p,q∈Pβ

η0(p, q; W̃i−1)

EPMV: pi, qi ← argmax
p,q∈Pβ

η1(p, q;λ, W̃i−1)

MCMV: pi, qi ← argmax
p,q∈Pβ

η2(p, q;λ, µi−1,Σi−1)

yi ← PairedComparison(pi, qi) , yi ← yi ∪ yi−1.

W̃i ← batch of S samples from posterior W |Y i

µi,Σi ← Mean(W̃i),Covariance(W̃i)

Ŵi ← µi

end for

Output: user point estimate ŴT

query’s information gain is upper bounded by 1 bit. This im-

plies some correspondence between maximizing a query’s

information gain and maximizing the projected variance,

as was the case in EPMV. Hence, our second strategy se-

lects mean-cut, maximum variance queries (referred to as

MCMV) and serves as an approximation to EPMV while

still maximizing a lower bound on information gain.

For implementing MCMV over a fixed pool of pairs (rather

than arbitrary hyperplanes), we calculate the orthogonal

distance of each pair’s hyperplane to the posterior mean as

|aTpq E[W |Y i−1]− bpq|/‖apq‖2 and the projected variance

as aTpqΣW |Y i−1apq. We choose a pair that maximizes the

following function which is a tradeoff (tuned by λ > 0)

between minimizing distance to the posterior mean, maxi-

mizing noise constant, and maximizing projected variance:

η2(p, q;λ) = kpq

√
aTpqΣW |Y i−1apq

− λ
|aTpq E[W |Y i−1]− bpq|

‖apq‖2
.

(9)

This strategy is attractive from a computational stand-

point since the posterior mean E[W |Y i−1] and covariance

ΣW |Y i−1 can be estimated once in O(d2S) computations,

and subsequent calculation of the hyperplane distance from

mean and projected variance requires only O(d2) computa-

tions per pair. Overall, this implementation of the MCMV

strategy has a computational complexity of O(d2(S +M)),
which scales more favorably than both the information gain

maximization and EPMV strategies.

We unify the information gain (referred to as InfoGain),

EPMV, and MCMV query selection methods under a single

framework described in Algorithm 1. At each round of

querying, a pair is selected that maximizes a utility function
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η(p, q) over a randomly downsampled pool of candidates

pairs, with η0(p, q) ≡ I(W ;Yi|yi−1) for InfoGain and η1
from (8) and η2 from (9) denoting the utility functions of

EPMV and MCMV, respectively. We include a batch of

posterior samples denoted by W̃ as an input to η0 and η1
to emphasize their dependence on posterior sampling, and

add mean and covariance inputs to η2 since once these are

estimated, MCMV requires no additional samples to select

pairs. For all methods, we estimate the user point as the

mean of the sample batch since this is the MMSE estimator.

4. Results

To evaluate our approach, we constructed a realistic embed-

ding (from a set of training user-response triplets) consisting

of multidimensional item points and simulated our pairwise

search methods over randomly generated preference points

and user responses1. We constructed an item embedding

of the Yummly Food-10k dataset of (Wilber et al., 2015;

2014), consisting of 958,479 publicly available triplet com-

parisons assessing relative similarity among 10,000 food

items. The item coordinates are derived from the crowd-

sourced triplets using the popular probabilistic multidimen-

sional scaling algorithm of (Tamuz et al., 2011) and the

implementation obtained from the NEXT project2.

4.1. Methods Comparison

We compare InfoGain, EPMV, and MCMV as described in

Algorithm 1 against several baseline methods:

Random: pairs are selected uniformly at random and user

preferences are estimated as the posterior mean.

GaussCloud-Q: pairs are chosen to approximate a Gaus-

sian point cloud around the preference estimate that shrinks

dyadically over Q stages, as detailed in (Massimino & Dav-

enport, 2018).

ActRank-Q: pairs are selected that intersect a feasible re-

gion of preference points and queried Q times; a majority

vote is then taken to determine a single response, which is

used with the pair hyperplane to further constrain the feasi-

ble set (Jamieson & Nowak, 2011). Since the original goal

of the algorithm was to rank embedding items rather than

estimate a continuous preference point, it does not include

a preference estimation procedure; in our implementation

we estimate user preference as the Chebyshev center of the

feasible region since it is the deepest point in the set and is

simple to compute (Boyd & Vandenberghe, 2004).

In each simulation trial, we generate a point W uniformly at

random from the hypercube [−1, 1]d and collect paired com-

parisons using the item points in our embedding according

to the methods described above. The response probability

1Code available at https://github.com/siplab-gt/pairsearch
2http://nextml.org

of each observation follows (1) (referred to herein as the “lo-

gistic” model), using each of the three schemes for choosing

kpq described in (K1)–(K3). In each scheme we optimized

the value of k0 over the set of training triplets via maximum-

likelihood estimation according to the logistic model. We

use the Stan Modeling Language (Carpenter et al., 2017) to

generate posterior samples when required, since our model

is LCC and therefore is particularly amenable to Markov

chain Monte Carlo methods (Brooks et al., 2011).

Note that unlike GaussCloud-Q and ActRank-Q, the Ran-

dom, InfoGain, EPMV, and MCMV methods directly ex-

ploit a user response model in the selection of pairs and

estimation of preference points, which can be advantageous

when a good model of user responses is available. Below

we empirically test each method in this matched scenario,

where the noise type (logistic) and the model for kpq (e.g.,

“constant”, “normalized”, or “decaying”) are revealed to the

algorithms. We also test a mismatched scenario by gener-

ating response noise according to a non-logistic response

model while the methods above continue to calculate the

posterior as if the responses were logistic. Specifically, we

generate responses according to a “Gaussian” model

yi = sign(kpq(a
T
i w − bi) + Z) Z ∼ N (0, 1)

where k0 and the model for kpq are selected using

maximum-likelihood estimation on the training triplets.

4.2. Mean Squared Error Evaluation

The left column of Fig. 2 plots the MSE of each method’s

estimate with respect to the ground truth location over the

course of a pairwise search run. In the matched model case

of Fig. 2a, our strategies outperform Random, ActRank-Q,

and GaussCloud-Q for multiple values of Q by a substan-

tial margin. Furthermore, both of our strategies performed

similarity to InfoGain, corroborating their design as infor-

mation maximization approximations. Note that Random

outperforms the other baseline methods, supporting the use

of Bayesian estimation in this setting (separately from the

task of active query selection). Although mismatched noise

results in decreased performance overall in Fig. 2c, the same

relative trends between the methods as in Fig. 2a are evident.

4.3. Item Ranking Evaluation

We also consider each method’s performance with respect

to ranking embedding items in relation to a preference point.

For each trial, a random set of 15 items is sampled from the

embedding without replacement and ranked according to

their distance to a user point estimate. This ranking is com-

pared to the ground truth ranking produced by the true user

point by calculating a normalized Kendall’s Tau distance,

which is 0 for identical rankings and 1 for completely dis-

cordant rankings (Jamieson & Nowak, 2011). This metric
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(a) Estimation error: matched logistic noise, d = 4 (b) Ranking performance: matched logistic noise, d = 4

(c) Estimation error: mismatched Gaussian noise, d = 4 (d) Ranking performance: mismatched Gaussian noise, d = 4

Figure 2. Performance evaluation over 80 simulated search queries, averaged over 50 trials per method and plotted with ± one standard

error. (Left Column) MSE. (Right Column) for each trial, a batch of 15 items was uniformly sampled without replacement from the

dataset, and the normalized Kendall’s Tau distance (lower distance is better) was calculated between a ranking of these items by distance

to the ground truth preference point and a ranking by distance to the estimated point. To get an unbiased estimate, this metric was averaged

over 1000 batches per trial, and error bars calculated with respect to the number of trials. (Top Row) “normalized” logistic model with

matching noise in d = 4. (Bottom Row) “decaying” logistic model with mismatched Gaussian “normalized” noise in d = 4. Additional

plots testing a wider selection of parameters are available in the supplement. Overall, our new strategies (EPMV, MCMV) outperform

existing methods and also perform comparably to information gain maximization (InfoGain), which they were designed to approximate.

measures performance in the context of a recommender sys-

tem type task (a common application of preference learning)

rather than solely measuring preference estimation error.

This metric is depicted in the right column of Fig. 2, for

the matched model case in 2b and mismatched case in 2d.

The same trends as observed in MSE analysis occur, with

our strategies performing similarly to InfoGain and outper-

forming all other methods. This is a particularly noteworthy

result in that our method produces more accurate rankings

than ActRank-Q, which to our knowledge is the state-of-

the-art method in active embedding ranking.

4.4. Discussion

Our simulations demonstrate that both InfoGain approxima-

tion methods, EPMV and MCMV, significantly outperform

the state-of-the-art techniques in active preference estima-

tion in the context of low-dimensional item embeddings

with noisy user responses, and perform similarity to Info-

Gain, the method they were designed to approximate. This

is true even when generating noise according to a different

model than the one used for Bayesian estimation. These em-

pirical results support the theoretical connections between

EPMV, MCMV, and InfoGain presented in this study, and

suggest that the posterior volume reduction properties of

EPMV may in fact allow for MSE reduction guarantees.

These results also highlight the attractiveness of MCMV,

which proved to be a top performer in embedding prefer-

ence learning yet is computationally efficient and simple to

implement. This technique may also find utility as a subsam-

pling strategy in supervised learning settings with implicit

pairwise feedback, such as in (Wu et al., 2017). Further-

more, although in this work pairs were drawn from a fixed

embedding, MCMV is easily adaptable to continuous item

spaces that allow for generative construction of new items

to compare. This is possible in some applications, such as

facial composite generation for criminal cases (Frowd et al.,

2011) or in evaluating foods and beverages, where we might

be able to generate nearly arbitrary stimuli based on the

ratios of ingredients (Ventura et al., 2011).
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A. Supplementary Material

First, we begin with an additional lemma:

Lemma A.1. Let Xi be a marginal distribution of W . The

density of Xi is then

pXi|yi(x) =
1

σi
pZi

(
Xi − E[Xi|yi]

σi

)
≤ 1

σi
,

where σi =
√

E[(Xi − E[Xi|yi])2|yi] and Zi =
Xi−E[Xi|yi]

σi
.

Proof. Since Xi is a marginal of a log-concave distribution,

Xi is also log-concave. Furthermore, Zi is a zero-mean,

unit-variance (i.e., isotropic) log-concave random variable

with density pZi
(z). Then Lemma A.1 follows because

one-dimensional isotropic log-concave densities are upper

bounded by one (Lovász & Vempala, 2007).

A direct consequence of Lemma A.1 is that for any a > 0,

P (|Xi| < a | yi) =
∫ a

−a

pXi|yi(x)dx

≤ 1

σi

∫ a

−a

dx ≤ 2a

σi

implying that

P (|Xi| ≥ a | yi) ≥ 1− 2a

σi
. (10)

A.1. Proof of Lemma 3.1

Proof. Letting ΣW denote the d× d covariance matrix of

random vector W ∈ R
d, from Theorem 8.6.5 in (Cover &

Thomas, 2012), we have the upper bound

h(W ) ≤ 1

2
log2((2πe)

d|ΣW |). (11)

Now assume the distribution PW of W is log-concave, let

W1,W2 ∼ PW be i.i.d. and let W̃ := W1 −W2. Let p
W̃

and pW denote the respective densities of W̃ and W . We

have by Proposition 3.5 of (Saumard & Wellner, 2014), for

all z ∈ R
d,

p
W̃
(z) = pW (z) ⋆ pW (−z), (12)

where ⋆ is the convolution operator, is also log-concave.

Since covariances add for independent random vectors,

Σ
W̃

= 2ΣW .

By Theorem 4 of (Marsiglietti & Kostina, 2018), for d ≥ 2

h(W̃ ) ≥ d

2
log2

|Σ
W̃
|1/d

c(d)
,

where c(d) = e2d2/(4
√
2(d + 2)). From Corollary 2.3

of (Bobkov & Madiman, 2013),

h(W̃ ) = h(W1 −W2) ≤ h(W ) + d log2 e,

which implies

h(W ) ≥ h(W̃ )− d log2 e ≥
d

2
log2

|Σ
W̃
|1/d

c(d)
− d log2 e

≥ d

2
log2

|2ΣW |1/d
e2c(d)

(13)

The result follows combining (11) and (13).

A.2. Proof of Theorem 3.2

EY i [hi(W )] = h0(W )−
i∑

j=1

I(W ;Yj |Y j−1) (14)

≥ −i (15)

from the chain rule for mutual information with h0(W ) = 0
and I(W ;Yj |Y j−1) ≤ 1 (Cover & Thomas, 2012), and

EY i [hi(W )] ≤ 1

2
EY i log2((2πe)

d|ΣW |Y i |) (16)

≤ 1

2
log2((2πe)

d|EY i ΣW |Y i |) (17)

from Lemma (3.1) with Jensen’s inequality and the con-

cavity of log|A| for any matrix A in the positive definite

cone (Boyd & Vandenberghe, 2004). Rearranging, we have

2−2i

(2πe)d
≤ |EY i ΣW |Y i | (18)

≤ Tr
(
EY i [ΣW |yi ]

)d

dd
(19)

=
(EW,Y i [‖W − E[W |Y i]‖22])d

dd
(20)

≤ (EW,Y i [‖W − Ŵi‖22])d
dd

(21)

where (19) is from the AM–GM inequality, (20) is due to the

linearity of trace and expectation, and the last inequality is

due to that fact that expected value is the MMSE estimator,

from which the MSE lower bound follows.

A.3. Proof of Proposition 3.3

Proof. Consider the ‘equiprobable’ query scheme, with

P (Yi = 1|yi−1) = 1
2 for hyperplane query given by

weights ai, threshold τi, and noise constant k. Letting

Xi = aTi W − τi, we have

I(W ;Yi|yi−1) = H(Yi|yi−1)−H(Yi|yi−1,W )
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= H(Yi|yi−1)−H(Yi|yi−1,W,Xi)

since Xi is a deterministic function of W

= H(Yi|yi−1)−H(Yi|yi−1, Xi)

since p(Yi|yi−1,W,Xi) = p(Yi|yi−1, Xi)

= I(Xi;Yi|yi−1).

Revisiting mutual information, we have

I(Xi;Yi|yi−1) = E

[
log2

p(Yi|Xi, y
i−1)

p(Yi|yi−1)

]
(22)

= EXi
[(1− hb(f(kXi))) | yi−1] (23)

= EXi
[(1− hb(f(k|Xi|)))|yi−1] (24)

since 1−hb(f(kXi)) is symmetric. From Markov’s inequal-

ity with 1− hb(f(k|Xi|)) being monotonically increasing,

for any a > 0,

≥ (1− hb(f(ka)))P (|X| > a | yi−1)
(25)

(from (10)) ≥ (1− hb(f(ka)))

(
1− 2a

σi

)
(26)

=

(
1− hb

(
f

(
kcσi

2

)))
(1− c) (27)

by letting a = cσi

2 for any 0 ≤ c ≤ 1

A.4. Proof of Theorem 3.4

Entropy Properties: Let h(W |yi) denote the posterior

entropy after observing i queries. With a uniform prior

distribution over the hypercube [− 1
2 ,

1
2 ], we have that

h(W |y0) = 0 and h(W |yi) ≤ 0 for ∀i since the uniform

distribution maximizes entropy over this bounded space.

After query i, let the eigenvalues of the posterior covariance

matrix be denoted in decreasing order as λ1 ≥ λ2 · · · ≥ λd.

In the equiprobable, max-variance scheme, query ai is in

the direction of maximal eigenvector, so the product of the

noise constant and query standard deviation at iteration i is

given by k
√
aTi ΣW |yiai = k‖ai‖

√
λ1 ≥ kmin

√
λ1. From

the monotonicity of the mutual information lower bound on

equiprobable queries, we have

I(W ;Yi|yi−1) ≥ Lc,kmin
(
√

λ1) (28)

From rearranging terms in Lemma 3.1 along with |ΣW |yi | =∏d
i=1 λi, we have

22h(W |yi)

(2πe)d
≤ |ΣW |yi | =

d∏

i=1

λi ≤ λd
1 (29)

=⇒ λ1 ≥
2

2h(W |yi)
d

2πe
(30)

For compactness of notation, let

L̃c,kmin
(h) = Lc,kmin

(
2

h
d√
2πe

)
(31)

Since Lc,kmin
is monotonically increasing, we have

I(W ;Yi|yi−1) ≥ L̃c,kmin
(h(W |yi)) (32)

Combined with the 1 bit upper bound on mutual in-

formation along with I(W ;Yi|yi−1) = h(W |yi−1) −
EYi|yi−1 [h(W |yi)], we have

h(W |yi−1)− 1 ≤ EYi|yi−1 [h(W |yi)] (33)

≤ h(W |yi−1)− L̃c,kmin
(h(W |yi−1))

To bound the entropy deviations from one measurement to

the next, we need the following lemma:

Lemma A.2. For the equiprobable query scheme,

|h(W |yi)− h(W |yi−1)| ≤ γ(d) ∀i ≥ 0

where γ(d) = 8d+ d
2 log2 (2πed) + 1.

The proof of Lemma A.2 is highly technical and so we

relegate it to the end of the supplementary materials.

Martingale Properties: We note our martingale argu-

ment is similar in style to (Burnashev & Zigangirov, 1974).

Let Zi = −h(W |yi). From the previous section we have

Z0 = 0, Zi ≥ 0 ∀i ≥ 0, |Zi − Zi−1| ≤ γ(d) from

Lemma A.2, and Zi−1+ L̃c,kmin
(−Zi−1) ≤ EZi|yi−1 [Zi] ≤

Zi−1 + 1. Since Zi−1 is a deterministic function of yi−1 ∀i
along with the law of total expectation,

E[Zi|Z0, . . . , Zi−1] = EY i−1|Z0,...,Zi−1
E[Zi|Z0, . . . , Zi−1, y

i−1]

= EY i−1|Z0,...,Zi−1
E[Zi|yi−1]

which implies

E[Zi|Zi−1] ≥ EY i−1|Z0,...,Zi−1
[Zi−1 + L̃c,kmin

(−Zi−1)]

= Zi−1 + L̃c,kmin
(−Zi−1)

and

E[Zi|Z0, . . . , Zi−1] ≤ EY i−1|Z0,...,Zi−1
[Zi−1 + 1]

= Zi−1 + 1

Since L̃c,kmin
(−Zi−1) > 0, we have E[Zi|Zi−1] ≥ Zi−1.

For all i ≥ 0, |Zi| < ∞ since |Zi| = |Z0 +
∑i

j=1 Zj −
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Zj−1| ≤
∑i

j=1|Zj − Zj−1| ≤ iγ(d) < ∞. Therefore, Zi

is a submartingale.

Let τ > 0 define a stopping threshold and correspond-

ing stopping time T = min{i : Zi ≥ τ} Considering

E[Zi|Zi−1] ≤ Zi−1 + 1 and taking the expectation over

Zi−1 on both sides and expanding with the tower rule, we

have

E[E[Zi|Zi−1]] ≤ E[Zi−1] + 1

E[Zi] ≤ EE[Zi−1|Zi−2] + 1

E[Zi] ≤ E[Zi−2] + 1 + 1

. . .

E[Zi] ≤ i

which implies

T ≥ E[ZT ] ≥ τ

where the last inequality follows by definition, so E[T ] ≥ τ .

Note that this is true for any query selection scheme since

mutual information is always upper bounded by 1 bit.

To lower bound the expected stopping time, observe

L̃c,kmin
(−z) is monotonically decreasing in z, and Zi ≤ τ

for i < T , so we have in this range that L̃c,kmin
(−Zi) >

L̃c,kmin
(−τ). Using this fact, we construct a separate sub-

martingale that equals Zi up to and including the stopping

time and has the same properties listed above. Specifically,

let

Ui =

{
Zi i ≤ T

Ui−1 + L̃c,kmin
(−τ) i > T.

(34)

Clearly for i ≤ T , Ui = Zi, and if TU is defined as

TU = min{i : Ui ≥ τ}, by observation TU = T . Ui also

satisfies |Ui − Ui−1| < γ(d), and Ui−1 + L̃c,kmin
(−τ) ≤

E[Ui|U i−1] ≤ Ui−1 + 1.

We have

E[Ui|U i−1] ≥ Ui−1 + L̃c,kmin
(−τ) (35)

E[Ui|U i−1]

L̃c,kmin
(−τ)

≥ Ui−1

L̃c,kmin
(−τ)

+ 1 (36)

E[Ui|U i−1]

L̃c,kmin
(−τ)

− i ≥ Ui−1

L̃c,kmin
(−τ)

− (i− 1) (37)

We then have a submartingle given by U
(sub)
i =

Ui

L̃c,kmin
(−τ)

− i.

Assume for the time being that the optional stopping the-

orem can be applied to this submartingale (proved in

the sequel)—for any stopping time S satisfying S ≤ T ,

E[U sub
S ] ≤ E[U sub

T ]. Specifically, if τS is a stopping thresh-

old satisfying τS ≤ τ such that S = min{i : Ui ≥ τS},

then (for brevity, letting l(u) = L̃c,kmin
(−u))

E[US ]

l(τ)
− E[S] ≤ E[UT ]

l(τ)
− E[T ] (38)

which implies

E[US ]

l(τS)
− E[S] =

l(τ)

l(τS)

[
E[US ]

l(τ)
− E[S]

]
−

(
1− l(τ)

l(τS)

)
E[S]

(39)

≤ l(τ)

l(τS)

[
E[UT ]

l(τ)
− E[T ]

]
−
(
1− l(τ)

l(τS)

)
E[S] (40)

More generally, let ∆ > 0 be given and set stopping thresh-

old τi = i∆, with corresponding stopping time Ti. Define

Pi =
UTi

l(τi)
− Ti. Letting ri =

l(τi)
l(τi−1)

and letting T = Ti

and S = Ti−1, by rearranging the above we have

E[Pi] ≥
E[Pi−1]

ri
+

(1− ri)

ri
E[Ti−1] (41)

Noting that E[T0] = 0 since a threshold of τ0 results in

stopping at T0 = 0 and E[P0] =
UT0

l(τ0)
− E[T0] = 0, we

continue this bound recursively

E[Pi] ≥
E[Pi−2]

riri−1
+

(1− ri−1)

riri−1
E[Ti−2]

+
(1− ri)

ri
E[Ti−1] . . .

=
i−1∑

j=1

1− rj+1∏i
k=j+1 rk

E[Tj ]

=

i−1∑

j=1

l(τj)− l(τj+1)

l(τi)
E[Tj ]

since
∏i

k=j+1 rk = l(τi)
l(τi−1)

l(τi−1)
l(τi−2)

. . .
l(τj+1)
l(τj)

= l(τi)
l(τj)

=
1

l(τi)

i−1∑

j=1

l(j∆)− l(j∆+∆)

∆
∆E[Tj ]

≥ 1

l(τi)

i−1∑

j=1

l(τj)− l(τj +∆)

∆
τj∆

since E[Tj ] ≥ τj = j∆. Now let τ > 0 be given (with

corresponding stopping time defined as T ) and let ∆→ 0,

choosing i appropriately such that τ = τi = i∆

≥ − 1

l(τ)

∫ τ

0

(
d

dx
l(x)

)
xdx

=
1

l(τ)

∫ τ

0

l(x)dx− τ

=⇒ E[UT ]

l(τ)
− E[T ] ≥ 1

l(τ)

∫ τ

0

l(x)dx− τ
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=⇒ E[T ] ≤ τ +
E[UT ]

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx

≤ τ +
τ + 1

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx

since E[UT ] = E[E[UT |UT−1]] ≤ E[UT−1] + 1 ≤ τ + 1

All together we have

τ ≤ E[T ] ≤ τ +
τ + 1

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx (42)

Now, suppose we’d like to stop the algorithm when the

posterior covariance determinant crosses below a thresh-

old, corresponding to a low posterior volume. Denote

this threshold as ε, and define the stopping time Tε as

min{i : |ΣW |yi | 1d < ε}. By rearranging the upper bound

in Lemma 3.1 we have the necessary condition

hi(W ) ≤ d

2
log2(2πeε) (43)

Letting τ1 = d
2 log2(

1
2πeε ) be the entropic stopping thresh-

old with stopping time T1, from (42) this results in (with

E[Tε] ≥ E[T1] since this is a necessary condition)

E[Tε] ≥ E[T1] ≥ τ1 (44)

Similarly, by rearranging the lower bound in Lemma 3.1 we

observe that a sufficient condition for this stopping criterion

is

hi(W ) ≤ d

2
log2

2ǫ

e2cd
(45)

where cd = (e2d2)/(4
√
2(d+2)). Letting τ2 = d

2 log2
e2cd
2ε

be the entropic stopping threshold with stopping time T2,

we have from (42) (with E[Tε] ≤ E[T2] since this is only a

sufficient condition):

E[Tε] ≤ E[T2] ≤ τ2 +
τ2 + 1

l(τ2)
− 1

l(τ2)

∫ τ2

0

l(x)dx (46)

Combining these, we have the theorem result.

Verifying Optional Stopping Theorem: Consider a sub-

martingale of the form Pi =
Qi

C − i for some C > 0, where

Qi is also a submartingale satisfying Qi = 0, Qi ≥ 0 for

i ≥ 0, and |Qi+1 − Qi| ≤ B for some B > C > 0. This

implies

|Pi − Pi−1| =
∣∣∣∣
Qi

C
− i− Qi−1

C
+ (i− 1)

∣∣∣∣

=
|Qi −Qi−1 − C|

C

≤ |Qi −Qi−1|
C

+ 1

≤ B

C
+ 1 =: B′ <∞

Let stopping time TQ be defined as min{i : Qi > τ} for

some threshold 0 < τ < ∞. This implies a stopping

time on Pi given by TP = min{i : Pi > τ
C − i}, with

T := TQ = TP . We have from Theorem 5.2.6 of (Durrett,

2010) that PT∧i and QT∧i are also submartingales.

Consider supEQ+
T∧i = supEQT∧i ≤ τ + B < ∞, by

definition. From Theorem 5.2.8 of (Durrett, 2010), as i→
∞, QT∧i converges a.s. to a limit Q with E |Q| <∞ (and

hence |Q| <∞ a.s.). This also implies |QT∧i| a.s.→ |Q|.

Similarly, supEP+
T∧i = supE

[{
QT∧i

C − (T ∧ i)
}+
]
≤

supE
[
Q+

T∧i

C

]
≤ τ+B

C <∞, so as i→∞, PT∧i converges

a.s. to a limit P with E |P | <∞ (and hence |P | <∞ a.s.).

This also implies |PT∧i| a.s.→ |P |.
We have

T ∧ i =

∣∣∣∣(T ∧ i)− QT∧i

C
+

QT∧i

C

∣∣∣∣

≤
∣∣∣∣(T ∧ i)− QT∧i

C

∣∣∣∣+
|QT∧i|

C

= |PT∧i|+
|QT∧i|

C

Since the right side converges a.s. to a limit |P |+ |Q|
C =: L

and L <∞ a.s., for all large enough i, T ∧ i < L a.s. which

implies T < L a.s. and therefore E[T ] < ∞. Combining

this fact with |Pi+1 − Pi| ≤ B′, Theorem 5.7.5 of (Durrett,

2010) gives that PT∧i is uniformly integrable. Then, from

Theorem 5.7.4 of (Durrett, 2010), for any stopping time

L ≤ T , E[PL] ≤ E[PT ].

A.5. Proof of Theorem 3.5

To lower bound the complexity of Tε, we substitute the defi-

nition of τ1 into (44), which is true for any query scheme:

E[Tε] ≥
d

2
log2

(
1

2πeε

)
(47)

=⇒ E[Tε] = Ω

(
d log

1

ε

)
(48)

To upper bound the complexity of Tε, note that τ2 −
1

l(τ2)

∫ τ2
0

l(x)dx ≤ 0 from the mean value theorem, so

E[Tε] ≤ τ2+1
l(τ2)

. Also note that

Lc,k(σ) =

(
1− hb

(
f

(
ckσ

2

)))
(1− c)
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≥
(
1− sech

(
ckσ

4

))
(1− c) (49)

≥ c2k2σ2

32 + c2k2σ2
(1− c) (50)

where (49) is from hb(p) ≤ 2
√
p(1− p), and (50) is from

sech(x) ≤ 2
2+x2 .

Plugging in the definition for τ2 into l(τ2) we have

l(τ2) = Lc,kmin

(
2

−τ2
d√
2πe

)
= Lc,kmin

(√
ε

πe3cd

)
(51)

so

l(τ2) ≥
c2k2min

32πe3cd
1
ε + c2k2min

(1− c) (52)

which implies

E[Tε] ≤

(
d
2 log2

e2cd
2ε + 1

) (
32πe3cd

1
ε + c2k2min

)

(1− c)c2k2min

(53)

=⇒ E[Tε] = O

(
d log

1

ε
+

(
1

εk2min

)
d2 log

1

ε

)
(54)

A.6. Proof of Proposition 3.6

Proof. We first bound p1 := P (Y = 1). Recall that for

some fixed k, f(x) = (1 + e−kx)−1. First note that

∫ b

a

f(x)dx =

∫ b

a

1

k

kekx

1 + ekx
dx

=
1

k

∫ b

a

u′

u
dx =

1

k

∫ u(b)

u(a)

1

u
du

=
1

k
ln

1 + ekb

1 + eka
.

We have that P (Y = 1) = E[P (Y = 1|X = x)] =
E[f(x)]. Note that ∀x, (1 + e−kx) ≤ 1. Then,

p1 = E[f(x)] =

∫
f(x)pX(x)dx

=

∫

x≤0

f(x)pX(x)dx+

∫

x>0

f(x)pX(x)dx

≤ 1

σX

∫ 0

−∞
f(x)dx+

∫

x>0

f(x)pX(x)dx

≤ 1

σXk
ln

1 + ek0

1
+

∫

x>0

1pX(x)dx

≤ ln 2

σXk
+ P (X > 0) ≤ ln 2

σXk
+ 1− 1

e
,

where we use pX(x) ≤ 1/σX and the final inequality fol-

lows from P (X ≤ 0) ≥ 1
e for zero-mean LCC X (Lovász

& Vempala, 2007). Using a similar argument it can be

shown that E[f(x)] ≥ 1/e− ln 2/(σXk). Combining these,

we have

1

e
− ln 2

σXk
≤ p1 ≤ 1−

(
1

e
− ln 2

σXk

)
. (55)

Now we turn to lower bounding I(X;Y ) := H(Y ) −
H(Y |X). The second term can be written

H(Y |X) = EX H(Y |X = x)

=

∫ ∞

−∞
hb(f(x))pX(x)dx

≤ 1

σX

∫ ∞

−∞
hb(f(x))dx. (56)

where the inequality follows from Lemma A.1. Since

H(Y |X = x)

= −f(x) log2 f(x)− (1− f(x)) log2(1− f(x))

=
1

1 + e−kx
log2(1 + e−kx)

+
e−kx

1 + e−kx
log2((1 + e−kx)/e−kx)

=
1 + e−kx

1 + e−kx
log2(1 + e−kx)

− e−kx

1 + e−kx
log2(e

−kx)

= log2(1 + e−kx) +
kxe−kx log2(e)

1 + e−kx
,

which is an even function, we have (omitting details of the

integration)

H(Y |X) ≤ 2

σX

∫ ∞

0

log2(1 + e−kx)

+
kxe−kx log2(e)

1 + e−kx
dx

=
π2(log2 e)

3kσX
(57)

For the second term, note that H(Y = 1) = hb(p1). The

binary entropy function is symmetric about, and monotoni-

cally decreasing from p = 1/2. Therefore,

H(Y ) = hb(p1) ≥ hb

(
1

e
− ln 2

σXk

)
(58)

Combining (57) and (58) gives the desired result.

A.7. Proof of Lemma A.2

Proof. Since p(W |yi) is log-concave, and by Jensen’s in-

equality,

−h(W |yi) = EW |yi [log2 p(W |yi)]
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≤ log2 p(E[W |yi]|yi)
≤ log2 sup

w
p(w|yi).

Without loss of generality, we may suppose E[W |yi] =

0, and let V = Σ
− 1

2

W |yiW and W ∼ PW |yi , such that

E[V ] = 0 and E[V V T ] = Σ
− 1

2

W |yi E[WWT ]Σ
− 1

2

W |yi =

Σ
− 1

2

W |yiΣW |yiΣ
− 1

2

W |yi = I and therefore V is isotropic. From

(Klivans et al., 2009) we have that pV (v) ≤ 28dd
d
2 . From

the density of a linear transformation of a random variable

we have

pW |yi(w) =
pV (Σ

− 1
2

W |yiw)

|Σ
1
2

W |yi |
≤ 28dd

d
2

|ΣW |yi | 12
.

Therefore, for our query strategy we have (with fi(W ) de-

noting the logistic response model for the query at iteration

i)

p(w|yi) = p(w|yi = y, yi−1)

=
fi(W )y + (1− fi(W ))(1− y)

p(yi = y|yi−1)
p(W |yi−1)

≤ (1)y + (1− (0))(1− y)

p(yi = y|yi−1)
p(W |yi−1)

=
1

p(yi = y|yi−1)
p(W |yi−1)

≤ 1

p(yi = y|yi−1)

28dd
d
2

|ΣW |yi−1 | 12

=⇒ sup
w

p(w|yi) ≤ 1

p(yi = y|yi−1)

28dd
d
2

|ΣW |yi−1 | 12
,

which implies

log2 sup
w

p(w|yi) ≤ 8d+
d

2
log2 d−

1

2
log2|ΣW |yi−1 |

− log2(p(yi = y|yi−1)),

and hence

h(W |yi) ≥ 1

2
log2|ΣW |yi−1 |+ log2(p(yi = y|yi−1))

−
(
8d+

d

2
log2 d

)

≥ 1

2
log2((2πe)

d|ΣW |yi−1 |)

− 1

2
log2(2πe)

d + log2(p(yi = y|yi−1))

−
(
8d+

d

2
log2 d

)

≥ h(W |yi−1) + log2(p(yi = y|yi−1))

−
(
8d+

d

2
log2(2πed)

)
from (11).

For equiprobable queries p(yi = y|yi−1) = 1/2, and so we

have

h(W |yi−1)− h(W |yi) ≤ γ(d). (59)

where γ(d) = 8d+ d
2 log2(2πed) + 1.

To obtain the other direction, let hi−1
y = h(W |Yi =

y, yi−1), ym = argminy∈{0,1} h
i−1
y , yM = 1− ym. Note

that hi−1
yM
≥ hi−1

ym
. We have

h(W |Yi, y
i−1) =

1

2
hi−1
m +

1

2
hi−1
M

≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
hi−1
M

≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
h(W |yi)

where the first inequality follows from (59) and the sec-

ond inequality follows from the definition of hM . From

the non-negativity of mutual information, we have that

h(W |Yi, y
i−1) ≤ h(W |yi−1), implying

h(W |yi−1) ≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
h(W |yi)

h(W |yi−1)− h(W |yi) ≥ −γ(d) (60)

Combining (60) with (59) we have the desired result.
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A.8. Additional Experiments

Performance Across Dimensions: Fig. 3 plots MSE against embedding dimension averaged across all trials at both 20

and 60 queries asked. For all dimensions across all experiments, the learned Yummly Food-10k embedding was centered

and scaled by a constant amount such that the unit hypercube of user preference points would be contained in the embedding

of items, allowing for a rich pool of pairs to be selected from for any user point. This scaling constant was heuristically set

to
√
d/(3λ̃1/2), where λ̃ is the smallest eigenvalue of the covariance matrix of embedding items. This scaling is motivated

by setting the smallest variance direction of the embedding to align with the furthest point of the unit cube at a distance of√
d from the origin. For each learned embedding, responses to the Yummly Food-10k training triplets were predicted by

selecting the closer of the two comparison items to the reference item, using the embedding to measure distances. For a

given embedding, we refer to the fraction of incorrectly predicted triplet responses as the triplet error fraction, which we plot

for reference against embedding dimension in Fig. 4. For all experiments, β = 10−3 and results are averaged over 50 trials.

(a) Matched “constant” noise: 20 queries (b) Matched “normalized” noise: 20 queries (c) Matched “decaying” noise: 20 queries

(d) Matched “constant” noise: 60 queries (e) Matched “normalized” noise: 60 queries (f) Matched “decaying” noise: 60 queries

Figure 3. Mean squared error performance across dimensions at a fixed number of answered queries, plotted with ± one standard error.
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Figure 4. Triplet error fraction versus embedding dimension.
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Speed Plot Comparison Fig. 5 plots MSE against cumulative compute time for matched logistic noise with “normalized”

noise constant for d ∈ {4, 7, 12} in a smaller scale experiment of 60 queries per trial, and 40 trials per dimension. Specifically,

MSE and average cumulative compute time were calculated for each number of queries asked, and these two values plotted

against each other directly in a range up to 600 seconds. We evaluated all three of our methods (InfoGain, MCMV, EPMV)

at various pair pool downsampling rates of β ∈ {10−3, 10−3.5, 10−4}, as listed in the figure legend next to each method.

Each experiment was run on an Intel Xeon CPU E5-2680 v4 2.40 GHz processor.
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(b) d = 7
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(c) d = 12

Figure 5. Mean squared error performance against cumulative compute time (s) for matched, “normalized” logistic noise at various pair

downsampling rates. Error bars have been omitted for visual clarity.

Additional Experimental Results In this section, MSE is evaluated for both matched and mismatched noise at d ∈
{3, 5, 7, 9, 12} in Figs. 6 to 10. The model for kpq on mismatched Gaussian noise is chosen as the maximum-likelihood

model (“constant,” “normalized”, “decaying”) on the training triplets, calculated separately for each embedding dimension.

For all experiments, β = 10−3 and results are averaged over 50 trials.

(a) “Constant” model, matched, d = 3 (b) “Normalized” model, matched, d = 3 (c) “Decaying” model, matched, d = 3

(d) “Constant” model, mismatched, d = 3 (e) “Normalized” model, mismatched, d = 3 (f) “Decaying” model, mismatched, d = 3

Figure 6. Mean squared error performance versus number of queries asked for pairwise search in 3 dimensions, plotted with ± one

standard error. All mismatched noise is Gaussian with a “constant” noise constant.



Active Embedding Search via Noisy Paired Comparisons

(a) “Constant” model, matched, d = 5 (b) “Normalized” model, matched, d = 5 (c) “Decaying” model, matched, d = 5

(d) “Constant” model, mismatched, d = 5 (e) “Normalized” model, mismatched, d = 5 (f) “Decaying” model, mismatched, d = 5

Figure 7. Mean squared error performance versus number of queries asked for pairwise search in 5 dimensions, plotted with ± one

standard error. All mismatched noise is Gaussian with a “normalized” noise constant.

(a) “Constant” model, matched, d = 7 (b) “Normalized” model, matched, d = 7 (c) “Decaying” model, matched, d = 7

(d) “Constant” model, mismatched, d = 7 (e) “Normalized” model, mismatched, d = 7 (f) “Decaying” model, mismatched, d = 7

Figure 8. Mean squared error performance versus number of queries asked for pairwise search in 7 dimensions, plotted with ± one

standard error. All mismatched noise is Gaussian with a “normalized” noise constant.



Active Embedding Search via Noisy Paired Comparisons

(a) “Constant” model, matched, d = 9 (b) “Normalized” model, matched, d = 9 (c) “Decaying” model, matched, d = 9

(d) “Constant” model, mismatched, d = 9 (e) “Normalized” model, mismatched, d = 9 (f) “Decaying” model, mismatched, d = 9

Figure 9. Mean squared error performance versus number of queries asked for pairwise search in 9 dimensions, plotted with ± one

standard error. All mismatched noise is Gaussian with a “normalized” noise constant.

(a) “Constant” model, matched, d = 12 (b) “Normalized” model, matched, d = 12 (c) “Decaying” model, matched, d = 12

(d) “Constant” model, mismatched, d = 12 (e) “Normalized” model, mismatched, d = 12 (f) “Decaying” model, mismatched, d = 12

Figure 10. Mean squared error performance versus number of queries asked for pairwise search in 12 dimensions, plotted with ± one

standard error. All mismatched noise is Gaussian with a “normalized” noise constant.


