
On Symmetric Losses for Learning from Corrupted Labels

A. Proofs
We provide the proofs in this section.

A.1. Proof of Theorem 1

Proof. Recall that the AUC risk is:

R`AUC(g) = EP[EN[`(f(xP,xN))]].

Corrupted AUC risk where XCP is assigned to be positive and XCN as negative:

R`AUC-Corr(g) = ECP[ECN[`(f(xCP,xCN))]].

where

R`CP(g) = πEP[`(g(x))] + (1− π)EN[`(g(x))],

R`CN(g) = π′EP[`(−g(x))] + (1− π′)EN[`(−g(x))].

R`AUC-Corr(g) can be rewritten as follows:

R`AUC-Corr(g) = π′ECP[EP[`(f(xCP,xP))]] + (1− π′)ECP[EN[`(f(xCP,xN))]]]

= ππ′EP′ [EP[`(f(xP′ ,xP))]] + (1− π)π′EN[EP[`(f(xN,xP))]]

+ π(1− π′)EP[EN[`(f(xP,xN))]]

+ (1− π)(1− π′)EN′ [EN[`(f(xN′ ,xN))]].

Let

A = EP′ [EP[`(f(xP′ ,xP))]] ,
B = EN[EP[`(f(xN,xP))]],

C = EP[EN[`(f(xP,xN))]] = R`AUC(g),
D = EN′ [EN[`(f(xN′ ,xN))]],

γ` = EP[EN[`(f(xP,xN)) + `(f(xN,xP))]] = B + C,

γ`(x,x′) = `(f(x,x′)) + `(f(x′,x)).

First, we show that A = EP′ [EP[`(f(xP′ ,xP))]] = EP′ [EP[
γ`(xP′ ,xP)

2 ]]:

EP′ [EP[`(f(xP′ ,xP))]] = EP′ [EP[1xP′=xP
`(0) + 1xP′ 6=xP

`(f(xP′ ,xP))]]

= EP′ [EP[1xP′=xP
`(0)]] + EP′ [EP[1xP′ 6=xP

`(f(xP′ ,xP))]]

= 0 + EP′ [EP[1× `(f(xP′ ,xP))]

= EP′ [EP[
`(f(xP′ ,xP)) + `(f(xP,xP′))

2
]]

= EP′ [EP[
γ`(xP′ ,xP)

2
]].

D can also be rewritten in a same manner so it is omitted for brevity.

D = EN′ [EN[`(f(xN′ ,xN))]] = EN′ [EN[
γ`(xN′ ,xN)

2
]].
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Then, we get the following result:

R`AUC-Corr(g) = ππ′A+ (1− π)π′B + π(1− π′)C + (1− π)(1− π′)D
= ππ′A+ (1− π)π′(γ` − C) + π(1− π′)C + (1− π)(1− π′)D
= ππ′A+ (π′ − ππ′)γ` + (π − π′)C + (1− π)(1− π′)D

= (π − π′)R`AUC(g) + (1− π)π′EP[EN[γ
`(xP,xN)]]

+ ππ′EP′ [EP[
γ`(xP′ ,xP)

2
]] + (1− π)(1− π′)EN′ [EN[

γ`(xN′ ,xN)

2
]]

= (π − π′)R`AUC(g) + (π′ − ππ′)EP[EN[γ
`(xP,xN)]]

+
ππ′

2
EP′ [EP[γ

`(xP′ ,xP)]] +
(1− π)(1− π′)

2
EN′ [EN[γ

`(xN′ ,xN)]].

Therefore, minimizing R`AUC-Corr(g) does not imply minimizing R`AUC(g) unless `(f(x,x′)) + `(f(x′,x)) is a constant.

A.2. Proof of Theorem 3

Let γ`(x) = `(g(x)) + `(−g(x)), R`BER-Corr(g) can be expressed as

R`BER-Corr(g) = (π − π′)R`BER(g) +
π′EP[γ

`(x)] + (1− π)EN[γ
`(x)]

2

Proof. Recall that the balanced risk is:

R`BER(g) =
1

2

[
EP[`(g(x))

]
+ EN

[
`(−g(x))]

]
.

Balanced corrupted risk where XCP is assigned to be positive and XCN as negative:

R`BER-Corr(g) =
1

2

[
R`CP(g) +R`CN(g)

]
,

where

R`CP(g) = πEP[`(g(x))] + (1− π)EN[`(g(x))],

R`CN(g) = π′EP[`(−g(x))] + (1− π′)EN[`(−g(x))].

R`BER-Corr(g) can be rewritten as follows:

2R`BER-Corr(g) = πEP[`(g(x))] + (1− π)EN[`(g(x))]

+ π′EP[`(−g(x))] + (1− π′)EN[`(−g(x))]
= πEP[`(g(x))] + (1− π)EN[γ

`(x)− `(−g(x))]
+ π′EP[γ

`(x)− `(g(x))] + (1− π′)EN[`(−g(x))]
= πEP[`(g(x))] + (1− π)EN[γ

`(x)]− (1− π)EN[`(−g(x))]
+ π′EP[γ

`(x)]− π′EP[`(g(x))] + (1− π′)EN[`(−g(x))]
= πEP[`(g(x))]− π′EN[`(−g(x))] + πEN[`(−g(x))]
− π′EP[`(g(x))] + (1− π)EN[γ

`(x)] + π′EP[γ
`(x)]

= (π − π′)[EP[`(g(x))] + EN[`(−g(x))]] + π′EP[γ
`(x)] + (1− π)EN[γ

`(x)]

= 2(π − π′)R`BER(g) + π′EP[γ
`(x)] + (1− π)EN[γ

`(x)]

R`BER-Corr(g) = (π − π′)R`BER(g) +
π′EP[γ

`(x)] + (1− π)EN[γ
`(x)]

2
.
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A.3. Conditional risk for binary classification

By making use of the symmetric property, i.e., `(z) + `(−z) = K, a pointwise conditional risk can be rewritten such that
there is only one term depending on α as follows for a fixed x:

C`η(α) = η`(α) + (1− η)`(−α)
= η`(α) + (1− η)(K − `(α))
= (1− η)K + (2η − 1)`(α),

where η = p(y = 1|x). It can be observed that `(−z) can be expressed by K − `(z). The symmetric property makes
analysis simpler because `(−z) can be rewritten as `(z)and the following general properties can be obtained by only rely on
the symmetric property.

A.4. Proof of Theorem 5

Proof. Let H(η) = inf
α∈R

C`η(α) and H−(η) = inf
α:α(2η−1)≤0

C`η(α) .

First, consider the ψ-transform from the definition 2 of Bartlett et al. (2006). Consider ` : R→ [0,∞), function ψ : [0, 1]→
[0,∞) by ψ = ψ̃∗∗, where

ψ̃(θ) = H−
(
1 + θ

2

)
−H

(
1 + θ

2

)
,

g∗∗ : [0, 1]→ R is the Fenchel-Legendre biconjugate of g : [0, 1]→ R characterized by

epi g∗∗ = co epi g.

It is known that ψ = ψ̃ if and only if ψ̃ is convex. For more details, please refer to Bartlett et al. (2006).

Next, we use the following statements in Lemma 5 from Bartlett et al. (2006) which can be interpreted that, ` is classification-
calibrated if and only if ψ(θ) > 0 for all θ ∈ (0, 1]. Based on this statement, we prove the sufficient and necessary
condition for symmetric losses to be classification-calibrated by showing that ψ(θ) > 0 for all θ ∈ (0, 1] if and only if
inf
α>0

`(α) < inf
α≤0

`(α).

Using the conditional risk of symmetric losses in the previous section, H and H− can be written as

H(η) = inf
α∈R

C`η(α)

= (1− η)K + inf
α∈R

(2η − 1)`(α),

H−(η) = inf
α:α(2η−1)≤0

C`η(α)

= (1− η)K + inf
α:α(2η−1)≤0

(2η − 1)`(α).

Let ψ̃(θ) = H−( 1+θ2 )−H( 1+θ2 ) where θ ∈ (0, 1],

ψ̃(θ) = H−(
1 + θ

2
)−H(

1 + θ

2
)

= inf
α:αθ≤0

θ`(α)− inf
α∈R

θ`(α)

= θ[ inf
α≤0

`(α)− inf
α∈R

`(α)].

Let C = inf
α≤0

`(α)− inf
α∈R

`(α) is a constant depends on the function.

ψ̃(θ) = Cθ.
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Here, ψ̃(θ) is linear and therefore convex. As a result, ψ = ψ̃. Based on Lemma 5 of Bartlett et al. (2006). ` is classification-
callibrated if and only if ψ(θ) > 0 for all θ ∈ (0, 1]. In this case, θ is positive therefore, any symmetric loss function is
classification-calibrated if and only if C > 0.

inf
α≤0

`(α)− inf
α∈R

`(α) > 0

inf
α∈R

`(α) < inf
α≤0

`(α)

inf
α>0

`(α) < inf
α≤0

`(α).

Therefore, a symmetric loss ` is classification-calibrated if and only if inf
α>0

`(α) < inf
α≤0

`(α).

A.5. Proof of Theorem 7

Proof. Once ψ(θ) = [ inf
α≤0

`(α)− inf
α>0

`(α)]θ is obtained in the previous proof of classification-calibration for a symmetric

loss. It is straightforward to obtain an excess risk bound based on Bartlett et al. (2006):

ψ(R`0-1(g)−R`0-1∗) ≤ R`(g)−R`∗

[ inf
α≤0

`(α)− inf
α>0

`(α)](R`0-1(g)−R`0-1∗) ≤ R`(g)−R`∗

R`0-1(g)−R`0-1∗ ≤ R`(g)−R`∗

inf
α≤0

`(α)− inf
α>0

`(α)
,

where R`∗ = inf
g
R`(g) and R`0-1∗ = inf

g
R`0-1(g).

A.6. Proof of Theorem 8

Proof. Consider a conditional risk minimizer of a symmetric loss `

f∗` (x) = argmin
α∈R

C`η(x)(α)

= argmin
α∈R

(1− η(x))K + (2η(x)− 1)`(α).

The constants can be ignored as it does not depend on α. Let us consider two cases of η > 1
2 and η < 1

2 :

Case 1: η > 1
2

f∗` (x) = (1− η(x))K + argmin
α∈R

(2η(x)− 1)`(α)

= argmin
α∈R

`(α).

Case 2: η < 1
2

f∗` (x) = (1− η(x))K + argmin
α∈R

(2η(x)− 1)`(α)

= argmax
α∈R

`(α).

Suppose there are many α to satisfy the conditions. Due to the symmetric condition, We can express the following relations.

argmin
α∈R

`(α) = − argmax
α∈R

`(α),

where − argmax
α∈R

`(α) means a set such that each element in the set argmax
α∈R

`(α) is multiplied by −1. As a result, f∗` (x)

can be simply written as follows:

f∗` (x) = Msign(η(x)− 1

2
),
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where M ∈ argmin
α∈R

`(α). This result shows that the conditional risk minimizer of a symmetric loss can be expressed as the

bayes classifier scaled by a constant. In the case of functions such that it is classification-calibrated and argmin cannot be
obtained, M →∞.

A.7. Introduction of AUC-consistency

In AUC maximization, we want to find the function g that minimizes the following risk:

R`0-1
AUC(g) = EP[EN[`0-1(g(xP)− g(xN))]].

Gao & Zhou (2015) showed that the Bayes optimal functions can be expressed as follows:

B = {g : R`0-1
AUC(g) = R`0-1∗

AUC(g)}
= {g : (g(x)− g(x′))(η(x)− η(x′)) > 0 if η(x) 6= η(x′)}

Unlike classification-calibration, the Bayes optimal functions for AUC maximization depend on the pairwise class probability,
i.e., the class probabilities for two data points are compared. The optimal function g is a function such that the sign of
g(x)− g(x′) matches the sign of η(x)− η(x′). Therefore, one solution of g is the class probability itself. Because when
g(x) = η(x) for all x, then g(x)− g(x′) = η(x)− η(x′) which is exactly the same value as the function we want to match
the sign with. As a result, it is arguable that the bipartite ranking problem based on the AUC score is easier than the class
conditional probability estimation problem in the sense that the problem is solved if we have an access to η(x). However,
we only need to find a function g such that sign(g(x)− g(x′)) = sign(η(x)− η(x′)). AUC-consistency property can be
treated as the minimum requirement of a loss function to be suitable for bipartite ranking (Gao & Zhou, 2015).

A.8. Proof of Lemma 9

A proof is based on a necessary of the notion of calibration in Gao & Zhou (2015), which we call AUC-calibration to avoid
confusion in this paper. According to Gao & Zhou (2015), AUC-calibration is a necessary condition for AUC-consistency.
Here, we prove that a symmetric loss is AUC-calibrated if and only if a symmetric loss is classification-calibrated.

Proof. For a symmetric loss `, we can rewrite a pairwise conditional risk term in the infimum as follows:

η(1− η′)`(α) + η′(1− η)`(−α) = η(1− η′)`(α) + η′(1− η)(K − `(α))
= η(1− η′)`(α) + η′K(1− η)− η′`(α) + ηη′`(α)

= (η − η′)`(α) + η′K(1− η).

H−(η, η′) > H(η, η′)

H−(η, η′)−H(η, η′) > 0

1

2π(1− π)
[ inf
α:α(η−η′)≤0

(η − η′)`(α)− inf
α∈R

(η − η′)`(α)] > 0

inf
α:α(η−η′)≤0

(η − η′)`(α)− inf
α∈R

(η − η′)`(α) > 0

Case 1: η − η′ > 0

(η − η′)[ inf
α:α(η−η′)≤0

`(α)− inf
α∈R

`(α)] > 0

inf
α:α≤0

`(α)− inf
α∈R

`(α) > 0.

Case 2: η − η′ < 0

(η − η′)[ sup
α:α(η−η′)≤0

`(α)− sup
α∈R

`(α)] > 0

sup
α:α(η−η′)≤0

`(α)− sup
α∈R

`(α) < 0

sup
α:α≥0

`(α)− sup
α∈R

`(α) < 0.
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The two inequalities are equivalent which proved in Section 4.9.6. Therefore, a symmetric loss must satisfy inf
α>0

`(α) <

inf
α≤0

`(α) to be AUC-calibrated. This is equivalent to classification-calibration condition for a symmetric loss. Next, it is

known that AUC-calibration is a necessary condition for AUC-consistent (Gao & Zhou, 2015), therefore, a symmetric loss
that is not classification-calibrated must not satisfy this condition, and thus not AUC-consistent.

This elucidates that classification-calibration is a necessary condition for a symmetric loss to be AUC-consistent.

A.9. Proof of Proposition 10

Proof. Consider a pairwise conditional risk:

η(1− η′)`(α) + η′(1− η)`(−α) = η(1− η′)`(α) + η′(1− η)(K − `(α))
= η(1− η′)`(α) + η′K(1− η)− η′`(α) + ηη′`(α)

= (η − η′)`(α) + η′K(1− η). (3)

Then, let us consider a symmetric loss `EX such that `EX(1) = 0, `EX(−1) = 1, and 0.5 otherwise. It is straightforward to
see that it is a symmetric loss where `EX(z) + `EX(−z) = 1. We are going to show that this loss is classification-calibrated
but AUC-consistent. Moreover, we can see that inf

α>0
`EX(α) < inf

α≤0
`EX(α). Therefore, `EX is classification-calibrated

based on the previous theorem on a necessary and sufficient condition of a symmetric loss to be classification-calibrated.

Next, let us consider a uniform discrete distribution DU that contains 3 possible supports {x1,x2,x3}. Moreover, let
η(x1) = 1, η(x2) = 0.5, η(x3) = 0.

Here, we prove Proposition 10 by a counterexample that the minimizer of the AUC risk with respect to `EX resulted in a
function that behaves differently the Bayes-optimal solution of AUC maximization of a function that has a strictly monotonic
relationship with the class probability η(x) (Menon & Williamson, 2016), and therefore AUC-inconsistent.

Consider the following pairwise risk:

Rpair
`EX

(g) =
1

2π(1− π) E
x,x′∼D2

X

[η(x)(1− η(x′))`EX(g(x)− g(x′))

+ η(x′)(1− η(x)`EX(g(x
′)− g(x))]

=
1

2π(1− π) E
x,x′∼D2

X

[(η(x)− η(x′))`EX(g(x)− g(x′)) + η′K(1− η)]

Since we are only interested in the minimizer of the risk, let us ignore the constant term and rewrite the risk pair as follows:

Rpair
`EX

(g) = C0 + C1

3∑
i=1

∑
j 6=i

`EX(g(xi)− g(xj)),

where C0 and C1 are some constants.

Let us consider the following g1, g2, g3, g4: Rd → R,

g1(x1) = g1(x2) + 1 = g1(x3) + 1,

g2(x1) = g2(x2) + 1 = g2(x3) + 2,

g3(x1) = g3(x2) = g3(x3),

g4(x1) = g4(x2) = g4(x3) + 1.

Then, a function g that minimizes the risk Rpair
`EX

(g) is the one that minimizes
∑3
i=1

∑
j 6=i `EX(g(xi) − g(xj)) =∑3

i=1

∑
j 6=i `EX(g(xi,xj)). More precisely, there are six pairs to consider as can be observed in the following table.
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Table 3. The illustrations of the values for each pair in the uniform discrete distribution supports.

Pair ηi − ηj `EX(g1(xi,xj)) `EX(g2(xi,xj)) `EX(g3(xi,xj)) `EX(g4(xi,xj))
η1 − η2 0.5 0 0 0.5 0.5
η1 − η3 1 0 0.5 0.5 0
η2 − η1 −0.5 1 1 0.5 0.5
η2 − η3 0.5 0.5 0 0.5 0
η3 − η1 −1 1 0.5 0.5 1
η3 − η2 −0.5 0.5 1 0.5 1

We can rank the score of each g by taking a weighted sum of column ”ηi − ηj” in Table 3 to the column of the loss function
of a function g. For example, for g1, the score is 0.5×0+1×0+(−0.5)×1+0.5×0.5+(−1)×1+(−0.5)×0.5 = −1.5.
Note that the lower sum the better since we are interested in the minimizer.

The function g2 is a function that is optimal with respect to the pairwise risk with respect to the zero-one loss, i.e., has
a strictly monotonic relationship with the class probability η(x). However, the score of g2 is −1 which is worse than g1
and g4. In this scenario, g1 and g4 minimize the risk in this distribution which contradicts to the optimal solution of AUC
optimization.

Note that g1 and g4 are the global minimizer of the risk, not only among g1, g2, g3, g4. Since `EX returns the same value of
all input except two points which are 1 and −1, the minimizer of the risk is the one that the loss function returns 1 for the
lowest weight, i.e., for ηi − ηj = −1 and ηi − ηj = −0.5.

Intuitively, to fill in the blanks for all pairs, once we pick where the loss will return 1 for two pairs, all other pairs will
be fixed. For other terms, they will cancel each other out and therefore the variable term minimum pairwise risk in the
distribution D with respect to the loss `EX is −1.5, which includes the one that is not the Bayes-optimal solution and the
one that conforms to the Bayes-optimal solution is not included.

Thus, we conclude that `EX, which is a classification-calibrated symmetric loss is AUC-inconsistent. This suggests the gap
between classification calibration and AUC-consistency for a symmetric loss.

A.10. Proof of Theorem 11

Proof. Recall the Bayes optimal functions for AUC-optimization Gao & Zhou (2015) :

B = {g : R`0-1
AUC(g) = R`0-1∗

AUC(g)}
= {g : (g(x)− g(x′))(η(x)− η(x′)) > 0 if η(x) 6= η(x′)}.

Here, we consider ` as a non-increasing loss ` : R→ R such that `(z) + `(−z) is a constant and `′(0) < 0.

Let us write

Rpair
` (g) =

1

2π(1− π) E
x,x′∼D2

X

[η(x)(1− η(x′))`(g(x)− g(x′))

+ η(x′)(1− η(x))`(g(x′)− g(x))]

=
1

2π(1− π) E
x,x′∼D2

X

[(η(x)− η(x′))`(g(x)− g(x′)) + η′K(1− η)].

Next, we show that the minimizer of the AUC risk of `, has a strictly monotonic relationship with the class probability η(x).
More precisely, we will prove the following inequality:

inf
g/∈B

Rpair
` (g) > inf

g
Rpair
` (g). (4)

We will prove by contradiction. First, let us assume that there is a function gB that is not strictly monotonic to the class
probability η(x) but is a minimizer of the AUC risk Rpair

` . Then, we prove that it is impossible since there always exists a
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function that can further minimize the AUC risk AUC risk Rpair
` . Note that the key idea of the proof is similar to that of Gao

& Zhou (2015) except the fact that a loss is not convex and we can make use of the symmetric property.

First, similarly to the proof of the previous proposition, by making use of symmetric property, let C0, C1, C2, C3 be some
constants, we obtain the following

Rpair
` (g) =

1

2π(1− π) E
x,x′∼D2

X

[(η(x)− η(x′))`(g(x)− g(x′)) + η′K(1− η)].

= C0 E
x,x′∼D2

X

[(η(x)− η(x′))`(g(x)− g(x′))] + C1.

= C0 E
x,x′∼D2

X ,η(x)>η(x
′)
[(η(x)− η(x′)) (`(g(x)− g(x′))− `(g(x)− g(x′)))] + C1.

= C0 E
x,x′∼D2

X ,η(x)>η(x
′)
[(η(x)− η(x′)) (2`(g(x)− g(x′))−K)] + C1.

= C2 E
x,x′∼D2

X ,η(x)>η(x
′)
[(η(x)− η(x′))`(g(x)− g(x′))] + C3. (5)

The key advantage for the symmetric loss is that there is only one term that involves a loss for each pair `(g(x)− g(x′)),
this helps us handle the conditional risk easier similarly to the binary classification scenario.

Next, we will show that for any gB /∈ B there exists a better function gG such that

Rpair
` (gB) > Rpair

` (gG). (6)

By ignoring constants, the term that a function g can minimize the risk for a symmetric loss is

Rcomp
` (g) = E

x,x′∼D2
X ,η(x)>η(x

′)
[(η(x)− η(x′))`(g(x)− g(x′))]

To show that (6) holds, it suffices to show that

Rcomp
` (gB) > Rcomp

` (gG) (7)

Then, we know that there exists x1 and x2, which is a pair such that gB(x1) ≤ gB(x2), but η(x1) > η(x2). Let
δ = |gB(x1)− gB(x2)|+ ε, where ε > 0.

Let us construct gG as follows.

gG(x) = gB(x)− δ, if η(x) ≤ η(x1)

gG(x) = gB(x) + δ, if η(x) > η(x1)

Since η(x1) > η(x2), gB(x1) − gB(x2) ≤ 0, gG(x1) − gG(x2) > 0, and ` is non-increasing and `′(0) < 0, it is
straightforward to see that

(η(x1)− η(x2))`(gB(x1)− gB(x2)) > (η(x1)− η(x2))`(gG(x1)− gG(x2)). (8)

Next, we show that modifications of other pairs from the construction of gG will not further increase the Rcomp
` with respect

to Rcomp
` (gB). There are three following cases to consider.

Case 1: A1 ={x such that η(x) > η(x1)}. Since all x ∈ A1 are modified equally, i.e., gG(x) = gB(x) + δ. For all
x,x′ ∈ A1

(η(x)− η(x′))`(gB(x)− gB(x′)) = (η(x)− η(x′))`((gB(x) + δ)− (gB(x
′) + δ))

= (η(x)− η(x′))`(gG(x)− gG(x′))
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Case 2: A2 = {x such that η(x) ≤ η(x1)}. Since all x ∈ A2 are modified equally, i.e., gG(x) = gB(x) − δ. For all
x,x′ ∈ A2

(η(x)− η(x′))`(gB(x)− gB(x′)) = (η(x)− η(x′))`((gB(x)− δ)− (gB(x
′)− δ))

= (η(x)− η(x′))`(gG(x)− gG(x′))

Case 3: For all x ∈ A1 and x′ ∈ A2. Since ` is a non-increasing function and δ > 0.

(η(x)− η(x′))`(gB(x)− gB(x′)) ≥ (η(x)− η(x′))`(gB(x) + δ − gB(x′) + δ)

= (η(x)− η(x′))`(gB(x)− gB(x′) + 2δ)

Therefore, with the strict inequality (8) and other pairs will not further increase the risk higher than a bad function as shown
in the analysis of three cases, we show that (7) must hold, and therefore (6) and (4) hold. As a result, it is impossible that
inf
g/∈B

Rpair
` (g) = inf

g
Rpair
` (g) since we can always find a better function gG compared with a function gB /∈ B.

Thus, we conclude that (4) holds. Once we show that (4) holds, we can directly use the results from the proof of Theorem 2
in Gao & Zhou (2015) without modification to show that ` is AUC-consistent.

Note that we can further relax the condition `′(0) < 0, we only have to make sure a loss is not a constant function.
Nevertheless, we prove this condition for `′(0) < 0 since this is not difficult to satisfy in practice and covers many surrogate
losses in the literature to the best of our knowledge.

B. Details of Implementation and Datasets
B.1. Experiments on UCI and LIBSVM Datasets

We used nine datasets, namely spambase, phoneme, phishing, phishing, waveform, susy, w8a, adult, twonorm, mushroom.
We used the one hiddent layer multilayer perceptron as a model (d− 500− 1). We used 500 corrupted positive data, 500
corrupted negative data, and balanced 500 test data. The corruption for the training data can be done manually by simply
mixing positive and negative data according to the class prior of the corrupted positive and corrupted negative data, i.e., π
and π′. We used rectifier linear units (ReLU) (Nair & Hinton, 2010). Learning rate was set to 0.001, batch size was 500,
and the number of epoch was 100. We ran 20 trials for each experiment and reported the mean values and standard error.
The objective functions of the neural networks were optimized using AMSGRAD (Reddi et al., 2018). The experiment code
was implemented with Chainer (Tokui et al., 2015).

B.2. Experiments on MNIST and CIFAR-10

MNIST: The MNIST dataset contains 60,000 gray-scale training images and 10,000 test images from digits 0 to 9. In this
experiment which consider the binary classification, we used even and odd digits as positive and negative classes respectively.
To make sure same data were not used as both positive and negative class, we sampled 15,000 images for each class. For
instance, when noise rate is (π = 0.7, π′ = 0.4), positive class consists of 10,500 even digits images and 4,500 odd digits
images and negative class consists of 6,000 even digits images and 9,500 odd digits images respectively. The model used for
MNIST was convolutional neural networks which is same architecture of Ishida et al. (2018): d-Conv[18,5,1,0]-Max[2,2]-
Conv[48,5,1,0]-Max[2,2]-800-400-1, where Conv[18, 5, 1, 0] means 18 channels of 5×5 convolutions with stride 1 and
padding 0, and Max[2,2] means max pooling with kernel size 2 and stride 2. We used rectifier linear units (ReLU) (Nair &
Hinton, 2010) as activation function after fully connected layer followed by dropout layer (Srivastava et al., 2014) in the first
two fully connected layer.

CIFAR-10: The CIFAR-10 dataset contains natural RGB images from 10 classes with 5,000 training images and 1,000 test
images per class. Following Ishida et al. (2018), we set a class ’airplane’ as the positive class and set one of other classes as
negative class in order to construct binary classification problem. Thus, we conducted experiments on 9 pairs of airplane vs
others. To make sure same data were not used as both positive and negative class, we sampled 4,540 images for each class.
Note that we have a few data differently from MNIST, 4,540 is the highest number we can sure that same data were not
duplicated. Same architecture of CNNs was used for experiment of CIFAR-10.
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C. Additional Experimental Results
In this section, we show the experimental results on additional datasets from the main body.

C.1. BER Optimization Using UCI and LIBSVM Datasets

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 20 times.

Table 4. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 1.0 and π′ = 0.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 89.4(0.3) 89.0(0.3) 90.9(0.2) 92.2(0.2) 92.2 (0.3) 92.9 (0.3) 92.5 (0.2)
phoneme 5 75.2(0.4) 76.4(0.4) 78.9(0.4) 82.0 (0.4) 82.5 (0.5) 82.1 (0.3) 82.5 (0.4)
phishing 30 91.1(0.4) 87.5(0.3) 92.3(0.2) 93.0 (0.2) 92.7 (0.2) 92.5 (0.3) 92.7 (0.2)
waveform 21 86.7(0.4) 86.2(0.2) 89.8(0.3) 91.2 (0.3) 91.3 (0.3) 90.7 (0.2) 90.8 (0.3)
susy 18 71.3(0.4) 71.3(0.6) 74.1(0.5) 77.0 (0.5) 77.5 (0.4) 77.2 (0.3) 77.1 (0.3)
w8a 300 87.8(0.3) 83.6(0.4) 89.6 (0.3) 89.8 (0.3) 88.2(0.3) 90.2 (0.3) 89.7 (0.3)
adult 104 78.8(0.4) 79.2(0.3) 78.7(0.4) 80.6 (0.5) 79.6(0.4) 79.6(0.4) 80.8 (0.4)
twonorm 20 97.2(0.1) 97.7 (0.1) 97.3(0.2) 97.7 (0.1) 97.5 (0.2) 97.2(0.1) 97.2(0.2)
mushroom 98 98.3(0.2) 91.0(0.5) 99.8 (0.0) 99.9 (0.1) 99.8 (0.1) 99.9 (0.0) 99.9 (0.1)

Table 5. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.8 and π′ = 0.3.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 88.3 (0.5) 88.7 (0.3) 88.7 (0.3) 87.5(0.4) 87.6(0.4) 84.4(0.5) 86.3(0.5)
phoneme 5 75.0(0.5) 75.7(0.4) 76.9(0.5) 79.3 (0.5) 79.0(0.4) 79.7 (0.4) 80.2 (0.5)
phishing 30 89.9(0.4) 86.1(0.4) 91.5 (0.3) 89.7(0.3) 90.5(0.3) 85.7(0.4) 88.5(0.5)
waveform 21 87.4(0.4) 86.8(0.3) 88.7 (0.4) 87.6(0.4) 88.6 (0.3) 84.4(0.5) 87.4(0.4)
susy 18 71.1(0.4) 71.2(0.5) 73.6 (0.4) 73.1 (0.4) 74.1 (0.6) 71.8(0.6) 73.2 (0.5)
w8a 300 85.8 (0.5) 84.0(0.5) 81.2(0.4) 76.5(0.5) 73.2(0.7) 74.1(0.5) 78.1(0.4)
adult 104 77.9 (0.4) 78.1 (0.5) 77.4 (0.4) 75.2(0.6) 73.7(0.5) 70.8(0.5) 74.6(0.6)
twonorm 20 97.3 (0.2) 97.6 (0.1) 97.0(0.2) 94.3(0.2) 95.6(0.2) 89.0(0.5) 91.8(0.3)
mushroom 98 97.9(0.3) 94.8(0.6) 99.1 (0.2) 97.5(0.2) 98.9 (0.1) 93.6(0.3) 97.7(0.2)

Table 6. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.7 and π′ = 0.4.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 85.6(0.4) 87.6 (0.3) 86.1(0.4) 81.7(0.5) 80.4(0.6) 76.1(0.5) 79.4(0.5)
phoneme 5 75.8 (0.3) 75.5(0.6) 76.8 (0.7) 76.9 (0.6) 76.1 (0.6) 76.6 (0.8) 76.2 (0.7)
phishing 30 87.9 (0.7) 86.0(0.5) 89.2 (0.5) 84.1(0.5) 84.4(0.6) 77.5(0.5) 82.2(0.6)
waveform 21 86.6(0.3) 86.6(0.5) 88.3 (0.4) 82.4(0.4) 84.6(0.5) 76.0(0.6) 79.4(0.6)
susy 18 70.2(0.5) 70.6 (0.7) 71.3 (0.4) 68.3(0.8) 68.4(0.5) 66.9(0.5) 67.8(0.5)
w8a 300 77.7(0.7) 80.4 (0.6) 71.2(0.6) 68.0(0.5) 65.9(0.6) 65.7(0.6) 68.4(0.8)
adult 104 75.9 (0.4) 76.9 (0.6) 75.3(0.5) 69.4(0.5) 69.0(0.6) 63.2(0.6) 67.4(0.5)
twonorm 20 96.7(0.2) 97.2 (0.1) 96.4(0.2) 86.7(0.4) 90.1(0.4) 78.8(0.6) 83.7(0.4)
mushroom 98 96.8 (0.5) 92.2(0.9) 96.6 (0.5) 90.8(0.5) 95.1(0.6) 79.5(0.6) 90.2(0.4)
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Table 7. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.65 and π′ = 0.45.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 82.3(0.8) 84.1 (0.6) 80.9(0.6) 72.6(0.7) 74.7(0.7) 69.5(0.7) 73.6(0.6)
phoneme 5 74.5 (0.8) 73.4 (0.9) 74.5 (0.6) 73.4 (0.8) 73.8 (1.1) 71.3(0.9) 71.0(0.7)
phishing 30 86.2 (0.4) 82.8(0.7) 84.9(0.7) 77.7(0.6) 78.8(0.9) 69.1(0.8) 73.3(0.7)
waveform 21 86.1 (0.4) 87.1 (0.6) 85.4(0.6) 75.8(0.7) 78.3(0.7) 69.2(0.6) 73.2(0.6)
susy 18 68.3 (0.6) 68.9 (0.8) 66.9 (0.9) 64.8(0.8) 65.1(0.8) 61.7(0.7) 64.6(0.7)
w8a 300 71.3(0.8) 73.1 (0.5) 65.1(0.7) 62.4(0.7) 61.1(0.6) 60.6(0.5) 62.3(0.6)
adult 104 73.2(0.7) 74.7 (0.6) 69.9(1.0) 64.8(0.8) 64.2(1.0) 59.1(0.6) 63.2(0.8)
twonorm 20 96.2 (0.3) 96.7 (0.2) 95.4(0.4) 80.2(0.5) 82.8(0.9) 71.6(0.7) 75.9(0.6)
mushroom 98 93.4 (0.8) 91.1(0.9) 94.4 (0.7) 81.3(0.5) 84.5(1.0) 72.2(0.6) 79.5(0.8)

C.2. AUC Optimization Using UCI and LIBSVM Datasets

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 20 times.

Table 8. Mean AUC score and standard error for AUC maximization from corrupted labels, where π = 1.0 and π′ = 0.0.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 94.4(0.3) 93.7(0.2) 95.9(0.1) 96.4(0.2) 97.0 (0.2) 96.8 (0.2) 96.5(0.2)
phoneme 5 81.8(0.5) 82.3(0.4) 84.2(0.3) 87.4 (0.3) 88.1 (0.4) 87.3 (0.3) 87.9 (0.4)
phishing 30 97.3(0.1) 93.9(0.2) 97.6(0.1) 97.9 (0.1) 97.9 (0.1) 97.7 (0.1) 97.8 (0.1)
waveform 21 95.3(0.2) 90.3(0.4) 96.0(0.2) 96.3 (0.2) 96.8 (0.1) 96.1(0.2) 96.6 (0.1)
susy 18 81.3(0.3) 78.1(0.6) 83.1(0.5) 84.7 (0.4) 85.5 (0.4) 85.0 (0.4) 84.5(0.3)
w8a 300 96.5(0.2) 94.5(0.2) 96.9 (0.2) 96.8 (0.1) 96.7(0.1) 96.7 (0.2) 97.1 (0.1)
adult 104 86.1(0.3) 87.6(0.2) 87.4(0.3) 88.6 (0.4) 88.3 (0.3) 87.6(0.3) 88.8 (0.3)
twonorm 20 99.7(0.0) 99.8 (0.0) 99.7(0.0) 99.8 (0.0) 99.7(0.0) 99.6(0.0) 99.7(0.0)
mushroom 98 99.9 (0.0) 99.6(0.1) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 99.9 (0.1)

Table 9. Mean AUC score and standard error for AUC maximization from corrupted labels, where π = 0.8 and π′ = 0.3.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 93.8 (0.3) 94.3 (0.2) 94.1 (0.3) 93.6(0.3) 92.3(0.3) 90.5(0.5) 92.7(0.5)
phoneme 5 81.0(0.5) 81.7(0.4) 82.1(0.5) 85.3 (0.4) 85.1 (0.2) 85.6 (0.3) 85.7 (0.4)
phishing 30 96.8 (0.1) 93.7(0.3) 96.8 (0.2) 96.2(0.2) 95.1(0.2) 92.9(0.3) 95.4(0.2)
waveform 21 94.7 (0.2) 91.3(0.3) 95.1 (0.3) 94.1(0.3) 93.8(0.2) 91.5(0.4) 94.1(0.3)
susy 18 80.0(0.5) 77.9(0.5) 81.3 (0.4) 81.1 (0.4) 81.7 (0.5) 79.0(0.6) 80.8 (0.5)
w8a 300 91.3(0.5) 92.9 (0.2) 90.8(0.3) 87.4(0.4) 83.2(0.6) 82.9(0.6) 88.7(0.4)
adult 104 85.3(0.3) 86.1 (0.4) 85.1(0.4) 82.2(0.5) 78.3(0.6) 77.4(0.5) 81.9(0.5)
twonorm 20 99.7(0.0) 99.8 (0.0) 99.4(0.0) 98.9(0.1) 98.3(0.1) 95.1(0.2) 97.5(0.1)
mushroom 98 99.8 (0.1) 99.3(0.1) 99.7 (0.1) 99.2(0.2) 98.6(0.2) 97.9(0.2) 99.6(0.1)
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Table 10. Mean AUC score and standard error for AUC maximization from corrupted labels, where π = 0.7 and π′ = 0.4.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 90.4(0.4) 93.4 (0.3) 91.8(0.3) 88.3(0.5) 85.4(0.6) 82.2(0.6) 86.0(0.5)
phoneme 5 81.0 (0.4) 81.1 (0.5) 82.2 (0.6) 82.2 (0.6) 81.8 (0.5) 82.2 (0.6) 81.9 (0.6)
phishing 30 95.9 (0.3) 93.0(0.5) 94.9(0.4) 91.7(0.4) 88.1(0.5) 83.7(0.5) 90.2(0.5)
waveform 21 93.5 (0.3) 91.5(0.5) 94.1 (0.2) 90.1(0.4) 88.6(0.6) 82.4(0.8) 86.5(0.5)
susy 18 77.9 (0.6) 77.4(0.6) 78.8 (0.5) 75.6(1.0) 74.6(0.6) 73.2(0.6) 74.2(0.7)
w8a 300 79.1(0.7) 89.5 (0.5) 79.4(0.6) 75.6(0.4) 72.3(0.8) 71.5(0.6) 76.4(0.8)
adult 104 82.1(0.4) 84.6 (0.4) 81.7(0.5) 75.5(0.5) 72.6(0.6) 68.2(0.8) 73.4(0.6)
twonorm 20 99.4(0.1) 99.7 (0.0) 98.9(0.1) 94.5(0.3) 92.3(0.5) 85.4(0.6) 91.6(0.3)
mushroom 98 99.6 (0.1) 98.9(0.1) 98.8(0.2) 96.6(0.3) 92.6(0.5) 86.7(0.5) 96.7(0.3)

Table 11. Mean AUC score and standard error for AUC maximization from corrupted labels, where π = 0.65 and π′ = 0.45.
Dataset Dim. Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
spambase 57 86.8(0.7) 90.9 (0.4) 86.0(0.4) 79.2(0.8) 77.7(0.7) 73.6(0.8) 80.1(0.8)
phoneme 5 80.2 (0.6) 79.2 (0.9) 78.4(0.8) 78.2(0.8) 77.8(0.8) 76.2(0.8) 76.2(0.7)
phishing 30 94.7 (0.3) 90.2(0.8) 91.1(0.6) 85.0(0.6) 82.0(0.8) 73.8(0.9) 80.3(0.8)
waveform 21 92.2 (0.4) 91.7 (0.6) 90.9 (0.6) 82.3(0.7) 79.8(0.9) 75.1(0.7) 80.1(0.6)
susy 18 73.6 (0.8) 75.3 (0.8) 72.5(1.0) 70.9(1.0) 69.9(1.0) 66.2(0.8) 69.9(0.9)
w8a 300 70.9(0.8) 81.7 (0.8) 71.3(0.9) 68.4(0.7) 66.8(0.8) 65.5(0.6) 68.3(0.6)
adult 104 79.0(0.7) 81.2 (0.7) 75.3(1.1) 69.6(0.8) 66.8(1.0) 62.3(0.8) 68.0(1.0)
twonorm 20 99.1(0.1) 99.6 (0.0) 98.0(0.2) 88.3(0.5) 83.9(0.7) 77.3(0.7) 82.7(0.5)
mushroom 98 98.4 (0.2) 97.2(0.4) 97.8 (0.3) 89.0(0.5) 82.2(0.6) 77.8(0.6) 88.1(0.7)

C.3. BER Minimization Using MNIST Dataset

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 10 times.

Table 12. Mean balanced accuracy and standard error for BER minimization from corrupted labels with varying noises.
Dataset (π, π′) Barrier Unhinged Sigmoid Logistic Hinge Squared Savage

MNIST

(1.0, 0.0) 97.8(0.0) 50.2(0.1) 99.0(0.0) 99.1 (0.0) 99.0(0.0) 98.4(0.0) 99.0(0.0)
(0.8, 0.3) 97.3 (0.0) 50.4(0.2) 96.7(0.1) 80.5(0.2) 80.4(0.2) 89.9(0.4) 81.7(0.8)
(0.7, 0.4) 95.8 (0.2) 50.0(0.0) 92.7(0.3) 69.6(0.3) 69.5(0.2) 81.8(1.2) 70.2(0.9)

(0.65, 0.45) 92.8 (0.3) 50.0(0.0) 83.1(3.7) 64.0(0.2) 63.7(0.3) 73.0(1.3) 63.9(0.1)

C.4. AUC Maximization Using MNIST Dataset

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 10 times.
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Table 13. Mean AUC score and standard error for AUC maximization from corrupted labels with varying noises.
Dataset (π, π′) Barrier Unhinged Sigmoid Logistic Hinge Squared Savage

MNIST

(1.0, 0.0) 99.6(0.0) 85.0(0.5) 99.8(0.0) 99.8 (0.0) 99.8(0.0) 99.5(0.0) 99.7(0.0)
(0.8, 0.3) 99.4 (0.0) 84.3(0.4) 98.0(0.1) 88.5(0.3) 88.2(0.2) 96.6(0.2) 97.2(0.4)
(0.7, 0.4) 99.0 (0.0) 83.1(0.4) 95.9(0.2) 75.5(0.4) 76.1(0.3) 87.5(0.6) 94.7(0.4)

(0.65, 0.45) 96.9 (0.2) 80.6(0.3) 92.2(0.7) 68.6(0.4) 68.5(0.4) 80.2(0.5) 90.6(1.0)

C.5. BER Minimization Using CIFAR-10 Dataset

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 10 times.

Table 14. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 1.0 π′ = 0.0

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 87.0(0.4) 69.5(0.2) 93.0(0.2) 93.6(0.1) 93.4(0.1) 94.3 (0.1) 93.4(0.1)
bird 84.0(0.2) 64.9(0.1) 88.2(0.1) 88.6 (0.2) 88.7 (0.2) 88.9 (0.1) 88.6(0.1)
car 88.5(0.1) 69.8(0.1) 91.8(0.1) 92.5(0.2) 92.6(0.1) 93.1 (0.1) 92.8(0.1)
deer 89.6(0.1) 71.6(0.2) 93.3(0.1) 93.7(0.2) 93.8(0.0) 94.1 (0.1) 94.0 (0.1)
dog 91.6(0.1) 67.6(0.2) 93.8(0.1) 94.1(0.2) 94.2(0.1) 94.9 (0.1) 94.4(0.1)
frog 93.3(0.1) 73.8(0.1) 95.6(0.1) 96.2 (0.1) 96.0 (0.1) 96.1 (0.1) 96.0(0.1)
horse 92.8(0.1) 69.0(0.2) 94.5(0.1) 94.9(0.1) 94.6(0.1) 95.3 (0.1) 94.9(0.1)
ship 80.9(0.5) 64.4(0.1) 87.5(0.3) 89.1(0.2) 89.1(0.2) 89.6 (0.1) 89.3(0.1)
truck 87.5(0.2) 69.4(0.1) 90.6(0.2) 91.2(0.2) 91.1(0.2) 91.6 (0.1) 91.1(0.2)

Table 15. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.8 π′ = 0.3

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 86.6(0.2) 70.2(0.2) 88.5 (0.2) 74.3(0.2) 74.1(0.5) 74.2(0.3) 73.6(0.3)
bird 82.3(0.3) 66.7(0.2) 83.3 (0.3) 72.4(0.4) 72.3(0.4) 71.6(0.3) 71.3(0.4)
car 87.3(0.1) 71.2(0.1) 87.8 (0.1) 73.3(0.2) 74.4(0.4) 73.9(0.3) 73.5(0.4)
deer 88.5 (0.2) 72.9(0.2) 88.9 (0.1) 74.3(0.4) 75.3(0.5) 74.6(0.4) 74.2(0.3)
dog 90.0(0.1) 68.4(0.1) 90.6 (0.2) 75.4(0.4) 76.6(0.4) 75.9(0.2) 74.4(0.5)
frog 92.8(0.1) 76.2(0.2) 93.1 (0.1) 76.0(0.3) 78.2(0.6) 77.9(0.3) 76.5(0.5)
horse 90.8 (0.3) 71.0(0.1) 89.8(0.2) 76.0(0.3) 76.8(0.4) 76.3(0.3) 75.5(0.3)
ship 77.1(0.3) 65.7(0.1) 80.0 (0.2) 70.1(0.2) 69.7(0.2) 69.8(0.3) 69.8(0.3)
truck 86.3 (0.1) 70.0(0.1) 86.3 (0.3) 73.9(0.3) 73.8(0.5) 74.6(0.3) 73.7(0.4)
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Table 16. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.7 π′ = 0.4

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 85.4 (0.2) 70.0(0.3) 83.8(0.3) 65.8(0.5) 65.6(0.4) 65.6(0.3) 64.1(0.4)
bird 81.7 (0.2) 66.9(0.1) 80.7(0.3) 63.1(0.4) 63.6(0.5) 63.6(0.3) 62.8(0.4)
car 86.7 (0.2) 71.4(0.1) 84.3(0.2) 64.8(0.5) 64.4(0.4) 64.5(0.2) 64.8(0.4)
deer 87.5 (0.1) 74.0(0.1) 84.3(0.2) 64.0(0.5) 63.8(0.6) 64.5(0.2) 64.1(0.5)
dog 88.9 (0.2) 68.4(0.1) 87.2(0.2) 65.8(0.7) 64.5(0.5) 65.2(0.3) 64.9(0.4)
frog 92.3 (0.1) 77.0(0.2) 90.9(0.2) 65.6(0.7) 66.0(0.5) 66.6(0.4) 67.0(0.4)
horse 88.8 (0.2) 71.2(0.2) 86.1(0.3) 65.7(0.6) 65.6(0.4) 66.0(0.4) 65.5(0.3)
ship 74.9 (0.2) 65.5(0.0) 74.7 (0.2) 62.1(0.4) 61.4(0.5) 62.2(0.4) 62.4(0.2)
truck 84.7 (0.2) 70.3(0.1) 82.4(0.3) 63.7(0.3) 64.4(0.6) 64.5(0.4) 64.3(0.5)

Table 17. Mean balanced accuracy and standard error for BER minimization from corrupted labels, where π = 0.65 π′ = 0.45

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 84.0 (0.3) 70.8(0.2) 79.7(0.3) 59.8(0.6) 59.1(0.5) 60.1(0.3) 60.4(0.3)
bird 81.5 (0.2) 67.6(0.2) 77.5(0.4) 58.5(0.4) 59.4(0.3) 58.4(0.4) 58.0(0.5)
car 85.6 (0.1) 71.8(0.1) 81.5(0.4) 60.6(0.4) 59.7(0.4) 59.8(0.3) 60.1(0.2)
deer 86.2 (0.2) 74.6(0.2) 80.3(0.5) 58.3(0.4) 58.9(0.5) 59.0(0.4) 58.5(0.4)
dog 87.2 (0.4) 68.6(0.2) 83.1(0.2) 59.7(0.2) 59.8(0.6) 59.9(0.4) 59.3(0.4)
frog 91.0 (0.2) 78.2(0.1) 88.6(0.3) 60.4(0.5) 61.0(0.4) 60.9(0.3) 61.6(0.5)
horse 86.4 (0.4) 71.4(0.1) 82.6(0.3) 60.3(0.4) 60.0(0.4) 60.0(0.4) 60.0(0.3)
ship 71.7 (0.6) 65.9(0.1) 68.9(0.4) 58.2(0.3) 58.4(0.3) 57.2(0.3) 58.1(0.3)
truck 82.4 (0.2) 70.6(0.1) 78.6(0.4) 60.0(0.4) 59.1(0.4) 60.0(0.2) 59.5(0.4)

C.6. AUC Maximization Using CIFAR-10 Dataset

Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 10 times.

Table 18. Mean AUC score and standard error for AUC maximization from corrupted labels, π = 1.0 π′ = 0.0

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 95.8(0.1) 75.2(0.1) 98.4 (0.0) 98.4 (0.0) 98.3 (0.0) 98.3 (0.1) 98.2(0.0)
bird 91.5(0.1) 71.7(0.0) 95.0(0.1) 95.2 (0.0) 95.2 (0.0) 95.2 (0.1) 95.1 (0.1)
car 94.7(0.1) 76.5(0.0) 97.5(0.1) 97.6(0.0) 97.6 (0.1) 97.7 (0.0) 97.7 (0.0)
deer 95.3(0.1) 79.5(0.1) 98.3 (0.1) 98.3 (0.1) 98.4 (0.0) 98.3 (0.1) 98.3 (0.1)
dog 96.5(0.1) 74.4(0.2) 98.5 (0.0) 98.5 (0.0) 98.5 (0.0) 98.5 (0.0) 98.5 (0.1)
frog 97.2(0.1) 81.5(0.0) 99.1(0.0) 99.0(0.0) 99.1 (0.0) 99.0(0.0) 99.0(0.0)
horse 97.2(0.1) 76.1(0.0) 98.9 (0.0) 98.9 (0.0) 98.9 (0.0) 98.7(0.0) 98.8 (0.0)
ship 92.4(0.1) 70.7(0.1) 95.5(0.1) 95.7 (0.1) 95.5(0.1) 95.5 (0.1) 95.6 (0.1)
truck 94.2(0.1) 75.7(0.1) 97.2 (0.0) 97.1 (0.0) 97.1 (0.1) 96.9(0.1) 97.1(0.0)
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Table 19. Mean AUC score and standard error for AUC maximization from corrupted labels, π = 0.8 π′ = 0.3

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 94.8 (0.1) 75.7(0.1) 83.5(0.5) 82.0(0.4) 81.4(0.2) 82.1(0.3) 82.1(0.3)
bird 90.6 (0.1) 73.3(0.0) 79.8(0.3) 79.2(0.3) 78.7(0.3) 79.1(0.2) 79.4(0.3)
car 93.4 (0.4) 78.4(0.0) 82.7(0.5) 82.1(0.3) 81.1(0.3) 82.0(0.4) 80.8(0.4)
deer 94.6 (0.1) 81.2(0.0) 83.6(0.6) 81.5(0.5) 81.6(0.3) 82.1(0.4) 82.3(0.3)
dog 95.6 (0.1) 76.2(0.1) 82.8(0.4) 83.5(0.4) 82.8(0.4) 83.3(0.3) 83.1(0.3)
frog 96.9 (0.1) 83.7(0.0) 85.2(0.4) 85.2(0.4) 84.4(0.2) 84.6(0.4) 84.3(0.4)
horse 96.2 (0.4) 78.1(0.1) 84.0(0.5) 84.3(0.3) 83.9(0.5) 83.9(0.3) 83.9(0.4)
ship 89.0 (0.1) 71.9(0.1) 78.3(0.4) 76.8(0.3) 77.4(0.3) 77.0(0.4) 77.2(0.3)
truck 93.7 (0.1) 76.6(0.1) 81.4(0.7) 81.7(0.3) 81.1(0.2) 81.0(0.4) 81.9(0.3)

Table 20. Mean AUC score and standard error for AUC maximization from corrupted labels, π = 0.7 π′ = 0.4

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 93.2 (0.1) 76.0(0.1) 72.3(0.8) 71.1(0.6) 70.3(0.3) 71.0(0.5) 70.7(0.4)
bird 90.0 (0.2) 73.8(0.0) 68.7(0.8) 68.2(0.3) 68.3(0.5) 67.0(0.4) 67.9(0.5)
car 93.4 (0.2) 78.5(0.0) 70.5(0.4) 70.2(0.5) 69.2(0.5) 70.0(0.5) 69.8(0.2)
deer 93.3 (0.2) 81.6(0.1) 69.3(0.6) 69.5(0.7) 69.5(0.4) 69.3(0.3) 69.9(0.5)
dog 94.9 (0.1) 76.4(0.1) 70.9(0.8) 71.8(0.4) 70.9(0.4) 70.9(0.4) 71.5(0.3)
frog 96.7 (0.1) 84.8(0.0) 73.1(0.7) 73.4(0.4) 72.9(0.6) 72.3(0.4) 72.7(0.4)
horse 95.8 (0.1) 78.4(0.1) 72.3(0.7) 72.6(0.4) 70.8(0.3) 71.2(0.5) 71.7(0.4)
ship 84.5 (0.4) 71.6(0.1) 69.8(0.4) 67.2(0.4) 66.4(0.3) 66.9(0.4) 67.4(0.3)
truck 92.1 (0.1) 76.8(0.1) 71.3(0.7) 70.1(0.4) 69.2(0.5) 69.8(0.4) 70.3(0.3)

Table 21. Mean AUC score and standard error for AUC maximization from corrupted labels, π = 0.65 π′ = 0.45

Dataset Barrier Unhinged Sigmoid Logistic Hinge Squared Savage
automobile 91.3 (0.3) 76.5(0.1) 64.1(0.4) 64.7(0.3) 63.9(0.3) 64.0(0.6) 64.0(0.5)
bird 88.5 (0.1) 74.4(0.0) 63.3(0.6) 62.0(0.5) 61.4(0.4) 61.6(0.3) 62.0(0.3)
car 92.9 (0.2) 78.9(0.1) 65.9(0.9) 63.7(0.6) 63.6(0.4) 63.9(0.3) 64.4(0.4)
deer 92.3 (0.1) 82.6(0.1) 64.3(0.8) 62.3(0.6) 62.8(0.5) 63.3(0.3) 62.4(0.5)
dog 93.2 (0.2) 77.3(0.1) 64.1(0.7) 63.4(0.6) 63.6(0.4) 63.5(0.4) 64.1(0.3)
frog 96.4 (0.1) 85.8(0.0) 67.2(0.6) 66.4(0.4) 65.9(0.4) 65.8(0.5) 65.2(0.6)
horse 93.6 (0.2) 78.5(0.1) 65.9(0.9) 65.3(0.4) 65.0(0.3) 65.0(0.5) 64.9(0.3)
ship 77.8 (0.4) 72.0(0.1) 62.8(0.3) 61.8(0.5) 60.9(0.4) 61.3(0.2) 60.9(0.3)
truck 89.8 (0.2) 77.1(0.0) 63.8(0.3) 63.5(0.5) 63.2(0.6) 63.2(0.3) 63.1(0.5)



On Symmetric Losses for Learning from Corrupted Labels

C.7. Additional Figures for CIFAR-10

Similarly to the main part of the paper, we provide figures for additional eight pairs of CIFAR-10.
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Figure 6. Mean balanced accuracy (1-BER) and AUC score using convolutional neural networks (rescaled to 0-100). The noise rate is
ranged from (π = 1.0, π′ = 0.0), (π = 0.8, π′ = 0.3), (π = 0.7, π′ = 0.4), (π = 0.65, π′ = 0.45).
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Figure 7. Mean balanced accuracy (1-BER) and AUC score using convolutional neural networks (rescaled to 0-100). The noise rate is
π = 0.65 and π′ = 0.45. The experiments were conducted 10 times.


