
Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

Chun-Hao Chang * 1 2 3 Mingjie Mai * 1 2 3 Anna Goldenberg 1 2 3

Abstract
Imagine a patient in critical condition. What
and when should be measured to forecast detri-
mental events, especially under the budget con-
straints? We answer this question by deep rein-
forcement learning (RL) that jointly minimizes
the measurement cost and maximizes predictive
gain, by scheduling strategically-timed measure-
ments. We learn our policy to be dynamically
dependent on the patient’s health history. To
scale our framework to exponentially large action
space, we distribute our reward in a sequential
setting that makes the learning easier. In our sim-
ulation, our policy outperforms heuristic-based
scheduling with higher predictive gain and lower
cost. In a real-world ICU mortality prediction task
(MIMIC3), our policies reduce the total number
of measurements by 31% or improve predictive
gain by a factor of 3 as compared to physicians,
under the off-policy policy evaluation.

1. Introduction
Redundant and expensive screening procedures and lab mea-
surements have increased the overall health care costs (Feld-
man, 2009). This phenomenon, either due to commercial
interests or over-concern, has been observed in numerous
clinical practices (Hoffman & Cooper, 2012; Brodersen
et al., 2018). For example, numerous studies (Iosfina et al.,
2013; Pageler et al., 2013) found no evidence that regular
blood testing improves diagnosis; frequent blood tests may
even cause anemia and infection (Salisbury et al., 2011). To
combat the situation, Dewan et al. (2017) devised a simple
rule to reduce the frequency of blood tests by 87% in pe-
diatric ICU. Similarly, Kotecha et al. (2017) showed that
the measurement costs can be significantly reduced with-
out increase in mortality or re-admission rates in cardiac

*Equal contribution 1University of Toronto, Toronto, ON,
Canada 2Vector Institute, Toronto, ON, Canada 3The Hospital
for Sick Children, Toronto, ON, Canada. Correspondence to:
Chun-Hao Chang <kingsley@cs.toronto.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

and surgical ICU. These findings point toward the need for
principled data-driven approaches for lab test scheduling to
improve the healthcare system.

Recently developed time-series forecasting models solve the
much needed problem of early detection of adverse events
(e.g. sepsis) based on sparse and irregular measurements
(Ghassemi et al., 2015; Soleimani et al., 2017a; Futoma
et al., 2017). However, the timing of these measurements
varies from doctor to doctor and from one hospital to another,
leading to a drastically different input distribution that may
result in inferior classifier performance. Additionally, these
classifiers are not often built to provide insights into which
measurements help the most to make the prediction given
current patient’s condition.

We propose a scalable and flexible framework that learns
a data-driven and dynamic sampling policy using deep Q-
learning. Deep Q-learning, a type of Reinforcement Learn-
ing (RL), is a powerful framework that can learn from
large amount of retrospective data even when the data does
not represent optimal behaviors. In addition, it has been
shown to be promising for solving various clinical problems
(Raghu et al., 2017; Futoma et al., 2018).

Our framework is a two-tier system. First, we learn an event
forecasting model to represent the patient’s condition. Then
we train RL to maximize this model’s performance while
minimizing the cost of the needed measurements. Compared
to directly using the event as reward, our approach of using
event probabilities from a learned classifier gives the RL im-
mediate reward for every action, making reward assignment
and training comparably easier. To handle the exponentially
large action space in the measurement scheduling problems,
we use sequential action setting that successfully handle the
number of measurements in an unprecedented scale.

We show that in the simulation setting, when given a near-
perfect classifier, our method is able to learn a strategi-
cally timed measurement scheduling that outperforms all
the heuristic-based scheduling. We then test it on MIMIC3,
a real ICU temporal dataset. We compare our learned poli-
cies, physician’s policy, as well as random policies using
off-policy policy evaluation (OPPE) method, showing that
our learned policies reduce measurement costs by 31% or
increase information gain by a factor of 3 compared to physi-
cian’s policy. Our data preprocessing and code are avail-

Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

able online at https://github.com/zzzace2000/
autodiagnosis.

2. Related Work
2.1. Clinical Event Forecasting Models

Several models have been proposed for event forecasting
on irregularly sampled EHR data. Zhang et al. (2017) first
used a deep generative variational recurrent neural network
(VRNN) to learn feature representation and then used a
neural network to predict disease. Li & Marlin (2016);
Futoma et al. (2017) used multi-output Gaussian process
(MGP) to impute the irregularly-sampled time series data
on the grid points and used those to make predictions via
recurrent neural network (RNN). Soleimani et al. (2018)
also used a MGP to impute the missing data, but instead
uses a survival model to predict the disease.

2.2. Deep RL in healthcare

Several recent works use RL to learn a treatment plan in
ICU. Weng et al. (2017) uses Q-learning to address glycemic
control problem for sepsis patients. Prasad et al. (2017)
also uses Q-learning to recommend personalized sedation
dosage and ventilator support. Raghu et al. (2017) and
Komorowski et al. (2018) focuses on treatments for sepsis
using Q-learning. The action space is discretized over doses
of two drugs commonly given to septic patients. Futoma
et al. (2018) improves the Q-learning model by MGP to
impute the missing value and adopts RNN as the Q-learning
network. Wang et al. (2018) learns a safe treatment schedul-
ing policy that both matches existing physician policy and
maximizes long-term reward using actor-critic framework.
However, this approach is less meaningful when physician
policy is sub-optimal, which may be the case for measure-
ment scheduling. All the RL frameworks in healthcare
above focus on the treatment scheduling problem. Moreover,
they either consider the effect of action to be independent
or allow only a few actions to be scheduled. Our framework
is scalable to large number of actions and consider multi-
ple actions jointly, which is a more realistic setting in the
clinical practice.

Beside treatment scheduling, Cheng et al. (2019) also aims
to learn a measurement policy by RL. They use fitted Q-
iteration to schedule 4 different lab tests relevant to diag-
nosis of sepsis and acute renal failure in the ICU setting.
Our work differs in three main ways. First, they treat the
scheduling of each measurement independent, making it
unsuitable in ICU since the lab measurement values are
highly correlated and sampling policy should be considered
jointly across all measurements. We show that this indepen-
dent design underperforms substantially than our sequential
design policy in section 4.2, and could be the reason for

their sometimes subpar performance against random policy.
Second, their reward is different from ours: they design a
multi-objective reward such as SOFA score or missingness,
while we represent the informativeness of a new measure-
ment using a trained classifier as our reward and use linear
combination to combine multiple objectives. Third, their
MDP state formulation doesn’t explicitly capture historical
information of the patient. Instead, our work summarizes the
historical information trends explicitly using LSTMs, and
shares this representation both for risk scoring and action
choosing.

2.3. Active feature acquisition

Several works (Contardo et al., 2016; He et al., 2016; Shim
et al., 2017) study the problem of selecting a subset of
features to achieve the maximum prediction performance
for a non-time-series classifier. We tackle time-series feature
acquisition problem where historical information matters.
This is especially true in a healthcare setting. In addition,
being time-series, the choice of a measurement at the current
timepoint affects the performance of the prediction model
at a future timepoint.

2.4. Active sensing in medical setting

The focus of active sensing is to determine what and when to
measure when acquiring measurements is costly. Ahuja et al.
(2017) handles single-measurement scheduling problem for
breast cancer screening by adopting a fixed model-based
transition model. Unfortunately, it requires strong assump-
tion, knowing the disease model dynamics, and does not
handle multiple types of measurements. Similarly, Yoon
et al. (2018) proposes a method of scheduling measurements
to trade between uncertainty in prediction and the measure-
ment cost. Their model performs a measurement for the
next time stamp if the decreases in the uncertainty in pre-
diction exceed the measurement cost. Our approach differs
in three ways. First, we use Q-learning to learn policy that
maximizes cumulative discounted reward of patient trajec-
tories, while they greedily select measurements that would
exceed the utility threshold at the next time stamp. Second,
we consider a different definition of informativeness of a
new measurement - gain in predictive probability. Consider
a binary case, where the model produces a wrong estimate,
a measurement that encourages a lower uncertainty would
not be the ideal choice of action. Third, at test time, instead
of evaluating reward at run time, our RL agent speeds up
the computation by amortized inferring the corresponding
Q-value by the learned Q function.

3. Methods
Our framework is composed of two parts: a forecasting pre-
dictive model and a RL model. See Figure 1 for an overview.

https://github.com/zzzace2000/autodiagnosis
https://github.com/zzzace2000/autodiagnosis

Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

LSTM LSTM Class 1
probability

ht�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ht
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

42
M1

M3
M2

3*1
X

X

X
X

Time step
………

Gender
…
…

018
Age

Time Invariant Features

Forecasting Model

Time Variant Features (t=3)

M: Measurement A = {M1, M2, M3, ⌦?
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌦?
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> } ⌦<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>⌦<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> : time-passing

Policy Learning -
Dueling Deep Q Network

s_v=[h_t, m_v]

Advantage

Value
Q(s_v, a_v)

h_t: RNN state m_v: history measurement t=4t=2 t=3

Class 1 Prob

1

0

M2

M1

M3

M1?

M2?

M2?

M1?
…

v=1 2 3 4 5 6 7

Policy Illustration

8 Step

Timepoint

⌦?
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌦?
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌦
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stop-Action

Figure 1. Our System Pipeline. (Left) Given a medical dataset with time-invariant and variant features, we train a forecasting model
LSTM which produces an event (e.g. mortality) probability. Then we train a dueling deep Q network to maximize the event probability
and minimize number of measurements. Its input sv is the concatenation of LSTM hidden state ht (summarizing the past information)
and the one-hot encoded measurements mv already made at this time. (Right) Policy illustration. The agent sequentially decides whether
to take another measurement (M1, M2, M3) or stops making more measurements (Ω) at the current timepoint.

For the first part, we train a multi-layer LSTM classifier test-
ing (Hochreiter & Schmidhuber, 1997) to forecast events
of interest using various features. We then frame measure-
ment scheduling question as a sequential feature acquisition
problem by RL. We train a dueling deep Q-learning network
(DQN) to schedule measurements that maximizes the clas-
sifier’s predictive probability while lowering measurement
cost given patient’s history up to the given timepoint.

3.1. Deep LSTM Classifier

To handle the sparse time-series data in LSTM, we use
mean imputation to fill in the missing measurement val-
ues. We concatenate the imputed measurement values with
missingness indicators and the static demographics for each
timepoint t and individual i. To learn the classifier I, we
minimize cross entropy loss between RNN’s prediction and
true label by backpropogation (Figure 1, Forecasting Model).
We list all the hyperparameters in appendix B.

3.2. Dueling Deep Q Network (DQN)

Dueling DQN factorizes the computation of Q-value into
value stream and advantage stream (Wang et al., 2015), i.e.

Q(s, a) = Vη(fξ(s))+Aψ(fξ(s), a)−
∑
a′ Aψ(fξ(s), a

′)

Naction
(1)

where ξ, η, and ψ are respectively, the parameters of the
shared encoder fξ of the value stream Vη , and of the advan-
tage stream Aψ (Figure 1, Policy Learning).

Sequential Actions Design In our clinical data, lots of
measurements have the exact same time for convenience,
i.e. there is no known true scheduling order. Given K

Algorithm 1 Running policy

Input: LSTM hidden state ht, policy Q
Output: DQN actions At
Initialize actions At = ∅
while Ω 6∈ At do
st ← [ht, At]
a← arg maxa′ 6∈At

Q(st, a
′)

Add a into At
end while

possible measurements, at any given time the agent has
to decide among 2K large combinations of measurements,
which is clearly unscalable to large K. In addition, naively
assigning reward to a set of actions without considering the
commonality between sets of actions lead to more difficult
learning and gets lower sample efficiency. To overcome
these two difficulties, we design the RL to take actions in a
sequential manner to overcome the large action space and
assign separate reward to each individual action (Figure 1,
Right). Specifically, we include a new action Ω to represent
stopping making any more action. Then at each time point,
the agent chooses the action with maximum Q-value one at
a time until the agent selects action Ω (Algorithm 1).

Action We add a new stop-action Ω into RL actions. We
represent RL agent’s action av as a multi-hot encoding vec-
tor of size K + 1. For k ∈ [1,K], av,k = 1 denotes the kth

measurement is taken at this timepoint, otherwise av,k = 0.

Reward We define the reward function as a linear combi-
nation of the information gain gI and measurement cost c,
i.e. r(sv, av) = gI(sv, av)− λ ∗ c(av), where v represents
the step in the MDP (to differentiate between timepoint t).

Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

Algorithm 2 Generate experience for a patient at time t

Input: Pretrained LSTM model I, current observa-
tion yt = {yt,1, ..., yt,Kt}, patient’s history observations
qt−1 = {y1, ..., yt−1}, decay factor γ, total number of
measurement K, action cost scale factor λ.
hI(q, x), pI(q, x): last hidden state and the probability
of I with patient’s observations q and prediction time x
Output: All training experiences tuple E
E = ∅
Store time-passing experience from from t− 1 to t
[h = hI(qt−1, t − 1), m = yt−1, h′ = hI(qt−1, t),
m′ = ∅, a = Ω, r = (pI(qt−1, t) − pI(qt−1, t − 1)),
γ = γ] in E
Randomly shuffle yt
for v = 1 to K do

Store measurement experience [h = hI(qt−1, t),
m = {yt,1, ..., yt,v−1}, h′ = hI(qt−1, t), m′ =
{yt,1...yt,v}], a = index(yt,v), r = (pI(qt−1 ∪
{yt,1, ..., yt,v−1}, t) − pI(qt−1 ∪ {yt,1, ..., yt,v}, t) −
λ ∗ c(a)), γ = 1] in E

end for

To encourage the predictive performance of the classifier I,
we define the information gain g(sv, av) as the probability
change of the classifier I, conditioned on the label, i.e.

gI(∆P) =

{
∆P , if label = 1

−∆P , otherwise
(2)

The cost of scheduling a measurement c(av) is a hyperpa-
rameter and should be defined by the domain expert which
could represent its monetary cost, operational complexity
or patient’s discomfort. In this work we simply define it as
the number of measurements except the action Ω i.e.

c(av) =

{
1, if av 6= Ω

0, otherwise
(3)

State We use a multi-hot encoding mv to denote the mea-
surements that have been scheduled by the agent at the cur-
rent timepoint. We use the concatenation of last LSTM layer
representation ht of patient’s history and history measure-
ment mv as the input to the agent, denoted sv = [ht,mv].

Learning We generate RL experience tuples [h, m, h′, m′,
a, r, γ] in a sequential manner (Algorithm 2). We generate
two kinds of experience, time-passing experiences and mea-
surement experiences. The time-passing experience assigns
the probability change due to time shift from t−1 to t to the
action Ω. The measurement experience assigns the reward
to a specific measurement action. Since multiple measure-
ments are recorded at the same time and we do not know

Algorithm 3 Training sequential DQN

Input: Pretrained LSTM model I, patient’s database
D = {q1, ..., qN}, patient’s trajectory length T i.
Output: DQN model Qθ
R← ∅ // Initialize prioritized experience replay buffer R
for qi in D do

for t = 1 to T i do
Ei ← get experience for patient qi at t (Algo. 2)
Store Ei in R

end for
end for
while L is not converged do
E ∼ R
h,m, h′,m′, a, r, γ ← E
s = [h,m], s′ = [h′,m′]
Qtarget(s, a, s

′) = r(s, a) + γmaxa′ 6∈m′ Qθ(s
′, a′)

minimize L = [Qθ(s, a)−Qtarget(s, a, s′)]2
Update priority of E in R using L

end while

the underlying chronological order, we thus treat every or-
der equally likely. We generate training experience based
on several random order of the measurements at the same
time point t, as a way of data augmentation. For example,
if M1,M2,M3 were recorded at a timepoint, the action
order could be (M1, M2, M3, Ω), (M2, M1, M3, Ω), or (M3,
M2, M1, Ω) etc. To avoid the total reward received change
across different random orders, we do not decay the reward
(γ = 1) in these experiences. Under our linear additive
reward design (eq. 2), the random order produces the same
culmulative reward no matter which order is used. Also,
we do not update the hidden state h for these measurement
experiences within the same time t since we do not know
the measurement until t+ 1.

We optimize the RL agent by minimizing the Bellman-
equation square error (Algorithm 3). Note that when calcu-
lating the Qtarget, the best action considered can not be in
the action set m′ already performed in the current time. i.e.

Qtarget(s, a, s
′) = r(s, a) + γ max

a′ 6∈m′
Q(s′, a′)

All the training hyperparameters are listed in Table 4.

3.3. Off-Policy Policy Evaluation (OPPE)

OPPE is currently the only way to evaluate RL performance
on retrospective data, and is crucial to report OPPE to make
it possible for a future online evaluation in a healthcare set-
ting. We use regression-based estimator (Jiang & Li, 2015)
to estimate the values of physician and our learned policies
using physician collected data. We do not use importance-
sampling based method since it would require an exact
match with physician actions under our deterministic policy,

Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

Algorithm 4 Per-time off-policy evaluation

Input: Trained value estimator regression model φ, pa-
tient’s database D = {q1...qN}, DQN state sit, trained
DQN agent Q.
Output: Estimated cumulative information gain G
G = 0
for qi in D do

for t = 1 to T i do
aQt ← run Q with patient state sit (Algo. 1)
∆Q
p = φ(st, a

Q
t) // Estimate probability changes

G = G+ γt ∗ gI(∆Q
p)

end for
end for

which is virtually impossible in our high-dimensional action
space. Besides, it is also shown to be unstable when using
with regression-based estimator in Liu et al. (2018).

We use per-time value estimator to evaluate our learned
policies (Algorithm 4). First, we train a regression model
φ that maps the state-action pair to the information gain
probability changes of model I. Specifically, at each time
t, the input is the concatenation of the latent state ht and
multi-hot encoding of actions at performed at time t, and
the output is the probability changes ∆P = Pt+1 − Pt. We
use feed-forward neural network to fit the regression with
all hyperparameters listed in Appendix Table 5. Then, for
each patient at each time t, we estimate to the next time t+1
what is the corresponding reward if the specified action is
performed. And we obtain estimated cumulative informa-
tion gain G by summing over all estimated information gain
gφ across all patients and all time t with decay as γt.

4. Results
4.1. Simulation

The goal of this simulation is to study the performance of the
RL agent given a near-perfect classifier. Here, we simulate
a terminal event forecasting task, use a softmax classifier to
produce rewards and then train a Dueling DQN agent for
measurement scheduling using the rewards generated by the
classifier.

Simulation data Patient clinical status is simulated to be
a binary time series generated under a two-state Markov
model: M = {0, 1 : 0 = Healthy, 1 = Critical}. A con-
secutive sequence of five 1s in the status series indicates the
onset of a terminal event. We simulate patients to have dif-
ferent trajectory lengths T indexed by t and 10 types of input
signals indexed by k, as follows. Let εt,k ∼ N(0, 0.1). The
first five types of measurements (k ∈ [1, 5]) yt,k = 1 + εt,k
when St = 1 and −1 + εt,k otherwise. The last five types
of measurements (k ∈ [6, 10]) are εt,k independent of St.

Figure 2. Online evaluation of policies in simulation. Action freq is
the number of measurements taken average over all trajectories. An
ideal policy should have low action frequency and high probability
gain during disease state (i.e. top left corner).

We randomly remove 50% of the values from the generated
matrix to introduce missingness creating a more realistic sce-
nario. In the case of missingness, the measurement value is
set to 0. The measurements are designed such that first five
types of measurements have increasing importance while
the last five measurements are noise.

Designed classifier We design a classifier considering the
feature importance vector {fk}10k=1 = (1 2 3 4 5 0 0
0 0 0). The classifier takes in measurements of the 5
most recent timepoints {{yt,k}10k=1}t

′

t=t′−4, where t′ is the
current time. Let η denote a time decay factor, where
past measurements are less important. The classifier
then forecasts whether the patient experiences a terminal
event within 5 future timepoints with p(ot′+5 = 1) =

softmax(
∑t′

t=t′−4
∑10
k=1 yt,k · fk · ηt). The classifier in-

creases the certainty of a terminal event when it discovers
more critical signals in the measurement values. To see
whether the agent can distinguish features with different
importance, we employ a uniform action cost c(av) = 1.
The RL agent takes {{yt,k}10k=1}t

′

t=t′−4 as input. We set
reward discount factor γ = 0.999 in this task.

We simulated a dataset of 5, 000 patient trajectories with
T ∈ [25, 50] according to the scheme above. 5% of the pa-
tients end up with a terminal event. We learn several dueling
DQN agents by varying trade-off factor λ. We include sev-
eral baselines that resemble the heuristic-based test schedul-
ing. One of the baseline policies is randomly selecting x in-
formative measurements (Random_informative), where
x ∈ [1, 5]. Another class of baseline policies is randomly
selecting x measurements (Random), where x ∈ [1, 10].

Dynamic Measurement Scheduling for Event Forecasting Using Deep RL

jN
N
M
N

jO
N
M
N

jP
N
M
N

jQ
N
M
N

jR
N
M
N

jS
N
M
N

jT
N
M
N

jU
N
M
N

jV
N
M
N

MKM OKR RKM TKR NMKM NOKR NRKM NTKR OMKM
jNM

N
M
N

Figure 3. An example trajectory of our dueling DQN policy in the
simulation. Blue color denotes all the measurements for healthy
state and red for critical state. Darker color represents the measure-
ments taken by the agent. For example, M4 and M5 are taken all
the time to probe the state of the patient.

Table 1. The test set performances of the trained classifiers in 24
hour mortality prediction.

AUC AUPR

LR 0.931 0.752
RF 0.935 0.756

RNN 0.950 0.803

As we vary λ, we learn a range of policies that trade off
between action frequency and predictive probability of de-
tecting the terminal event (Figure 2). Under the same action
frequency, our learned dueling DQN agent consistently out-
perform baseline policies in terms of predictive probability
of detecting disease, showing the benefits of dynamically
measure patients conditioned on the patient state.

We show an example patient trajectory of our dueling DQN
policy in Figure 3. It always selects the most and the second
most informative features (M4, M5) to probe which state
the patient is in. It sequentially selects the other informative
features (M3, M2, M1) whenever it finds the patient is in
a critical state. It doesn’t select any noisy features to avoid
accruing total measurement cost.

4.2. Results on MIMIC3

Here we test our policy on a real-world ICU dataset MIMIC3
to gain better clinical sampling policy. The details of our
preprocessing of MIMIC3 are in the Appendix A. First,
we train a mortality forecasting model. Our task is to pre-
dict if patient dies within 24 hours given the past 24 hours
of observations. The observations include 39 time-series
measurements and 38 static covariates.

We show that we train a well performing RNN classifier:

0.0 0.2 0.4 0.6 0.8 1.0
Relative action costs

−0.02

0.00

0.02

0.04

0.06

Es
tim

at
ed

 in
fo

rm
at

io
n

ga
in

s

Sequential DQN
Independent DQN
Physician policy
Random policies

Figure 4. Offline evaluation of physician, sequential DQN, inde-
pendent DQN and random policies in MIMIC3. Relative action
cost is normalized between 0 and 1 for the accumulated action
costs c.

with sufficient information RNN vastly outperforms base-
lines such as random forest that do not consider long-term
dependency (Table 1). The details of the classifier training
are in Appendix B. By combining the classifier and RL, we
are able to learn clinically relevant policies from off-line
data and show our policies perform better than clinician’s
policy using off-policy policy evaluation.

Training policies and off-policy evaluation We take
each patient’s last 24 hours and discretize the experience
into 30-minutes intervals, leading to 48 time points. We
remove the patients with fewer than 12 hours of recording
or less than 5 measurements available. We set γ = 0.95
to encourage the agent to increase predictive performance
earlier rather than later. We vary our DQN architecture,
random seed and action cost coefficient λ (range listed in
Table 4) to train 150 different policies by random search,
and select the best performing policies based on validation
set. We list all the hyperparameters in Appendix Table 4.

We use regression based OPPE to evaluate our agent poli-
cies, physician policy and random policies shown in Figure
4. Ideally, a great policy should have low action frequency
and high information gain. By interpolating across various
DQN performing points, we can get a frontier of perfor-
mance curve for our DQN agent. Using this frontier, com-
pared to physician policy, our policies (denoted sequential
DQN in Figure 5) reduce action costs by 31% under the
same information gain, or increase the information gain 3
times relative to the lowest information gain with the same
action costs. In addition, we scale up Cheng et al. (2019)
to our setting by considering the reward independently for
each measurement and model the Q-values using a multi-
output neural network (denoted independent DQN in Figure
4). This approach only increases information gain by 30%,
decreasing the cost by 12%.

