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Abstract
We present a generalization of the adversarial
linear bandits framework, where the underlying
losses are kernel functions (with an associated re-
producing kernel Hilbert space) rather than linear
functions. We study a version of the exponential
weights algorithm and bound its regret in this set-
ting. Under conditions on the eigen-decay of the
kernel we provide a sharp characterization of the
regret for this algorithm. When we have polyno-
mial eigen-decay (µj ≤ O(j−β)), we find that
the regret is bounded by Rn ≤ O(nβ/2(β−1)).
While under the assumption of exponential eigen-
decay (µj ≤ O(e−βj)) we get an even tighter
bound on the regret Rn ≤ Õ(n1/2). When
the eigen-decay is polynomial we also show a
non-matching minimax lower bound on the re-
gret of Rn ≥ Ω(n(β+1)/2β) and a lower bound
of Rn ≥ Ω(n1/2) when the decay in the eigen-
values is exponentially fast.

We also study the full information setting when
the underlying losses are kernel functions and
present an adapted exponential weights algorithm
and a conditional gradient descent algorithm.

1. Introduction
In adversarial online learning, a player interacts with an
unknown and arbitary adversary in a sequence of rounds.
At each round, the player chooses an action from an action
space and incurs a loss associated with that chosen action.
The loss functions are determined by the adversary and
are fixed at the beginning of each round. After choosing
an action the player observes some feedback, which can
help guide the choice of actions in subsequent rounds. The
most common feedback model is the full information model,
where the player has access to the entire loss function at
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the end of each round. Another, more challenging feedback
model is the partial information or bandit feedback model
where the player at the end of the round just observes the
loss associated with the action chosen in that particular
round. There are also other feedback models in between
and beyond the full and bandit information models, many
of which have also been studied in detail. A figure of merit
that is often used to judge online learning algorithms is the
notion of regret, which compares the players actions to the
best single action in hindsight (defined formally in Section
1.2).

When the underlying action space is a continuous and com-
pact (possibly convex) set and the losses are linear or convex
functions over this set; there are many algorithms known
that attain sub-linear and sometimes optimal regret in both
these feedback settings. In this work we present a general-
ization of the well studied adversarial online linear learning
framework. In our paper, at each round the player selects an
action a ∈ A ⊂ Rd. This action is mapped to an element
in a reproducing kernel Hilbert space (RKHS) generated
by a mapping K(·, ·). The function K(·, ·) is a kernel map,
that is, it can thought as an inner product of an appropri-
ate Hilbert space H. The kernel map can be expressed as
K(x, y) = 〈Φ(x),Φ(y)〉H, where Φ(·) ∈ RD is the associ-
ated feature map.

Thus at each round the loss is 〈Φ(a), w〉H, where w ∈ H
is the adversary’s action. In the full information setting,
as feedback, the player has access to the entire adversarial
loss function 〈·, w〉H. In the bandit setting the player is just
presented with the value of the loss, 〈Φ(a), w〉H.

Notice that this class of losses is much more general than
ordinary linear losses and includes potentially non-linear
and non-convex losses like:

1. Linear Losses: 〈a,w〉H = a>w. This loss is well
studied in both the bandit and full information setting.
We shall see that our regret bounds will match the
bounds established in the literature for these losses.

2. Quadratic Losses:
〈
φ(a),

(
W
b

)〉
H

= a>Wa + b>a,
where W is a symmetric matrix and b is a vector. Con-
vex quadratic losses have been well studied under full
information feedback as the online eigenvector decom-
position problem. Our work establishes regret bounds
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in the full information setting and also under the mostly
unexplored bandit feedback.

3. Gaussian Losses: 〈Φ(a),Φ(y)〉H =
exp

(
−‖a− y‖22/2σ2

)
. We provide regret bounds

of kernel losses not commonly studied before like
Gaussian losses that provide a different loss profile
than a linear or convex loss.

4. Polynomial Losses: 〈Φ(a),Φ(y)〉H = (1 + a>y)2 for
example. We also provide regret bounds for polyno-
mial kernel losses which are potentially (non-convex)
under both partial and full information settings. Specif-
ically in the full information setting we study posyno-
mial losses (discussion in Section 4.3).

1.1. Related Work

Adversarial online convex bandits that was introduced and
first studied by (33; 22). The problem most closely related
to our work is the case when the losses are linear introduced
earlier by (35; 7). In this setting (20; 18; 13) proposed the
EXP 2 (Expanded Exp) algorithm under different choices of
exploration distributions. (20) worked with the uniform dis-
tribution over the barycentric spanner of the set, in (18) this
distribution was the uniform distribution over the set and in
(13) they use the exploration distribution given by John’s
theorem that leads to a regret bound of O((dn log(N))1/2),
whereN is the number of actions, n is the number of rounds
and d is the dimension of the losses. For this same problem
when the set A is convex and compact, (1) analyzed Mirror
descent to get a regret bound of O(d

√
θn log(n)) for some

θ > 0. For the case with general convex losses with bandit
feedback recently (15) proposed a poly-time algorithm that
has a regret guarantee of Õ(d9.5

√
n), which is optimal in its

dependence on the number of rounds n. Previous work on
this problem includes, (2; 41; 27; 21; 14; 28) in the adver-
sarial setting under different assumptions on the structure
of the convex losses and by (3) who studied this problem
in the stochastic setting1. (46) study stochastic kernelized
contextual bandits with a modified UCB algorithm to obtain
a regret bound similar to ours, Rn ≤

√
d̃n where d̃ is the

effective dimension dependent on the eigen-decay of the
kernel. This problem was also studied previously for loss
functions drawn from Gaussian processes in (44). Online
learning under bandit feedback has also been studied when
the losses are non-parametric, for example when the losses
are Lipschitz (16; 40).

In the full information case, the online optimization frame-
work with convex losses was first introduced by (49). The
conditional gradient descent algorithm (a modification of
which we study in this work) for convex losses in this set-

1For an extended bibliography of the work on online convex
bandits see (15).

ting was introduced and analyzed by (31) and then improved
subsequently by (26). The exponential weights algorithm
which we modify and use multiple times in this paper has a
rich history and has been applied to various online as well as
offline settings. The particular with the losses being convex
quadratic functions has been well studied in the full informa-
tion setting. This problem is also called online eigenvector
decomposition or online PCA. Very recently (4) established
a regret bound of Õ(

√
n) for the problem by presented an

efficient algorithm that achieves this rate – a modified ex-
ponential weights strategy, follow the compressed leader.
Previous results for this problem were established in both
adversarial and stochastic settings by modifications of expo-
nential weights, gradient descent and follow the perturbed
leader algorithms (6; 45; 47; 48; 32; 23).

In the full information setting there has also been work on
analyzing gradient descent and mirror descent in RKHS
spaces (36; 8). However, in these papers the player is al-
lowed to play any action in a bounded set in Hilbert space,
while in our paper the player is constrained to only play
rank one actions, that is the player chooses an action in A
which gets mapped to an action in the RKHS.

CONTRIBUTIONS

Our primary contribution is to extend the linear bandits
framework to more general classes of kernel losses. We
present an algorithm in this setting and provide a regret
bound for the same. We provide a more detailed analysis of
the regret when we make assumptions on the eigen-decay
of the kernel. Particularly when we assume the polynomial
eigen-decay of the kernel (µj ≤ O(j−β)) we can guar-

antee the regret is bounded as Rn ≤ O(n
β

2(β−1) ). Under
exponential eigendecay we can guarantee an even sharper
bound on the regret of Rn ≤ Õ(n1/2). We also provide a
minimax lower bound on the regret ofRn ≥ Ω(n(β+1)/2β)
andRn ≥ Ω(n1/2) under the polynomial and exponential
decay eigen-decay assumptions respectively. We analyze
an exponential weights algorithm and a conditional gradi-
ent algorithm for the full information case where we don’t
need to assume any conditions on the eigen-decay. Finally
we provide a couple of applications of our framework – (i)
general quadratic losses (not necessarily convex) with linear
terms which we can solve efficiently in the full information
setting, (ii) we provide a computationally efficient algorithm
when the underlying losses are posynomial (special class of
polynomials).

ORGANIZATION OF THE PAPER

In the next section we introduce the notation and definitions.
In Section 2 we present our algorithm under bandit feedback
and present regret bounds for this algorithm. In Section 3 we
study the problem in the full information setting. In Section
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4 we present two applications of our framework, and prove
that our algorithms are computationally efficient in these
settings. All the proofs, technical details and experiments
are relegated to the appendix.

1.2. Notation, main definitions and setting

Here we introduce definitions and notational conventions
used throughout the paper.

In each round t = {1, . . . , n}, the player chooses an action
vector {at}nt=1 ∈ A ⊂ Rd. The underlying kernel function
at each round is K(·, ·) which is a map from Rd × Rd → R
such that it is a kernel map and has an associated separable
reproducing kernel Hilbert space (RKHS)H with an inner
product 〈·, ·〉H (for more properties of kernel maps and
RKHS see (42)). Let Φ(·) : Rd 7→ RD denote a feature
map of K(·, ·) such that for every x, y we have K(x, y) =
〈Φ(x),Φ(y)〉H. Note that the dimension of the RKHS, D
could be infinite (for example in the Gaussian kernel over
[0, 1]

d).

We let the adversary choose a vector in H, wt ∈ W ⊂
RD and at each round the loss incurred by the player is
〈Φ(at), wt〉H. We assume that the adversary is oblivious,
that is, it is a function of the previous actions of the player
(a1, . . . , at−1) but unaware of the randomness used to gen-
erate at. We let the size of the sets A,W be bounded2 in
kernel norm, that is,

sup
a∈A
K(a, a) ≤ G2 and, sup

w∈W
〈w,w〉H ≤ G2. (1)

Throughout this paper we assume a rank-one learner, that
is, in each round the player can pick a vector v ∈ H, such
that v = Φ(a) for some a ∈ Rd. We now formally define
the notion of expected regret.

Definition 1 (Expected regret) The expected regret of an
algorithmM after n rounds is defined as

Rn = EM

[
n∑
t=1

〈Φ(at), wt〉H −
n∑
t=1

〈Φ(a∗), wt〉H

]
(2)

where a∗ = infa∈A {
∑n
t=1〈Φ(a), wt〉H} and the expecta-

tion is over the randomness in the algorithm.

Essentially this amounts to comparing against the best single
action a∗ in hindsight. Our hope will be to find a random-
ized strategy such that the regret grows sub-linearly with
the number of rounds n. In what follows we will omit the
subscript H from the subscript of the inner product when-
ever it is clear from the context that it refers to the RKHS
inner product.

2We set the bound on the size of both sets to be the same for
ease of exposition, but they could be different and would only
change the constants in our results.

To establish regret guarantees we will find that it is essential
to work with finite dimensional kernels when working under
bandit feedback (more details regarding this in the proof of
the regret bound of Algorithm 2.3). General kernel maps
can have infinite dimensional feature maps thus we will
require the construction of a finite dimensional kernel that
uniformly approximates the original kernel K(·, ·). This
motivates the definition of ε-approximate kernels.

Definition 2 (ε-approximate kernels) Let K1 and K2 be
two kernels over A × A and let ε > 0. We say K2 is an
ε-approximation of K1 if for all x, y ∈ A, |K1(x, y) −
K2(x, y)| ≤ ε.

2. Bandit Feedback Setting
In this section we present our results on kernel bandits. In
the bandit setting we assume the player knows the underly-
ing kernel function K(·, ·), however, at each round after the
player plays a vector at only the value of the loss associated
with that action is revealed to the player – 〈Φ(at), wt〉H –
and not the action of the adversary wt. We also assume
that the player’s action set A has finite cardinality3.This is a
generalization of the well studied adversarial linear bandits
problem. As we will see in subsequent sections to guarantee
a bound on the regret in the bandit setting our algorithm will
build an estimate of adversary’s action wt. This becomes
impossible if wt is infinite dimensional (D →∞). To cir-
cumvent this, we will construct a finite dimensional proxy
kernel that is an ε-approximation of K.

Whenever no approximate kernel is needed, for example
whenD <∞we allow the adversary to be able to choose an
action wt ∈ W ⊂ RD without imposing extra requirements
on the setW other than being bounded in H norm. When
D is infinite we impose an additional constraint on the
adversary to also select rank-one actions at each round,
that is, wt = Φ(yt) where yt ∈ Rd. Next we present a
discussion of the procedure to construct a finite kernel that
approximates the original kernel well.

2.1. Construction of the finite dimensional kernel

To construct the finite dimensional kernel we will rely cru-
cially on Mercer’s theorem. We first recall a couple of useful
definitions.

Definition 3 Let A ⊂ Rd and P a probability measure sup-
ported over A. We denote by L2(A;P) the space of square
integrable functions over A and measure P, L2(A;P) :=

3This assumption can be relaxed to let A be a compact set
when K is Lipschitz continuous. In this setting we can instead
work with an appropriately fine approximating cover over the set
A.
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f : A → R

∣∣∣∣∣ ∫A f2(x)dP(x) <∞

}
.

Definition 4 A kernel K : A × A → R is square
integrable with respect to measure P over A, if∫
A×AK

2(x, y)dP(x)dP(y) <∞.

Now we are ready to present Mercer’s theorem (38) (see
(19)).

Theorem 5 (Mercer’s Theorem) LetA ⊂ Rd be compact
and P be a finite Borel measure with support A. Suppose K
is a continuous square integrable positive definite kernel on
A, and define a positive definite operator TK : L2(A;P) 7→
L2(A;P) by

(TKf) (·) :=

∫
A
K(·, x)f(x) dP.

Then there exists a sequence of eigenfunctions {φi}∞i=1

that form an orthonormal basis of L2(A;P) consisting of
eigenfunctions of TK, and an associated sequence of non-
negative eigenvalues {µj}∞j=1 such that TK(φj) = µjφj for
j = 1, 2, . . .. Moreover the kernel function can be repre-
sented as

K(u, v) =

∞∑
i=1

µiφi(u)φi(v) (3)

where the convergence of the series holds uniformly.

Mercer’s theorem yields a natural way to construct a feature
map Φ(x) forK by defining the ith component of the feature
map to be Φ(x)i :=

√
µiφi(x). With this choice of feature

map the eigenfunctions {φi}∞i=1 are orthogonal under the in-
ner product 〈·, ·〉H4. Armed with Mercer’s theorem we first
present a simple deterministic procedure to obtain a finite
dimensional ε-approximate kernel of K. Essentially when
the eigenfunctions of the kernel are uniformly bounded,
supx∈A|φj(x)| ≤ B for all j, and if the eigenvalues decay
at a suitable rate we can truncate the series in (3) to get a
finite dimensional approximation.

Lemma 6 Given ε > 0, let {µj}∞j=1 be the Mercer opera-
tor eigenvalues of K under a finite Borel measure P with
supportA and eigenfunctions {φj}∞j=1 with µ1 ≥ µ2 ≥ · · · .
Further assume that supj∈N supx∈A|φj(x)| ≤ B for some
B < ∞. Let m(ε) be such that

∑∞
j=m+1 µj ≤

ε
4B2 . Then

the kernel induced by a truncated feature map,

Φom(x) :=

{√
µiφi(x) if i ≤ m

0 o.w.
(4)

4To see this observe that the function φi can be expressed as
a vector in the RKHS as a vector vi with φi in the ith coordinate
and zeros everywhere else. So for any two vi and vj with i 6= j
we have 〈vi, vj〉H = 0.

induces a kernel K̂om := 〈Φom(x),Φom(y)〉H =∑m
j=1 µjφj(x)φj(y), for all (x, y) ∈ A × A that is an

ε/4-approximation of K.

The Hilbert space induced by the K̂om is a subspace of the
original Hilbert space H. The proof of this lemma is a
simple application of Mercer’s theorem and is relegated to
Appendix C. If we have access to the eigenfunctions ofK we
can construct and work with K̂om because as Lemma 6 shows
K̂om is an ε/4-approximation to K. Additionally, K̂om also
has the same first m Mercer eigenvalues and eigenfunctions
under P asK. Unfortunately, in most applications of interest
the analytical computation of the eigenfunctions {φi}∞i=1 is
not possible. We can get around this by building an estimate
of the eigenfunctions using samples from P by leveraging
results from kernel principal component analysis (PCA).

Definition 7 Let Sm be the subspace of H spanned
by the first m eigenvectors of the covariance matrix
Ex∼P

[
Φ(x)Φ(x)>

]
.

This corresponds to the span of the eigenfunctions
φ1, φ2, . . . , φm in H 5 . Define the linear projection op-
erator PSm : H 7→ H that projects onto the subspace Sm;
where P (Sm)(v + v⊥) = v, if v ∈ Sm and v⊥ ∈ S⊥m.

Remark 8 The feature map Φom(x) is a projection of
the complete feature map to this subspace, Φom(x) =
PSm(Φ(x)).

Let x1, x2, . . . , xp ∼ P be p i.i.d. samples and con-
struct the sample (kernel) covariance matrix, Σ̂ :=
1
p

∑p
i=1 Φ(xi)Φ(xi)

>. Let Ŝm be the subspace spanned

by the m top eigenvectors of Σ̂. Define the stochastic
feature map, Φm(x) := PŜm(Φ(x)), the feature map de-
fined by projecting Φ(x) to the random subspace Ŝm. In-
tuitively we would expect that if the number of samples p
is high enough, then the kernel defined by the feature map
Φm(x), K̂m(x, y) = 〈Φm(x),Φm(y)〉H will also be an ε-
approximation for the original kernel K. Formalizing this
claim is the following theorem.

Theorem 9 Let m,P be defined as in Lemma 6. Define the
m-th level eigen-gap as δm = 1

2 (µm − µm+1). Also let

Bm = 2G
δm

(
1 +

√
α
2

)
, 2δm >

√
ε > 0 and p ≥ 2B2

mG
2

√
ε

.

Then the finite dimensional kernels K̂om and K̂m satisfy the
following properties with probability 1− e−α,

1. supx,y∈A |K(x, y)− K̂m(x, y)| ≤ ε.
5This holds as the ith eigenvector of the covariance matrix has

φi as the ith coordinate and zero everywhere else combined with
the fact that {φi}∞i=1 are orthonormal under the L(A;P) inner
product.
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Algorithm 1 Finite dimensional proxy construction
Input :KernelK, effective dimensionm, setA, measure

P, bias tolerance ε > 0, number of samples p.
Function :Finite proxy feature map Φm(·)
sample x1, · · · , xp ∼ P.
construct sample Gram matrix K̂i,j = 1

pK(xi, xj).

calculate the top m eigenvectors of K̂→ {ω1, ω2, . . . , ωm}.
for j = 1, . . . ,m do

Set vj =
∑p
k=1 ωjkΦ(xk), (ωjk is the kth entry of ωj)

end
define the feature map

Φm(·) :=

 〈v1,Φ(x)〉H
...

〈vm,Φ(x)〉H

 =


∑p
k=1 ω1kK(xk, x)

...∑p
k=1 ωmkK(xk, x)

 .

2. The Mercer eigenvalues µ(p)
1 ≥ · · · ≥ µ

(p)
m and

µ1 ≥ · · · ≥ µm of K̂m and K̂om are close,
supi=1,··· ,m |µ

(p)
i − µi| ≤

√
ε/2.

Theorem 9 shows that given ε > 0 the finite dimensional
proxy K̂m is a ε-approximation of K with high probability
as long as sufficiently large number of samples are used.
Furthermore, the top m eigenvalues of the second moment
matrix of K are at most

√
ε/2-away from the eigenvalues of

the second moment matrix of K̂m under P.

To construct Φm(·) we need to calculate the top m eigen-
vectors of the sample covariance matrix Σ̂, however, it is
equivalent to calculate the top m eigenvectors of the sample
Gram matrix K and use them to construct the eigenvectors
of Σ̂ (for more details see Appendix B where we review the
basics of kernel PCA).

2.2. Bandits Exponential Weights

In this section we present a modified version of exponential
weights adapted to work with kernel losses. Exponential
weights has been analyzed extensively applied to linear
losses under bandit feedback (20; 17; 13). Two technical
challenges make it hard to directly adapt their algorithms to
our setting.

The first challenge is that at each round we need to estimate
the adversarial action wt. If the feature map of the kernel is
finite dimensional this is easy to handle, however when the
feature map is infinite dimensional, this becomes challeng-
ing and we need to build an approximate feature map Φm(·)
using Algorithm 2.1. This introduces a bias in our estimate
of the adversarial action wt and we will need to control the
contribution of the bias in our regret analysis. The second
challenge will be to lower bound the minimum eigenvalue

of the kernel covariance matrix as we will need to invert
this matrix to estimate wt. For general kernels which are
infinite dimensional, the minimum eigenvalue is zero. To
resolve this we will again turn to our construction of a finite
dimensional proxy kernel.

2.3. Bandit Algorithm and Regret Bound

In our exponential weights algorithm we first build the finite
dimensional proxy kernel K̂m using Algorithm 2.1. The
rest of the algorithm is then almost identical to the exponen-
tial weights algorithm (EXP 2) studied for linear bandits in
(20; 17; 13). In Algorithm 2.3 we set the exploration distri-
bution νAJ to be such that it induces John’s distribution (νJ )
over Φm(A) := {Φm(a) ∈ Rm : a ∈ A} (first introduced
as an exploration distribution in (13); also a short discussion
is presented in Appendix H.1). Note that for finite sets it
is possible to build minimal volume ellipsoid containing
conv(Φm(A))–John’s ellipsoid and John’s distribution in
polynomial time (24)6. We assume without loss of gen-
erality that the center of the set A is such that the John’s
ellipsoid is centered at the origin.

If we know beforehand the behavior of the eigen-decay of
the Mercer eigenvalues of K under measure µ we will be
able to choose our tuning parameters optimally. In our algo-
rithm we also build and invert the exact covariance matrix
Σ

(t)
m , however this can be relaxed and we can work with a

sample covariance matrix instead. We analyze the required
sample complexity and error introduced by this additional
step in Appendix D. We now state the main result of this
paper which is an upper bound on the regret of Algorithm
2.3.

Theorem 10 Let µi be the i-th Mercer operator eigenvalue
of K for the uniform measure µ over A. Let m, p, α and ε
be chosen as specified by the conditions in Theorem 9. Let
the mixing coefficient be chosen such that γ = ηG4m. Then
Algorithm 2.3 with probability 1− e−α has regret bounded
by

Rn ≤ γn+ (e− 2)G4ηmn+ 3εn+
1

η
log(|A|).

We prove this theorem in Appendix A. Note that this is sim-
ilar to the regret rate attained for adversarial linear bandits
in (20; 18; 13) with an additional term 3εn that accounts
for the bias in our loss estimates ŵt. In our regret bounds
the parameter m plays the role of the effective dimension
and will be determined by the rate of the eigen-decay of the
kernel. When the underlying Hilbert space is finite dimen-
sional (as is the case when the losses are linear) our regret

6It is thus possible to construct νJ over Φm(A) in polynomial
time. However, as A is a finite set, using Φm(·) and νJ it is also
possible to construct νAJ efficiently.
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Algorithm 2 Bandit Information: Exponential Weights
Input :Set A, learning rate η > 0, mixing coefficient γ >

0, number of rounds n, uniform distribution µ over
A, exploration distribution νAJ overA, kernel map
K, effective dimension m(ε), number of samples
p.

Build kernel K̂m with feature map Φm(·) using Algorithm
2.1 with kernel K, dimension m, distribution µ, bias toler-
ance ε and number of samples p.

set q1(a) = νAJ .
for t = 1, . . . , n do

set pt = γνAJ + (1− γ)qt
choose at ∼ pt
observe 〈Φ(at), wt〉H
build the covariance matrix

Σ(t)
m = Ex∼pt

[
Φm(x)Φm(x)>

]
compute the estimate ŵt = Σ−1

m Φm(at)〈Φ(at), wt〉H.
update qt+1(a) ∝ qt(a) · exp (−η · 〈ŵt,Φm(a)〉H)

end

bound recovers exactly the results of previous work (that is,
ε = 0 and m = d). Next we state the following different
characteristic eigenvalue decay profiles.

Definition 11 (Eigenvalue decay) Let the Mercer opera-
tor eigenvalues of a kernel K with respect to a measure P
over a set A be denoted by µ1 ≥ µ2 ≥ . . ..

1. K is said to have (C, β)-polynomial eigenvalue decay
(with β > 1) if for all j ∈ N we have µj ≤ Cj−β .

2. K is said to have (C, β)-exponential eigenvalue decay
if for all j ∈ N we have µj ≤ Ce−βj .

Under assumptions on the eigen-decay we can establish
bounds on the effective dimension m and µm, so that the
condition stated in Lemma 6 is satisfied and we are guar-
anteed to build an ε-approximate kernel K̂m. We establish
bounds on m in Proposition 33 presented in Appendix C.1.

Corollary 12 Let the conditions stated in Theorem 10 hold.
Then Algorithm 2.3 has its regret bounded by the following
rates with probability 1− e−α.

1. If K has (C, β)-polynomial eigenvalue decay
under measure µ, with β > 2. Then

by choosing η = 1

3
1

2β−1
·
[
β−1
4CB2

]1/2β−1

·[
log(|A|)

((e−1)G4)
β−1
β n

] β
2β−1

and m =
[

4CB2

(β−1)ε

]1/β−1

where ε =
(

(e−1)ηG4

3

)(β−1)/β [
4CB2

β−1

]1/β
, the ex-

pected regret is bounded by

Rn ≤ 3

[
4CB2

β − 1

] 1
2β−1 (

eG4 log (|A|)
) β−1

2β−1 · n
β

2(β−1) .

2. If K has (C, β)-exponential eigenvalue decay un-
der measure µ. Then by choosing η =(

β log(|A|)
(e−1)G4 log

(
4CB2
β

)
·n

)1/2

and m = 1
β log

(
4CB2

βε

)
where ε = (e−1)G4η

3β log
(

4CB2

β

)
, with n large enough

so that ε < 1, the expected regret is bounded by

Rn ≤ Õ


18G4 log (|A|) · n

β log
(

4CB2

β

)
1/2

 .

Remark 13 Under (C, β)-polynomial eigen-decay condi-
tion we have that the regret is upper bounded by Rn ≤
O(n

β
2(β−1) ). While when we have (C, β)-exponential

eigen-decay we almost recover the adversarial linear ban-
dits regret rate (up to logarithmic factors), with Rn ≤
O(n1/2 log(n)).

One way to interpret the results of Corollary 12 in contrast to
the regret bounds obtained for linear losses is the following.
We introduce additional parameters into our analysis to
handle the infinite dimensionality of our feature vectors – the
effective dimension m and bias of our estimate ε. When the
effective dimensionm is chosen to be large we get can build
an estimate of the adversarial action ŵt which has low bias,
however this estimate would have large variance (O(m)).
On the other hand if we choosem to be small we can build a
low variance estimate of the adversarial action but with high
bias (ε is large). We trade these off optimally to get the regret
bounds established above. In the case of exponential decay
we obtain that the choice m = O(log(n)) is optimal, hence
the regret bound only degrades by a logarithmic factor in
terms of n as compared to linear losses (where m would be
a constant). When we have polynomial decay, the effective
dimension is higher m = O(n

1
2(β−1) ) which leads to worse

bounds on the expected regret. Note that asymptotically
as β → ∞ the regret bound goes to n1/2 which aligns
well with the intuition that the effective dimension is small.
While when β → 2 (the effective dimension m→∞) the
regret bound becomes close to linear in n.

We can also show a minimax lower bound for these two
settings that are close to matching the upper bound.

Proposition 14 (informal) For any algorithm used by the
player, there exist a strategy for the adversary such that
Rn ≥ Ω

(
n
β+1
2β

)
whenever µj = Õ(j−β), while when the

decay is exponentialRn ≥ Ω
(
n1/2

)
.



Online learning with kernel losses

Algorithm 3 Full Information: Exponential Weights
Input :Set A, learning rate η > 0, number of rounds n.
Set p1(a) uniform distribution over A.
for t = 1, . . . , n do

choose at ∼ pt
observe wt
update pt+1(a) ∝ pt(a) · exp (−η · 〈wt,Φ(a)〉H)

end

The lower bound follows by a modification of the arguments
used to prove a lower bound linear bandits. For a complete
proof see Appendix E.

3. Full Information Setting
3.1. Full information Exponential Weights

We begin by presenting a version of the exponential weights
algorithm, Algorithm 3 adapted to our setup. In each
round we sample an action vector at ∈ A from the ex-
ponential weights distribution pt. After observing the loss,
〈Φ(at), wt〉H we update the distribution by a multiplicative
factor, exp(−η〈wt,Φ(a)〉H). In the algorithm presented we
choose the initial distribution p1(a) to be uniform over the
set A, however we note that alternate initial distributions
with support over the whole set could also be considered.
We can establish a sub-linear regret of O(

√
n) for the expo-

nential weights algorithm.

Theorem 15 Assume that in Algorithm 3 the step size η

is chosen to be, η =
√

log(vol(A))
e−2 · 1

G2n1/2 , with n large

enough such that
√

log(vol(A))
e−2

1
n1/2 ≤ 1. Then the expected

regret after n rounds is bounded by,

Rn ≤
√

(e− 2) log(vol(A))G2n1/2.

We prove this regret bound in Appendix F.1.

3.2. Conditional Gradient Descent

Next we present an online conditional gradient (Frank-
Wolfe) method (26) adapted for kernel losses. The con-
ditional gradient method is also a well studied algorithm
studied in both the online and offline setting (for a review
see (25)). The main advantage of the conditional gradient
method is that as opposed to projected gradient descent and
related methods, the projection step is avoided. At each
round the conditional gradient method involves the opti-
mization of a linear (kernel) objective function over A to
get a point vt ∈ A. Next we update the optimal mean ac-
tion Xt+1 by re-weighting the previous mean action Xt by
(1− γt) and weight our new action vt by γt. Note that this
construction also automatically suggests a distribution over

Algorithm 4 Full Information: Conditional Gradient
Input :Set A, number of rounds n, initial action a1 ∈ A,

inner product 〈·, ·〉H, learning rate η, mixing rates
{γt}nt=1.

X1 = Φ(a1)
choose D1 such that Ex∼D1Φ(x) = X1

for t = 1, 2, . . . , n do
sample at ∼ Dt
observe the adversarial action wt
define Ft(Y ) , η

∑t−1
s=1〈ws, Y 〉H + ‖Y −X1‖2H

compute vt = argmina∈A〈∇Ft(Xt),Φ(a)〉H
update mean Xt+1 = (1− γt)Xt + γtΦ(vt)
choose Dt+1 s.t. Ex∼Dt+1

[Φ(x)] = Xt+1.
end

a1, v1, v2, . . . , vt ∈ A such that, Xt+1 is a convex combina-
tion of Φ(a1),Φ(x1), . . . ,Φ(at). For this algorithm we can
prove a regret bound of O(n3/4) (presented in Appendix
F.2.).

Theorem 16 Let the step size be η = 1
2n3/4 . Also let the

mixing rates be γt = min{1, 2/t1/2}, then Algorithm 4
attains regret ofRn ≤ 8G2n3/4.

4. Applications
4.1. General Quadratic Losses

The first example of losses that we present are general
quadratic losses. At each round the adversary can choose
a symmetric (not necessarily positive semi-definite matrix)
A ∈ Rd×d, and a vector b ∈ Rd, with a constraint on the
norm of the matrix and vector such that ‖A‖2F + ‖b‖22 ≤ G2.
If we embed this pair into a Hilbert space defined by
the feature map (A, b) we get a kernel loss defined as –
〈Φ(x), (A, b)〉H = x>Ax+ b>x, where Φ(x) = (xx>, x)
is the associated feature map for any x ∈ A and the inner
product in the Hilbert space is defined as the concatenation
of the trace inner product on the first coordinate and the
Euclidean inner product on the second coordinate. The cu-
mulative loss that the player would aspire to minimize is,∑n
t=1 x

>
t Atxt + b>t xt. The setting without the linear term,

that is when bt = 0 with positive semidefinite matrices At
is previously well studied in (47; 48; 23; 4). However when
the matrix is not positive semi-definite (making the losses
non-convex) and there is a linear term, regret guarantees
and tractable algorithms have not been studied even in the
full information case.

As this is a kernel loss we have regret bounds for these
losses. We demonstrate in the subsequent sections in the
full information case it is also possible to run our algorithms
efficiently. First for exponential weights we show sampling
is efficient for these losses.
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Lemma 17 (Proof in Appendix F.1) Let B ∈ Rd×d be a
symmetric matrix and b ∈ Rd. Sampling from q(a) ∝
exp(a>Ba + a>b) for ‖a‖2 ≤ 1, a ∈ Rd is tractable in
Õ(d4) time.

4.2. Guarantees for Conditional Gradient Descent

We now demonstrate that conditional gradient descent also
can be run efficiently when the adversary plays a general
quadratic loss. At each round the conditional gradient de-
scent requires the player to solve the optimization problem,
vt = argmina∈A〈∇Ft(Xt),Φ(a)〉H. When the set of ac-
tions isA = a ∈ Rd : ‖a‖2 ≤ 1 then under quadratic losses
this problem becomes,

vt = argmin
a∈A

a>Ba+ b>a, (5)

for an appropriate matrix B and b that can be calculated by
aggregating the adversary’s actions up to step t. Observe that
the optimization problem (5) is a quadratically constrained
quadratic program (QCQP) given our choice ofA. The dual
problem is the (semi-definite program) SDP,

max− t− µ
s. t. [

B + µI b/2
b/2 t

]
� 0.

For this particular program with a norm ball constraint set it
is known the duality gap is zero provided Slater’s condition
holds, that is, strong duality holds (see Annex B.1 (12)).

4.3. Posynomial Losses

In this section we will define a posynomial game, by intro-
ducing posynomial losses and prove that these losses can
also be viewed as kernel inner products. We will use the con-
nection between posynomials and Geometric programs to
prove that conditional gradient descent can be run efficiently
on this family of losses.

Definition 18 (Monomial) A function f : Rd+ 7→ R de-
fined as

f(x) = cxα1
1 xα2

2 · · ·x
αd
d ,

where c > 0 and αi ∈ R, is called a monomial function.

A sum of monomials is a posynomial.

Definition 19 (Posynomial) A function f : Rd+ 7→ R de-
fined as

f(x) =

m∑
k=1

ckx
α1k
1 xα2k

2 · · ·xαdkd

where ck > 0 and αik ∈ R, is called a posynomial function.

Note that posynomial functions are closed under addition,
multiplication and non-negative scaling. If we assume the
adversary at each round plays a vector of dimension m
with all non-negative entries, wt = (c1, c2, · · · , cm), while
the player chooses a vector x ∈ Rd+. This vector is then
partitioned into m parts,

x = (x1, x2︸ ︷︷ ︸
s1

, . . . , xd−2, xd−1, xd︸ ︷︷ ︸
sm

),

and the feature vector is defined as

Φ(x) =

 xα1
1 xα2

2
...

x
αd−2

d−2 x
αd−1

d−1 x
αd
d

 .
Where the ith component of Φ(·) is only a function of the
ith partition of the coordinates si. Then the loss obtained
on the evaluation of the inner product between the adversary
and player action is a posynomial loss function,

〈wt,Φ(x)〉H =

m∑
k=1

ckx
αk1
1 · · ·xαkdd .

A number of scenarios can be modeled as a minimiza-
tion/maximization problem over posynomial functions (see
(11) for a detailed list of examples). We now show that con-
ditional gradient descent can be run efficiently over posyn-
omial losses. If we again assume that the set of actions
A = {a ∈ Rd : ‖a‖2 ≤ 1}. Additionally we all choose the
initial action to be the solution to the optimization problem,

a1 = argmin
a∈A

d∑
k=1

Φ(a)i.

Observe that the objective function is a posynomial subject
to a posynomial inequality constraint. This is a geometric
program that can be solved efficiently by changing variables
and converting into a convex program (Section 2.5 in (11)).
At each round of the conditional gradient descent algorithm
requires us to solve the optimization problem,

vt = argmin
a∈A

〈η
t−1∑
s=1

wt + 2(Xt − Φ(a1)),Φ(a)〉H. (6)

Given that posynomials are closed under addition, and given
our choice of a1, the objective function (6) is still a posyn-
omial and the constraint is a posynomial inequality. This
can again be cast as a geometric program that can be solved
efficiently at each round.

Conclusion

It would be interesting to explore and study more kernel
losses for which we have regret guarantees and for which
our algorithms are also computationally efficient.
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Appendix

Organization of the Appendix and Roadmap of the Proof

Here we describe the general organization of the proofs of the paper. We use the same notation for parameters as throughout
the paper.

In Appendix A we provide a proof of Theorem 10 and Corollary 12. At a high level, the elements to prove this theorem are
similar to that of proving regret bounds for linear losses. We first decompose the regret into an approximation error term
that arises due to the construction of the finite dimensional proxy Φm(·) and another term which corresponds to the regret of
a finite dimensional linear loss game (see Equation 7). To prove Theorem 10 we then proceed in Appendix A.1 to control
the regret of this finite dimensional linear bandit game by classical techniques. Crucially we also control terms that arise due
to the bias in our estimators by invoking Lemma 23.

We prove minimax lower bounds for the bandit setting in Appendix E.

In Appendix B we introduce and discuss ideas related to kernel principal component analysis (PCA). While in Appendix C
we prove Theorem 9. Recall that this theorem was vital in establishing that the finite dimensional feature map we construct
in Algorithm 2.3 induces a kernel K̂m that is an ε-approximation of K. In Appendix D we establish bounds on the sample
complexity and control the error if the sample covariance matrix is used instead of the full covariance matrix in Algorithm
2.3.

The results about the full information setting, specifically the proofs of Theorems 15 and 16 are provided in Appendix F. In
Appendix 4.3 we apply our framework to posynomial losses, in Appendix H we discuss Hoeffding’s inequality and John’s
Theorem. Finally in Appendix I we present experimental evidence to verify our claims.

A. Bandits Exponential Weights Regret Bound
In this section we prove the regret bound stated in Section 2. We borrow all the notation from Section 2. As defined before
the expected regret for Algorithm 2.3 after n rounds is

Rn = E

[
n∑
t=1

〈Φ(at), wt〉H − 〈Φ(a∗), wt〉H

]
= E

[
n∑
t=1

Eat∼pt
[
〈Φ(at), wt〉H − 〈Φ(a∗), wt〉H

∣∣∣Ft−1

]]
,

where pt is the exponential weights distribution described in Algorithm 2.3, a∗ is the optimal action and Ft−1 is the sigma
field that conditions on (a1, a2, . . . , at−1, y1, y2, . . . , yt−1, yt), the events up to the end of round t− 1. We will prove the
regret bound for the case when the kernel is infinite dimensional, that is, the feature map Φ(a) ∈ RD, where D =∞. When
D is finite the proof is identical with ε = 0. Recall that when D is infinite we constrain the adversary to play rank-1 actions.
We are going to refer to the adversarial action as wt =: Φ(yt) for some yt ∈ Rd. We now expand the definition of regret and
get,

Rn = E

[
n∑
t=1

Eat∼pt
[
〈Φ(at), wt〉H − 〈Φm(at), wt〉H

∣∣∣Ft−1

]]

+ E

[
n∑
t=1

Eat∼pt
[
〈Φm(a∗), wt〉H − 〈Φ(a∗), wt〉H

∣∣∣Ft−1

]]

+ E

[
n∑
t=1

Eat∼pt
[
〈Φm(at), wt〉H − 〈Φm(a∗), wt〉H

∣∣∣Ft−1

]]
︸ ︷︷ ︸

=:Rmn

.

HereRmn is the regret when we play the distribution in Algorithm 2.3 but are hit with losses that are governed by the kernel –
K̂m(·, ·) (with the same a∗ as before). Observe that in Rmn only the component of wt in the subspace Ŝm contributes to the
inner product, thus every term is of the form

〈Φm(at), wt〉 = 〈Φm(at),Φm(yt)〉 = K̂m(yt, at).
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As the proxy kernel K̂m is uniformly close by Theorem 9 we have,

Rn ≤ 2εn+Rmn . (7)

A.1. Proof of Theorem 10

We will now attempt to boundRmn and prove Theorem 10. First we define the unbiased estimator (conditioned on Ft−1) of
Φm(yt) at each round,

w̃t := K̂m(at, yt)
(

(Σ(t)
m )−1Φm(at)

)
, t ∈ {1, . . . , n}, (8)

where Φm(yt) = PŜm(Φ(yt)) = PŜm(wt). We cannot build w̃t as we do not receive K̂m(at, yt) as feedback. Thus we also
have

Eat∼pt [ŵt|Ft−1] = E
[
K(at, yt)

(
(Σ(t)

m )−1Φm(at)
) ∣∣∣Ft−1

]

= Φm(yt) + E

(K(at, yt)− K̂m(at, yt)
)(

(Σ(t)
m )−1Φm(at)

)
︸ ︷︷ ︸

=:ξt, the bias

∣∣∣Ft−1

 , t ∈ {1, . . . , n}. (9)

If Φm(·) = Φ(·) then the bias ξt would be zero. We now present some estimates involving w̃t. In the following section we
sometimes denote w̃t and ŵt more explicitly as w̃t(at) and ŵt(at) where there may be room for confusion.

Lemma 20 For any fixed a ∈ A we have,

Eat∼pt
[
〈w̃t(at),Φm(a)〉

∣∣∣Ft−1

]
= K̂m(yt, a), t ∈ {1, . . . , n}.

We also have for all t ∈ {1, . . . , t},

Eat∼pt
[
K̂m(yt, at)

∣∣∣Ft−1

]
= Eat∼pt

[∑
a∈A

pt(a) 〈w̃t(at),Φm(a)〉
∣∣∣Ft−1

]
.

Proof The first claim follows by Equation (8) and the linearity of expectation we have

Eat∼pt
[
〈w̃t(at),Φm(a)〉

∣∣∣Ft−1

]
= 〈E [w̃t(at)|Ft−1] ,Φm(a)〉 = K̂m(yt, a).

where the expectation is taken over pt. Now to prove the second part of the theorem statement we will use tower property.
Observe that conditioned on Ft−1, pt and at are measurable.

E

[
K̂m(yt, at)

∣∣∣∣∣Ft−1

]
= E

[
Ea∼pt

[
〈w̃t(at),Φm(a)〉

∣∣∣∣∣at
] ∣∣∣∣∣Ft−1

]
= E

[∑
a∈A

pt(a) 〈w̃t(at),Φm(a)〉
∣∣∣Ft−1

]
.

We are now ready to prove Theorem 10 and establish the claimed regret bound.

Proof [Proof of Theorem 10] The proof is similar to the regret bound analysis of exponential weights for linear bandits. We
proceed in 4 steps. In the first step we decompose the cumulative loss in terms of an exploration cost and an exploitation
cost. In Step 2 we control the exploitation cost by using Hoeffding’s inequality as is standard in linear bandits literature, but
additionally we need to control terms arising out of the bias of our estimate. In Step 3 we bound the exploration cost and
finally in the fourth step we combine the different pieces and establish the claimed regret bound.
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Step 1: Using Lemma 20 and the fact that w̃t is an unbiased estimate of Φm(yt) we can decompose the cumulative loss, the
first term in Rmn as

E

[
n∑
t=1

K̂m(at, yt)

]
= E

[
n∑
t=1

[∑
a∈A

pt(a) 〈w̃t(at),Φm(a)〉
∣∣∣Ft−1

]]

= (1− γ)E

[
n∑
t=1

[∑
a∈A

qt(a) 〈w̃t,Φm(a)〉
∣∣∣Ft−1

]]
︸ ︷︷ ︸

Exploitation

+ γ · E

[
n∑
t=1

[∑
a∈A

νAJ (a) 〈w̃t,Φm(a)〉
∣∣∣Ft−1

]]
︸ ︷︷ ︸

Exploration

, (10)

where the second line follows by the definition of pt.

Step 2: We first focus on the ‘Exploitation’ term.

♣ := (1− γ)E

[
n∑
t=1

[∑
a∈A

qt(a) 〈w̃t,Φm(a)〉
∣∣∣Ft−1

]]

= (1− γ)E

[
n∑
t=1

[∑
a∈A

qt(a) 〈ŵt,Φm(a)〉
∣∣∣Ft−1

]]
︸ ︷︷ ︸

=:♠

+(1− γ)E

[
n∑
t=1

[∑
a∈A

qt(a) 〈w̃t − ŵt,Φm(a)〉
∣∣∣Ft−1

]]
︸ ︷︷ ︸

=:♦

. (11)

Under our choice of γ by Lemma 24 (proved in Appendix A.1.1) we know that η〈ŵt,Φ(at)〉 > −1. Therefore by
Hoeffding’s inequality (Lemma 53) we get,

♠ = E

[
n∑
t=1

[∑
a∈A

qt(a) 〈ŵt,Φm(a)〉
∣∣∣Ft−1

]]
≤ −1

η
E

[
n∑
t=1

log (Ea∼qt [exp (−η 〈ŵt(at),Φm(a)〉)])

]
︸ ︷︷ ︸

=:Γ1

+ (e− 2)ηE

[
n∑
t=1

[∑
a∈A

qt(a) (〈ŵt,Φm(a)〉)2
∣∣∣Ft−1

]]
︸ ︷︷ ︸

=:Γ2

. (12)

Both Γ1 and Γ2 can be bounded by standard techniques established in the literature of adversarial linear bandits. We will
see that Γ1 is a telescoping series and is controlled in Lemma 21. While the second term Γ2 is the variance of the estimated
loss is bounded in Lemma 22. We defer the proof of both Lemma 21 and Lemma 22 to Appendix A.1.1. Plugging in the
bounds on Γ1 and Γ2 into Equation (12) we get,

(1− γ)♠ = (1− γ) · E

[
n∑
t=1

[∑
a∈A

qt(a) 〈ŵt,Φm(a)〉
∣∣∣Ft−1

]]
(13)

≤ E

[
n∑
i=1

K̂m(a∗, yt)

]
+

1

η
log (|A|) + E

[
n∑
t=1

〈ŵt − w̃t,Φm(a∗)〉

]
+ (e− 2)ηG4mn

≤ E

[
n∑
i=1

K̂m(a∗, yt)

]
+

1

η
log (|A|) +

εn

G2η
+ (e− 2)ηG4mn,

where the last inequality follows by Lemma 23. Also by Lemma 23 we get, ♦ ≤ εn/G2η. Combining this with Equation
(11) we get,

♣ ≤ E

[
n∑
i=1

K̂m(a∗, yt)

]
+

1

η
log (|A|) +

2εn

G2η
+ (e− 2)ηG4mn. (14)

Step 3: Next, observe that the exploration term is bounded above as

γ · E

[
n∑
t=1

E

[∑
a∈A

νAJ (a) 〈w̃t,Φm(a)〉
∣∣∣Ft−1

]]
≤ 4γG2n, (15)
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where the above inequality follows by Lemma 20 and Cauchy-Schwartz inequality along with the fact that ε ≤ G2.

Step 4: Putting these all these together into Equation (10) we get the desired bound on the finite dimensional regret

Rmn = E

[
n∑
t=1

(
K̂m(at, yt)− K̂m(a∗, yt)

)]
≤ 4γG2n+ (e− 2)G4ηmn+

2εn

G2η
+

1

η
log(|A|).

Plugging the above bound onRmn into Equation (7) we get a bound on the expected regret as

Rn ≤ 4γG2n+ (e− 2)G4ηmn+ 2εn+
2εn

G2η
+

1

η
log(|A|),

completing the proof.

A.1.1. TECHNICAL RESULTS USED IN PROOF OF THEOREM 10

First let us focus on bounding Γ1. A term analogous to Γ1 also appears in the regret bound analysis for exponential weights
in the adversarial linear bandits setting; we adapt those proof techniques here to work with biased estimates (ŵt).

Lemma 21 Let Γ1 be as defined in Equation (12) then we have

Γ1 ≥ −ηE

[
n∑
i=1

K̂m(a∗, yt)

]
− log (|A|)− ηE

[
n∑
t=1

〈ŵt − w̃t,Φm(a∗)〉

]
.

Proof Expanding Γ1 we get

Γ1 = E

[
n∑
t=1

log (Ea∼qt [exp (−η 〈ŵt,Φm(a)〉)])

]

(i)
= E

 n∑
t=1

log


∑
a∈A exp

(
−η
∑t−1
i=1 〈ŵi,Φm(a)〉

)
· exp (−η 〈ŵt,Φm(a)〉)∑

a∈A exp
(
−η
∑t−1
i=1 〈ŵi,Φm(a)〉

)



(ii)
= E

[
log

(∑
a∈A

exp

(
−η

n∑
i=1

〈ŵi,Φm(a)〉

))
− log (|A|)

]
, (16)

where (i) follows by the definition of qt(a) and (ii) follows as the sum telescopes and we start of with the uniform
distribution over A. We have for any element a′ ∈ A,

E

[
log

(∑
a∈A

exp

(
−η

n∑
i=1

〈ŵi,Φm(a)〉

))]
≥ −E

[
η

n∑
i=1

〈ŵi,Φm(a′)〉

]

= −ηE

[
n∑
t=1

〈w̃t,Φm(a′)〉

]
− ηE

[
n∑
t=1

〈ŵt − w̃t,Φm(a′)〉

]

= −ηE

[
n∑
t=1

K̂m(a′, yt)

]
− ηE

[
n∑
t=1

〈ŵt − w̃t,Φm(a′)〉

]
,

where the last equality by Lemma 20. Choosing a′ = a∗ and plugging this lower bound into Equation (16) completes the
proof.

The next lemma controls of the variance of the expected loss – Γ2. A term analogous to Γ2 appears in the regret bound
analysis of exponential weights in adversarial linear bandits which we adapt to our setting.
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Lemma 22 Let Γ2 be defined as in Equation (12) and the choice of parameters as specified in Theorem 10 then we have

Γ2 = (e− 2)ηE

[
n∑
t=1

Ea∼qt
[
〈ŵt,Φm(a)〉2

∣∣∣Ft−1

]]
≤ (e− 2)G4ηmn/(1− γ). (17)

Proof Note that by definition of qt, we have that (1 − γ)qt(a) ≤ pt(a). To ease notation let Σt := Σ
(t)
m =

Ept
[
Φm(x)Φm(x)>

]
. Taking expectation over the randomness in ŵt for any fixed a we have,

Eat∼qt
[
〈ŵt(at),Φm(a)〉2

]
= Φm(a)>E

[
ŵtŵ

>
t

]
Φm(a)

= Φm(a)>Eat∼pt
[
K(at, yt)

2Σ−1
t Φm(at)Φm(at)

>Σ−1
t

]
Φm(a)

≤ G4Φm(a)>Σ−1
t Φm(a).

where the second equality follows by the definition of ŵt. Given this calculation we now also take expectation over the
choice of a so we have,

Ea∼pt
[
Eat∼pt

[
〈ŵt,Φm(a)〉2

]]
≤ G4Ea∼pt

[
tr
(
Φm(a)>Σ−1

t Φm(a)
)]

= G4tr
(
Σ−1
t Ea∼pt

[
Φm(a)Φm(a)>

])
= G4tr (Im×m) = G4m.

Summing over t = 1 to n establishes the result.

We now prove the bound on the terms that arise out of our biased estimates.

Lemma 23 Let γ = 4ηG4m and let ε ≤ G2, then for all a ∈ A and for all t ∈ {1, . . . , n} we have

|〈ŵt − w̃t,Φm(a)〉| ≤ ε

ηG2
.

Proof By the definition of w̃t and ŵt,

‖w̃t − ŵt‖2 =

∥∥∥∥(K̂m(yt, at)−K(yt, at)
)(

Σ(t)
m

)−1

Φm(at)

∥∥∥∥
2

= |K̂m(yt, at)−K(yt, at)|
∥∥∥∥(Σ(t)

m

)−1

Φm(at)

∥∥∥∥
2

≤ ε · m
γ
· (G +

√
ε),

where the inequality follows as K̂m is an ε-approximation of K, the minimum eigenvalue of Σ
(t)
m is γ/m by Proposition 35.

So by Cauchy-Schwartz we get,

|〈ŵt − w̃t,Φm(a)〉| ≤ ‖w̃t − ŵt‖2‖Φm‖2 ≤
εm(G +

√
ε)2

γ
,

the claim now follows by the choice of γ and by the condition on ε.

While using Hoeffding’s inequality to arrive at Inequality (12) we assume that the estimate of the loss is lower bounded by
−1/η. The next lemma help us establish that under the choice of γ the exploration parameter in Theorem 10 this condition
holds.

Lemma 24 Let ε ≤ G2 then for any a ∈ A and for all t = 1, . . . , n we have

|〈ŵt,Φm(a)〉| ≤ G2 sup
c,d∈A

∣∣∣Φm(c)>
(
Ea∼pt

[
Φm(a)Φm(a)>

])−1
Φm(d)

∣∣∣ .
Further if the exploration parameter is γ > 4ηG4m then we have a bound on the estimated loss at each round

η|〈ŵt,Φm(a)〉| ≤ 1, ∀a ∈ A.
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Proof Recall the definition of Σ
(t)
m = Ept

[
Φm(a)Φm(a)>

]
(we drop the index t to lighten notation in this proof). The

proof follows by plugging in the definition of the loss estimate ŵt,

|ŵ>t Φm(a)| =
∣∣∣K(at, yt)

(
Σ−1
m Φm(at)

)>
Φm(a)

∣∣∣
≤ |K(at, yt)|︸ ︷︷ ︸

≤G2

∣∣∣(Σ−1
m Φm(at)

)>
Φm(a)

∣∣∣
≤ 4G2 sup

c,d∈A

∣∣Φm(c)>Σ−1
m Φm(d)

∣∣ . (18)

Now note that the matrix Σm has its lowest eigenvalue lower bounded by γ/m by Proposition 35 (see also discussion by
13). Thus we have,

sup
c,d∈A

∣∣Φm(c)>Σ−1
m Φm(d)

∣∣ ≤ 4G2m

γ
,

where the inequality above follows by the assumption that ε ≤ G2. Combing this with Equation (18) yields the desired
claim.

A.2. Proof of Corollary 12

In this section we present the proof of Corollary 12, which establishes the regret bound under particular conditions on the
eigen-decay of the kernel.

Proof [Proof of Corollary 12] Given our assumption G = 1 and by the choice of γ = 4ηG4m the regret bound becomes,

Rn ≤ 20ηmn︸ ︷︷ ︸
=:R1

+
2εn

η︸︷︷︸
=:R2

+
1

η
log (|A|)︸ ︷︷ ︸
=:R3

+ 2εn︸︷︷︸
=:R4

.

Case 1: First we assume (C, β)-polynomial eigen-value decay. By the results of Proposition 33 we have a sufficient
condition on the choice of m for K̂m to be an ε-approximation of K,

m =

[
4CB2

(β − 1)ε

]1/β−1

.

With this choice of m we equate the terms R1, R2 and R3 with each other. This yields the choice,

ε =
log(|A|)

2n
, and η2 =

ε

10m
.

Note that under this choice there exists a constant n0(β,C,B, log(|A|)) > log(|A|)/2 such that when n > n0 then,
R4 < R1. Also note when n > log(|A|)/2 then ε < 1 = G2 so the conditions of Theorem 10 are indeed satisfied. Plugging
in these choice of ε,m and η for n > n0 yields,

Rn ≤ 4R1 =
√

160 ·
[

2β+2CB2

β − 1

] 1
2(β−1)

· (log(|A|))
β−2

2(β−1) · n
β

2(β−1) .

Case 2: Here we assume (C, β)-exponential eigen-value decay. Again by the results of Proposition 33 we have a sufficient
condition for the choice of m for K̂m to be an ε- approximation of K,

m =
1

β
log

(
4CB2

βε

)
.
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Again as before, by equating R1, R2, R3 yields ε = log(|A|)/(2n) and η2 = ε/10m. Again as with Case 1, there exists a
constant n0(β,C,B, log(|A|)) > log(|A|)/2 such that when n > n0 then, R4 < R1. Plugging in these choice of ε,m and
η for n > n0 yields,

Rn ≤ 4R1 =

√
320 · log(|A|)

β
· log

(
40CB2n

β log(|A|)

)
· n.

B. Kernel principal component analysis
We review the basic principles underlying kernel principal component analysis (PCA). Let K be some kernel defined over
A ⊂ Rd and x1, · · · , xp ∼ P a probability measure over A. Let us denote a feature map of K by Φ : Rd → RD.

The goal of PCA is to extract a set of eigenvalues and eigenvectors from a sample covariance matrix. In kernel PCA we
want to calculate the eigenvectors and eigenvalues of the sample kernel covariance matrix,

Σ̂ =
1

p

p∑
i=1

Φ(xi)Φ(xi)
>.

When working in a reproducing kernel Hilbert space H in which no feature map is explicitly available, an alternative
approach is taken by working instead with the sample Gram matrix.

Lemma 25 Let Φ(x1), · · · ,Φ(xp) be p points in H. The eigenvalues of the sample covariance matrix,
1
p

∑p
i=1 Φ(xi)Φ(xi)

> equal the eigenvalues of the sample Gram matrix K ∈ Rp×p, where the sample Gram matrix

is defined entry-wise as Kij =
K(xi,xj)

p .

Proof Let X ∈ Rp×D be such that the ith row is Φ(xi)√
p . The singular value decomposition (SVD) of X is

X = UDV >,

with U ∈ Rp×p, D ∈ Rp×D and V ∈ RD×D. Therefore X>X = V D>DV > and XX> = UDD>U>. We identify
X>X as the sample covariance matrix and XX> as the sample Gram matrix. Since DD> and D>D are both diagonal and
have the same nonzero values this establishes the claim.

Another insight used in kernel PCA procedures is the observation that the span of the eigenvectors corresponding to nonzero
eigenvalues of the sample covariance matrix 1

p

∑p
i=1 Φ(xi)Φ(xi)

> is a subspace of the span of the data-points {Φ(xi)}pi=1.
This means that any eigenvector v corresponding to a nonzero eigenvalue for the second moment sample covariance matrix
can be written as a linear combination of the p−datapoints, vi =

∑p
j=1 ωijΦ(xj) (ωij denotes the jth component of

ωi ∈ Rp). Observe that vi are the eigenvectors of the sample covariance matrix, so we have[
1

p

p∑
i=1

Φ(xi)Φ(xi)
>

] p∑
j=1

ωijΦ(xj)

 = µi

p∑
j=1

ωijΦ(xj).

This implies we may consider solving the equivalent system

µi (〈Φ(xk), vi〉H) =

〈
Φ(xk),

(
1

p

p∑
i=1

Φ(xi)Φ(xi)
>

)
vi

〉
H

∀k = 1, · · · , p. (19)

Substituting vi =
∑p
j=1 ωijΦ(xj) into Equation (19), and using the definition of K we obtain

µiKωi = K2ωi.
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To find the solution of this last equation we solve the eigenvalue problem,

Kωi = µiωi.

Once we solve for αi we can recover the eigenvector of the sample covariance matrix by setting vi =
∑p
j=1 ωijΦ(xj).

C. Proxy Kernel Properties
In this section we prove Theorem 9. We reuse the notation introduced in Section 2.1 which we recall here.

Let {µj}∞j=1 be the Mercer’s eigenvalues of a kernel K under measure P with eigenfunctions {φj}∞j=1, and we assume that
supj∈N supx∈A|φj(x)| ≤ B for some B <∞. Let m(ε) be such that

∑∞
j=m+1 µj ≤

ε
4B2 and denote the mth eigen-gap as

δm = 1
2 (µm − µm+1). Denote by Sm and Ŝm the subspaces spanned by the first m eigenvectors of the covariance matrix

Ex∼P
[
Φ(x)Φ(x)>

]
and a sample covariance matrix 1

p

∑p
i=1 Φ(xi)Φ(xi)

> respectively. Define PSm and PŜm to be the

projection operators to Sm and Ŝm. Recall the definition of

K̂om(x, y) = 〈PSm(Φ(x)), PSm(Φ(y))〉H = 〈Φom(x),Φom(y)〉H,

a deterministic approximate kernel and the stochastic proxy approximate kernel

K̂m(x, y) = 〈PŜm(Φ(x)), PŜm(Φ(y))〉H,

with associated feature map Φm(x) = PŜmΦ(x). We first prove Lemma 6 restated here.

Lemma 6 Given ε > 0, let {µj}∞j=1 be the Mercer operator eigenvalues of K under a finite Borel measure P with support
A and eigenfunctions {φj}∞j=1 with µ1 ≥ µ2 ≥ · · · . Further assume that supj∈N supx∈A|φj(x)| ≤ B for some B < ∞.
Let m(ε) be such that

∑∞
j=m+1 µj ≤

ε
4B2 . Then the kernel induced by a truncated feature map,

Φom(x) :=

{√
µiφi(x) if i ≤ m

0 o.w.
(4)

induces a kernel K̂om := 〈Φom(x),Φom(y)〉H =
∑m
j=1 µjφj(x)φj(y), for all (x, y) ∈ A×A that is an ε/4-approximation

of K.

Proof By definition, for all x, y ∈ A

K(x, y)− K̂om(x, y) =

∞∑
j=m+1

µjφj(x)φj(y) ≤
∞∑

j=m+1

µj |φj(x)φj(y)| ≤
∞∑

j=m+1

µjB2 ≤ ε

4
.

The reverse inequality; K̂om(x, y)−K(x, y) ≤ ε
4 , is also true therefore,

|K(x, y)− K̂om(x, y)| ≤ ε

4
,

for all x, y ∈ A.

We now state and prove an expanded version of Theorem 9 (where w = min(
√
ε/2, δm/2)) which is used to establish the

ε-approximability of the stochastic kernel K̂m.

Theorem 26 Let ε,m,P be as in Lemma 6. Define the m-th level eigen-gap as δm = 1
2 (µm − µm+1). Also let Bm =

2G2

δm

(
1 +

√
α
2

)
, δm/2 > w > 0 and p ≥ B2

mG
2

w2 . The finite dimensional proxies K̂om and K̂m satisfy the following properties
with probability 1− e−α:

1. |K(x, y)− K̂m(x, y)| ≤ ε
4 +
√
εw + w2.
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2. |K̂m(x, y)− K̂om(x, y)| ≤ w2, ∀ x, y ∈ A.

3. The Mercer operator eigenvalues µ(m)
1 ≥ · · · ≥ µ(m)

m and µ1 ≥ · · · ≥ µm of K̂m and K̂om follow supi=1,··· ,m |µ
(m)
i −

µi| ≤ w2.

Theorem 26 shows that, as long as sufficiently samples p(m) are used, with high probability K̂m is uniformly close to
K̂om and therefore to K. We prove this theorem by a series of lemmas and auxiliary theorems. We first prove part (1) and
(2) and establish that under mild conditions on K we can extract a finite dimensional proxy kernel K̂m by truncating the
eigen-decomposition of K and estimating a feature map with samples. We leverage a kernel PCA result by (50) to construct
K̂m.

Theorem 27 (Adapted from Theorem 4 in 50) If m, p, Sm, Ŝm, δm, Bm and α are defined as in Theorem 26 then with
probability 1− exp(−α) we have

‖PSm − PŜm‖F ≤
Bm√
p(m)

. (20)

In particular,

Ŝm ⊂
{
g + h, g ∈ Sm, h ∈ S⊥m, ‖h‖H ≤

2Bm√
p
‖g‖H

}
.

Now using this theorem we prove Part (1) of Theorem 26.

Lemma 28 With probability 1− e−α we have,

|K(x, y)− K̂m(x, y)| ≤ ε

4
+
√
εw + w2, ∀ x, y ∈ A.

Proof First we show this holds for x = y.

‖Φ(x)− PŜm(Φ(x))‖H
(i)

≤ ‖Φ(x)− PSm(Φ(x))‖H + ‖PSm(Φ(x))− PŜm(Φ(x))‖H
(ii)

≤
√
ε

2
+ ‖Φ(x)‖H‖PSm − PŜm‖op

(iii)

≤
√
ε

2
+ G Bm√

p(m)

(iv)

≤
√
ε

2
+ w,

where (i) follows by triangle inequality, (ii) is by the fact that PSm(Φ(x)) is an ε/4 approximation of K, (iii) follows by
Theorem 27 and (iv) is by the choice of p(m). Therefore with probability at least 1− eα for all x ∈ A

|K(x, x)− K̂m(x, x)| ≤ ε

4
+
√
εw + w2.

Now we prove the statement for general x, y ∈ A. We write Φ(x) = Φm(x) + hx and Φ(y) = Φm(y) + hy. The above
calculation implies that ‖hx‖H ≤

√
ε

2 + w and ‖hy‖H ≤
√
ε

2 + w. We now expand K(x, y) to get

〈Φ(x),Φ(y)〉H = 〈Φm(x),Φm(y)〉H + 〈hx,Φm(y)〉H + 〈Φm(x), hy〉H + 〈hx, hy〉H.

Since hx and hy both live in Ŝ⊥m:

〈Φ(x),Φ(y)〉H = 〈Φm(x),Φm(y)〉H + 〈hx, hy〉H.

Rearranging terms,

|〈Φ(x),Φ(y)〉H − 〈Φm(x),Φm(y)〉H| = |〈hx, hy〉H| ≤
ε

4
+
√
εw + w2.

This establishes the claim.

We now move on to the proof of Part (2) in Theorem 26.

Lemma 29 If p,Bm are chosen as stated in Theorem 26 we have

|K̂m(x, y)− K̂om(x, y)| ≤ w2 ∀x, y ∈ A (21)
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Proof The feature map for K̂om is PSm(Φ(x)) for all x ∈ A while PŜm(Φ(x)) is the feature map for K̂m. We first show
that for all x ∈ A,

‖PSm(Φ(x))− PŜm(Φ(x))‖H ≤ ‖Φ(x)‖H‖PSm − PŜm‖op ≤ G
Bm√
p(m)

≤ w,

where the second inequality follows by applying Theorem 27 and the last inequality follows by the choice of Bm. A similar
argument as the one used in the proof of Lemma 28 lets us then conclude that,

|K̂m(x, y)− K̂om(x, y)| ≤ w2, ∀x, y ∈ A.

We now proceed to prove part (3) of Theorem 26. We will show that the Mercer operator eigenvalues of K̂m are close to
Mercer operator eigenvalues of K̂om. We first recall a useful result by (37).

Theorem 30 (Adapted from Theorem 3.3 in 37) Let K be a kernel over A×A such that supx∈AK(x, x) ≤ G2. Also let
µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂N be the eigenvalues of the Gram matrix (K(xi, xj)/N)Ni,j=1 for {xi}Ni=1 ∼ P. Then there exists a
universal constant c such that for every t > 0

P
[

sup
i∈1,...,N

|µ̂i − µi| ≥ t
]
≤ 2 exp

(
− ct
G2

√
N

log(N)

)
, (22)

where for i > N we define µ̂i = 0.

Proposition 31 The top m eigenvalues of the sample kernel covariance matrix equal that of the Gram matrix.

Recall that we established this proposition in Appendix B as Lemma 25. Further note that for any set of samples
x1, · · · , xN ∼ P, the Gram matrices of K̂om (Kom(N)) and K̂m (Km(N)) are close in Frobenius norm as the matrices are
close element-wise by part (2) of Theorem 26.

‖Kom(N)−Km(N)‖F ≤ w
2.

Let µ̂(m,o)
1 ≥ µ̂

(m,o)
2 ≥ · · · µ̂(m,o)

N and µ̂(m)
1 ≥ µ̂

(m)
2 ≥ · · · µ̂(m)

N be the eigenvalues of Kom(N) and Km(N) respectively.
For both of these Gram matrices only the topm out ofN eigenvalues will be nonzero, since both kernels arem−dimensional.
By the Wielandt-Hoffman inequality (30) this implies that the ordered eigenvalues are close,

sup
i=1,···N

|µ̂(m,o)
i − µ̂(m)

i | ≤ w2.

Theorem 30 and Proposition 31 together imply the statement of Theorem 30 with the Gram matrix replaced by the sample
covariance matrix holds.

Theorem 32 The Mercer operator eigenvalues µ(m)
1 ≥ · · · ≥ µ(m)

m and µ1 ≥ · · · ≥ µm of K̂m and K̂om follow

sup
i=1,··· ,m

|µ(m)
i − µi| ≤ w2. (23)

Proof We will use the probabilistic method. By Theorem 30, for every t > 0 there is N(t) ∈ N large enough such that
probability of the event – the eigenvalues of both sample Gram matrices Km(N) and Kom(N) be uniformly close to the
Mercer operator eigenvalues µ(m)

1 ≥ · · · ≥ µ
(m)
m and µ1 ≥ · · · ≥ µm – is greater than zero. By triangle inequality this

implies that for all t > 0

sup
i=1,··· ,m

|µ(m)
i − µi| ≤ sup

i1

|µ(m)
i1
− µ̂(m)

i1
|+ sup

i2

|µ̂(m)
i2
− µ̂(m,0)

i2
|+ sup

i3

|µ̂(m,0)
i3

− µi3 |

≤ t+ w2 + t = w2 + 2t.

Taking the limit as t→ 0 yields the result.
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C.1. Bounds on the effective dimension m

In this section we establish bounds on the effective dimension m under different eigenvalue decay assumptions.

Proposition 33 Let the conditions stated in Theorem 9 and Lemma 6 hold.

1. When the kernel K has (C, β)-polynomial eigenvalue decay then

m ≥
[

4CB2

(β − 1)ε

]1/β−1

,

suffices for K̂om to be an ε/4-approximation of K and therefore for K̂m to be an ε-approximation of K.

2. When the kernel K has (C, β)-exponential eigenvalue decay then

m ≥ 1

β
log

(
4CB2

βε

)
,

suffices for K̂om to be an ε/4-approximation of K and therefore for K̂m to be an ε-approximation of K.

Proof We need to ensure that the assumption in Lemma 6 holds. That is,
∞∑

j=m+1

µj ≤
ε

4B2
.

We will prove the bound assuming a (C, β)-polynomial eigenvalue decay, the calculation is similar when we have exponential
eigenvalue decay. Note that,

∞∑
j=m+1

µj ≤
∞∑

j=m+1

Cj−β ≤
∫ ∞
m

Cx−βdx =
C

β − 1

1

mβ−1
.

We demand that,

C

β − 1

1

mβ−1
≤ ε

4B2
,

rearranging terms yields the desired claim.

D. Properties of the Covariance matrix – Σ
(t)
m

We borrow the notation from Section 2.1. In this section we let µm be the smallest nonzero eigenvalue of
Ex∼ν

[
Φm(x)Φm(x)>

]
where ν is the exploration distribution over A.

Lemma 34 Let µ(t)
m be the m-th (smallest) eigenvalue of Σ

(t)
m . Then we have

µ(t)
m ≥ γµm.

Proof Recall that in each step we set pt = (1− γ)qt + γν. Let v ∈ H be a vector with norm 1.

v>Σ(t)
m v = (1− γ) · v>Ex∼qt

[
Φm(x)Φm(x)>

]
v + γ · v>Ex∼ν

[
Φm(x)Φm(x)>

]
v.

Since both summands on the RHS are nonnegative, this quantity at least achieves a value of γ ·v>Ex∼ν
[
Φm(x)Φm(x)>

]
v ≥

γµm.

Observe that by our discussion in Appendix H.1, the minimum eigenvalue when the distribution is νJ (John’s distribution)
over Φm(A), then µm = 1/m. That is, if νAJ is the exploration distribution over A then µm = 1/m.

Proposition 35 If νAJ is the exploration distribution then we have

µ(t)
m ≥

γ

m
.
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D.1. Finite Sample Analysis

Next we analyze the sample complexity of the operation of building the second moment matrix in Algorithm 2.3 using
samples. Let Σ̂

(t)
m be the second moment matrix estimate built by using x1, · · · , xr drawn i.i.d. from pt.

Σ̂(t)
m =

1

r

r∑
i=1

Φm(xi)Φm(xi)
>.

We will show how to chose r appropriately to preserve the validity of the regret bound when we use Σ̂
(t)
m (built using finite

samples) instead of Σ
(t)
m . First we present some observations.

Remark 36 (Covariance eigenvalues are Mercer’s eigenvalues) The eigenvalues µ
(t)
1 ≥ · · · ≥ µ

(t)
m of

Ex∼pt
[
Φm(x)Φm(x)>

]
are exactly Mercer operator eigenvalues for K̂m under pt.

Remark 37 (Sample covariance and Gram matrix have the same eigenvalues) Assume r ≥ m. Let x1, · · · , xr ∼ pt.
The eigenvalues of the sample covariance Σ̂

(t)
m coincide with the top m eigenvalues of the Gram matrix K(t)

m,p =(
K̂m(xi, xj)

)p
i,j=1

.

We formalize the above remark in Lemma 41. We will use an auxiliary lemma by (50) which we present here for
completeness.

Lemma 38 (Lemma 1 in 50) Let K′ be a kernel over X × X such that supx∈X K′(x, x) ≤ G′. Let Σ′ be the covariance of
Φ′(x), x ∼ P. If Σ̂′r is the sample covariance built by using r samples x1, · · · , xr ∼ P, with probability 1− exp(−δ):

‖Σ′ − Σ̂′p‖op ≤
2G′√
r

(
1 +

√
δ

2

)
.

The following lemma will allow us to derive an operator norm bound between the inverse matrices
(

Σ
(t)
m

)−1

and
(

Σ̂
(t)
m

)−1

from an operator norm bound between the matrices Σ
(t)
m and Σ̂

(t)
m .

Lemma 39 If ‖A−B‖op ≤ s, then ‖A−1−B−1‖op ≤ s
λmin(A)λmin(B) , where λmin(A) and λmin(B) denote the minimum

eigenvalues of A and B respectively.

Proof The following equality holds:
A−1 −B−1 = A−1(B −A)B−1.

Applying Cauchy-Schwartz for spectral norms yields the desired result.

We are now ready to show that given enough samples r, the operator norm between the inverse covariance and the inverse
sample covariance is small.

Lemma 40 Let g : R+
(1,∞) → R be defined as g(x) is the value such that g(x)

log(g(x)) = x. If the number of samples

r ≥ max

g([ (ln(2) + ζ)2G
cγµm

]2
)
,

4G(1 +
√

ζ
2 )

(γµm)2ε1

2 ,

where c is the same constant as in Theorem 30, then with probability 1− 2e−ζ:∥∥∥∥(Σ(t)
m

)−1

−
(

Σ̂(t)
m

)−1
∥∥∥∥
op

≤ ε1.
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Proof We start by showing that if r follows the requirements stated in the lemma above, then the minimum eigenvalue
of Σ̂

(t)
m is lower bounded by γµm

2 with probability 1− exp(−ζ). We invoke Theorem 30 to prove this. Let us denote by
µ

(t)
1 ≥ · · · ≥ µ

(t)
m and µ̂(t)

1 ≥ · · · ≥ µ̂
(t)
m the eigenvalues of Σ

(t)
m and Σ̂

(t)
m respectively.

We want to ensure that the probability of supi |µ
(t)
i − µ̂

(t)
i | ≥

γµm
2 be less than e−ζ . Again by invoking Theorem 30, this is

true if exp(−ζ) ≤ 2 exp

(
− cγµm2G

√
r

log(r

)
. This yields the condition,

r

log(r)
≥
[

(ln(2) + ζ)2G
cγµm

]2

.

This together with triangle inequality (as µ(t)
m ≥ µm ≥ γµm) ensures that if r ≥ g

([
(ln(2)+ζ)2G

cγµm

]2)
, then with probability

1− exp(−ζ),

µ̂m ≥
γµm

2
.

Setting A = Σ
(t)
m and B = Σ̂

(t)
m and invoking the concentration inequality Lemma 38, we have that∥∥∥Σ(t)

m − Σ̂(t)
m

∥∥∥
op
≤ (γλm)2ε1

2
,

with probability 1− exp(−ζ) as choose r to satisfy

2G
2
√
r

(
1 +

√
ζ

2

)
=

(γµm)2ε1
2

.

As the matrices A and B are close with high probability, Lemma 39 proves that the inverses are also close,∥∥∥∥(Σm(t))
−1 −

(
Σ̂(t)
m

)−1
∥∥∥∥
op

≤ ε1.

with the same probability. By union bound as long as r ≥ max

(
g

([
(ln(2)+ζ)2G

cγλm

]2)
,

(
4G(1+

√
ζ
2 )

(γλm)2ε1

)2
)

the stated claim

holds with probability 1− 2 exp(−ζ).

D.1.1. AUXILIARY LEMMAS

Let us denote the pseudo-inverse of a symmetric matrix A by A†. We now prove Lemma 41 that formalizes the connection
between the eigenvalues the Gram matrix and sample covariance matrix.

Lemma 41 For any x, y ∈ A:

Φm(x)>
(

Σ̂(t)
m

)−1

Φm(y) = A>x

(
K(t)
m,p

)2†
A>y ,

where Ax =
(
K̂m(x, x1), · · · , K̂m(x, xp)

)>
and Ay =

(
K̂m(y, x1), · · · , K̂m(y, xp)

)>
.

Proof The claim can be verified by a singular value decomposition of both sides.

Given Lemma 40 we also prove a bound on the distance between the estimates of adversarial actions generated in Algorithm

2.3. Define w̃(2)
t :=

(
Σ̂

(t)
m

)−1

Φm(at)K(at, wt) and let ŵt := w̃
(1)
t =

(
Σ

(t)
m

)−1

Φm(at)K(at, wt).
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Corollary 42 We have that
‖w̃(2)

t − w̃
(1)
t ‖H ≤ ε1G.

In other words, the bias resulting from using the sample covariance instead of the true covariance is of order ε1 as long as
we take enough samples p at each time step. We can drive ε1 to be as low as we like by choosing enough samples and hence
this bias does not determine the rate in the regret bounds in Theorem 10.

E. Proof of the lower bound
Theorem 43 Let Ã ⊂ RD with Ã = {(Aj)∞j=1 s.t. |Aj | ≤ 1 ∀j} and W̃ ⊂ RD with W̃ = {(wj)∞j=1 s.t. |wj | ≤ µj ∀j}
be the action sets of a player and an adversary. For any integer n and for any algorithm used by the player, there exist a
strategy for the adversary such thatRn ≥ Ω̃

(
n
β+1
2β

)
whenever µj = Õ( 1

jβ
). When the decay is exponential µj = O(e−βj)

thenRn ≥ Ω̃
(
n1/2

)
.

Proof We start by proving the result above for the following oblivious noisy feedback model:

1 At the beginning of time the adversary selects a vector inW .

2 Every round the player selects an action vector ã ∈ Ã.

3 The player experiences 〈ã, w̃〉H + η, where η ∼ N (0, I).

Under this feedback model, the bounded-ness assumption of the losses is lost. We fix this at the end of the proof by
considering a bounded loss model for an adversarial non oblivious adversary.

The adversarial case will be dealt with later by defining W̃0 ⊂ {c, c′}×W̃ for some c, c′ ∈ [0, 1] and Ã0 = {(1, ã), ã ∈ Ã}.
We then analyze an adversary that at time t plays vectors w̃0

t = (ct, w̃
∗) where w̃∗ is independent of t and ct ∈ {c, c′} and

is chosen by sampling independently from a Bernoulli distribution over {c, c′}. In this case 〈ã0, w̃0〉H0 = 〈ã, w̃〉H + c.

The lower bound we prove for the Gaussian noise model cannot be immediately turned into a result for an adversarial model
without sacrificing the bounded-ness assumption for the adversarial vectors in W̃ . We fix this issue at the end by using a
Bernoulli noise model instead. Consider the action sets for the adversary and the player:

W̃ = {(w̃j) | |w̃j | ≤ µj ∀j}
Ã := {(ãj) | |ãj | ≤ 1}.

We show that for any integer n, and any algorithm π, there exists w̃ ∈ W̃ such that

Rn(π, w̃) ≥ Ω
(
n
β+1
2β

)
,

whereRn(π, w̃) denotes the regret incurred by the player’s algorithm π and an adversary’s strategy “centered” around w̃.

Let w̃, w̃′ ∈ W̃ . Denote by Pw̃, Pw̃′ the probability distributions induced by the interaction of a player using π and an
adversary using either w̃ or w̃′.

KL(Pw̃, Pw̃′) =
1

2

n∑
t=1

E[〈ãt, (w̃ − w̃′)〉2H],

where KL(p, q) is the Kullback-Leibler divergence between distributions p and q. Let,

pw̃,i = Pw̃(ãt,iw̃i < 0 for at least n/2 of indices i).

Then we have,

Rn(π, w̃) ≥
∑
i

pw̃,i
n

2
|w̃i| (24)
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Averaging argument: Let r(w̃) =
∑
i pw̃,i|w̃i|, and

W̃d = {(±∆i)}, where ∆i = min

(
1√
n
, µi

)
.

Pinsker inequality: For w̃ ∈ W̃d, let w̃′i be the vector equal to w̃ with the ith coordinate flipped, then w̃i − w̃′i = ±∆iei,
and KL(Pw̃, Pw̃′) = 1

2∆2
i

∑n
t=1 ã

2
t,i ≥ n

2 ∆2
i . Therefore

pi,w̃ + pi,w̃′i ≥
1

2
e−

n
2 ∆2

i .

Let W̃(k)
d = {w̃ ∈ W̃d | w̃i = ∆i∀i > k}, then:

1

W̃(k)
d

∑
w̃∈W̃(k)

d

∆ipi,w̃ =
1

W̃(k)
d

∑
w̃∈W̃(k)

d

k∑
i

∆ipi,w̃′i =
1

W̃(k)
d

∑
w̃∈W̃(k)

d

k∑
i

∆i

pi,w̃ + pi,w̃′i
2

≥ 1

2

k∑
i=1

∆ie
−n2 ∆2

i .

Therefore, for any k there exists w̃(k) such that

k∑
i

δipw̃(k),i ≥
1

2

k∑
i=1

∆ie
−n2 ∆2

i .

From (24) we conclude that

Rn(π, w̃(k)) ≥ n

2

k∑
i

pw̃(k),i∆i ≥
n

4

k∑
i=1

∆ie
−n2 ∆2

i .

By taking the supremum on both sides, we get

sup
w̃
Rn(π, w̃) ≥ n

4

∞∑
i=1

∆ie
−n2 ∆2

i .

Since

∆i = min

(
1√
n
, µi

)
,

and let M = min{i s.t. µi < 1√
n
}. For example if µi = 1

iβ
, then M = n

1
2β . Then:

sup
w̃
Rn(π, w̃) ≥ n

4
M

1√
n
e−

1
2 +

n

4

∑
i>M

µie
−n2 µ

2
i ≥ Ω(

√
nM)

For example if µi = 1
iβ

, then supw̃Rn(π, w̃) ≥ Ω

(
n

1+ 1
β

2

)
and therefore:

sup
w̃
Rn(π, w̃) ≥ Ω

(
n
β+1
2β

)
.

The same algorithm carries forward for an adversarial non obvlivious feedback model. We assume the action set of the
player is {1} × Ã and the action set of the adversary is [−1, 1]×W . We assume that maxã∈A,w̃∈W |〈ã, w̃〉| ≤ 1.

1 At the beginning of time the adversary selects a vector w̃ inW .

2 In every round the player selects an action vector (1, ã) ∈ {1} × Ã.

3 The adversary computes 〈ã, w̃〉 and samples value v ∈ {−1, 1} from a Rademacher random variable with parameter
1
2 + 〈ã,w̃〉

2 and chooses as its action the vector (v − 〈ã, w̃〉, w̃)
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4 The player experiences loss 〈(1, ã), (v − 〈ã, w̃〉, w̃)〉 = v.

In this feedback model the same argument holds since the KL term has a quadratic bound as in the Gaussian case:

KL(Pw̃, Pw̃′) ≤ 2

n∑
t=1

E[〈ãt, (w̃ − w̃′)〉2H].

For some constant C. This is because the loss values are always either 1 or −1. The upper bound follows from a χ2-squared
bound on the KL of two Bernoulli random variables. The rest of the argument remains unchanged.

F. Full Information Regret Bounds
F.1. Exponential Weights Regret Bound

In this section we prove a regret bound for exponential weights and present a proof of Theorem 15. The analysis of the
regret is similar to the analysis of exponential weights for linear losses (see for example a review in 10). In the proof below
we denote the filtration at the end of round t by Ft, that is, it conditions on the past actions of the player and the adversary
(at−1, wt−1, . . . , a1, w1).

Proof [Proof of Theorem 15] By the tower property and by the definition of the regret we can write the cumulative loss as,

E

[
n∑
t=1

〈Φ(at), wt〉

]
= E

[
n∑
t=1

Eat∼pt

[
〈Φ(at), wt〉

∣∣∣∣∣Ft−1

]]

= E

[
n∑
t=1

[∫
A
pt(a)〈Φ(a), wt〉da

∣∣∣∣∣Ft−1

]]
.

Observe that our choice of η implies that η〈Φ(a), wt〉 > −1. By invoking Hoeffding’s inequality (stated as Lemma 53) we
get

E

[
n∑
t=1

[∫
A
pt(a)〈Φ(a), wt〉da

∣∣∣∣∣Ft−1

]]

≤ −1

η
E

[
n∑
t=1

log (Ea∼pt [exp (−η〈Φ(a), wt〉) |Ft−1])

]
︸ ︷︷ ︸

=:Γ

+(e− 2)ηE

[
n∑
t=1

∫
A

[
pt(a)〈Φ(a), wt〉2da|Ft−1

]]

(i)

≤ −Γ

η
+ (e− 2)ηG4n,

where (i) follows by Cauchy-Schwartz and the bound on the adversarial and player actions. Next we bound Γ using Lemma
44. Substituting this bound into the expression above we get

E

[
n∑
t=1

〈Φ(at), wt〉

]
≤ E

[
n∑
t=1

〈Φ(a∗), wt〉

]
+

log(vol(A))

η
+ (e− 2)ηG4 · n.

Rearranging terms we have the regret is bounded by

Rn ≤ (e− 2)G4ηn+
log(vol(A))

η
.

The choice of η =
√

log(vol(A))
/√

(e− 2)G2n1/2, optimally trades of the two terms to establish a regret bound of

O(n1/2).

Next we provide a proof of the bound on Γ used above.
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Lemma 44 Assume that p1(·) is chosen as the uniform distribution in Algorithm 2.3. Also let Γ be defined as follows

Γ = E

[
n∑
t=1

log
(
Ea∼pt

[
exp (−η〈Φ(a), wt〉H)

∣∣∣Ft−1

])]
.

Then we have that,

Γ ≥ −ηE

[
n∑
i=1

〈Φ(a∗), wi〉H

]
− log (vol(A)) ,

where a∗ is the optimal action in hindsight in the definition of regret and vol(A) is the volume of the set A.

Proof Expanding Γ using the definition of pt we have that,

Γ
(i)
= E

 n∑
t=1

log


∫
A exp

(
−η
∑t
i=1〈Φ(a), wi〉H

)
da∫

A exp
(
−η
∑t−1
i=1〈Φ(a), wi〉H

)
da




(ii)
= E

[
log

(∫
A

exp

(
−η

n∑
i=1

〈Φ(a), wi〉H

)
da

)]
− log (vol(A)) ,

where (i) follows by the definition of pt(a) and (ii) is by expanding the sum and canceling the terms in a telescoping series.
The log(vol(A)) term is because we start off with a uniform distribution over all elements. Lastly observe that by optimality
of a∗ we have that,

E

[
log

(∫
A

exp

(
−η

n∑
i=1

〈Φ(a), wi〉

)
da

)]
≥ −ηE

[
n∑
i=1

〈Φ(a∗), wi〉

]
.

Plugging this into the above expression establishes the desired bound on Γ.

We now present a proof of Lemma 17 that guarantees that it is possible to sample efficiently from the exponential weights
distribution when the losses are quadratics.

Proof [Proof of Lemma 17] Let v1, · · · , vd an orthonormal basis of eigenvectors of B with eigenvalues λ1, · · · , λd possibly
negative. We express b using the basis {vi}di=1 as b =

∑d
i=1 γivi. Also let a =

∑d
i=1 αivi. By the definition of the set A

we have
∑d
i=1 α

2
i ≤ 1. The distribution q(·) can be thus expressed as

q(a) ∝ exp

(
d∑
i=1

(λiα
2
i + γiαi)

)
.

Completing the squares (whenever λi 6= 0),

q(a) ∝ exp

{
d∑
i=1

λi

(
α2
i +

γiαi
λi

+

(
γi

2λi

)2
)}

.

Let us re-parametrize this distribution by setting βi = (αi + γi
2λi

)2. The inverse mapping is αi =
√
βi − γi

2λi
. To sample

from q(·) it is enough to produce a sample from a surrogate distribution β ∼ t(β) and turn them into a sample of q where,

t(β) ∝ exp

(
d∑
i=1

λiβi

)
,

s.t. 0 ≤ βi,
d∑
i=1

(√
βi −

γi
2λi

)2

≤ 1.
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Let {εi}di=1 be independent Bernoulli {−1, 1} variables, then a =
∑d
i=1 εi(

√
βi − γi

2λi
)vi is a sample from q. Note that the

distribution t(β) is log-concave. We now show that the constraint set C is convex, where C = {β|βi ≥ 0,
∑d
i=1(
√
βi −

γi
2λi

)2 ≤ 1}.

Let β̂ and β̃ be two distinct points in C. We show that for any η ∈ [0, 1] the point ηβ̂ + (1− η)β̃ ∈ C. The non-negativity
constraint is clearly satisfied (ηβ̂ + (1− η)β̃)i ≥ 0,∀i. The second constraint can be rewritten as

d∑
i=1

β̂i −
γi

√
β̂i

λi
+

(
γi

2λi

)2

≤ 1 (25)

d∑
i=1

β̃i −
γi

√
β̃i

λi
+

(
γi

2λi

)2

≤ 1. (26)

These equations imply that,

η

 d∑
i=1

β̂i −
γi

√
β̂i

λi
+

(
γi

2λi

)2
+ (1− η)

 d∑
i=1

β̃i −
γi

√
β̃i

λi
+

(
γi

2λi

)2
 ≤ 1.

By concavity of the square root function we have

d∑
i=1

η
γi

√
β̂i

λi
+ (1− η)

γi

√
β̃i

λi
≤

d∑
i=1

γi

√
ηβ̂i + (1− η)β̃i

λi
,

these two observations readily imply that ηβ̂ + (1 − η)β̃ satisfies the constraint of C thus implying convexity of C. We
can thus use Hit-and-Run (34) to sample from t(β) in Õ(d4) steps and convert to samples from q(·) using the method
described above. In case some eigenvalues are zero, say without loss of generality λ1, · · · , λR. Then set βi = α2

i for
i ∈ {R+ 1, . . . , d} and sample from the distribution,

t(β) ∝ exp

(
R∑
i=1

γiαi +

d∑
i=R+1

λiβi

)
,

s.t. 0 ≤ βi,
R∑
i=1

α2
i +

d∑
i=R+1

(√
βi −

γi
2λi

)2

≤ 1.

The analysis follows as before for this case as well.

F.2. Conditional Gradient Method Analysis

The regret bound analysis for Algorithm 4, conditional gradient method over RKHSs follows by similar arguments to the
analysis of the standard online conditional gradient descent (see for example review in 25). To prove this we first prove the
regret bound of a different algorithm – follow the regularized leader.

F.3. Follow the Regularized Leader

We present a version of follow the regularized leader (43) (FTRL, Algorithm 5) adapted to our setup. Note that this algorithm
is not tractable in general as at each step we are required to perform an optimization problem over the convex hull of Φ(A).
However, we provide a regret bound that we will use in our regret bound analysis for the conditional gradient method. Let
us define w0 = X1/η. We first establish the following lemma.

Lemma 45 (No regret strategy) For any u ∈ A
n∑
t=0

〈Xt,Φ(u)〉H ≥
n∑
t=0

〈Xt, Xt+1〉H.
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Algorithm 5 Follow the Regularized leader (FTRL)
Input :Set A, number of rounds n, initial action a1 ∈ A, inner product 〈·, ·〉H, learning rate η > 0.
Let X1 = argminX∈conv(Φ(A))

1
η 〈X,X〉

choose D1 such that Ex∼D1 [Φ(x)] = X1

for t = 1, 2, 3 . . . , n do
choose at ∼ Dt
observe 〈Φ(at), wt〉H
update Xt+1 = argminX∈conv(Φ(A)) η

∑t
s=1〈ws, X〉H + 〈X,X〉H

choose Dt+1 s.t. Ex∼Dt+1
[Φ(x)] = Xt+1

end

This is the crucial lemma needed to prove regret bounds for FTRL algorithms and its proof follows from standard arguments
(see for example Lemma 5.3 25).

Definition 46 Define a function gt(·) : RD 7→ R as,

gt(X) ,

[
η

t∑
s=1

〈ws, X〉H + 〈X,X〉H

]
.

Definition 47 Define the Bregman divergence as,

BR(x||y) , R(x)−R(y)− 〈∇R(y), (x− y)〉H.

Given these two definitions we now establish a lemma that will be used used to control the regret of FTRL.

Lemma 48 For any t ∈ {1, 2, . . . , n} we have the upper bound,

〈wt, Xt −Xt+1〉H ≤ 2η‖wt‖2H.

Proof By the definition of Bregman divergence we have,

gt(Xt) = gt(Xt+1) + 〈Xt −Xt+1,∇gt(Xt+1)〉H +Bgt(Xt||Xt+1)

≥ gt(Xt+1) +Bgt(Xt||Xt+1),

where the inequality is because Xt+1 is the minimizer of gt(·) over conv(Φ(X )). After rearranging terms we are left with
an upper bound on the Bregman divergence,

Bgt(Xt||Xt+1) ≤ gt(Xt)− gt(Xt+1)

=
(
gt−1(Xt)− gt−1(Xt+1)

)
+ η〈wt, Xt −Xt+1〉H

≤ η〈wt, Xt −Xt+1〉H, (27)

where the last inequality follows because Xt−1 is the minimizer of the function gt−1(·) over conv(Φ(X )). Observe that
Bgt(Xt||Xt+1) = 1

2‖Xt −Xt+1‖2H. Thus by the Cauchy-Schwartz inequality we have,

〈wt, Xt −Xt+1)〉H ≤ ‖wt(Xt)‖H‖Xt −Xt+1‖H

= ‖wt‖H
√

2Bgt(Xt||Xt+1).

Substituting the upper bound from Equation (27) we get,

〈wt, Xt −Xt+1)〉H ≤ ‖wt‖H ·
√

2η〈wt, Xt −Xt+1〉H.

Rearranging terms establishes the result.
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Theorem 49 Given a step size η > 0, the regret suffered by Algorithm 5 after n rounds is bounded by

Rn ≤ 2nηG2 +
2G2

η
.

Proof By the definition of regret we have

Rn = E

[
n∑
t=1

〈Φ(at), wt〉H −min
a∈A

[
n∑
t=1

〈Φ(at), wt〉H

]]
(i)
= E

[
n∑
t=1

Eat∼Dt

[
〈wt,Φ(at)− Φ(a∗)〉H

∣∣∣∣∣Ft−1

]]
(ii)
= E

[
n∑
t=1

〈wt, Xt − Φ(a∗)〉H

]
(iii)

≤ E

[
n∑
t=1

〈wt, Xt −Xt+1〉H

]
+ E

[
n∑
t=1

〈wt, Xt+1 − Φ(a∗)〉H

]
+

1

η
(〈X1, X1〉H − (〈X0, X0〉H)

(iv)

≤ E

[
n∑
t=1

〈wt, Xt −Xt+1〉H

]
+

2G2

η
. (28)

The first equality follows as a∗ is the minimizer, (ii) is by evaluating the expectation with respect to Dt, (iii) is an algebraic
manipulation and finally (iv) follows by invoking Lemma 45 and using Cauchy-Schwartz to bound the last term. We need
to control the first term in Equation (28) to get a regret bound. To control the first term we now invoke Lemma 48

Rn ≤ 2η

n∑
t=1

‖wt‖2H +
2G2

η
≤ 2nηG2 +

2G2

η
.

This establishes the stated result.

F.4. Regret Bound for Algorithm 4

In deploying Algorithm 4 we will at each round find distributions over the action space A as the player is only allowed play
rank 1 actions in the Hilbert space at each round, while the action prescribed by the conditional gradient method might not
be rank 1. Thus we find a distribution Dt such that,

Ea∼DtΦ(a) = Xt,

where Xt is the action prescribed by Algorithm 4. We will strive to match the optimal action in expectation by choosing an
appropriate distribution and get bounds on expected regret. For all t ∈ {1, 2, . . . , n} let X∗t be defined as the iterates of the
follow the regularized leader (Algorithm 5) with the regularization set to R(X) = ‖X −X1‖2H and applied to the shifted
loss function, 〈wt, X − (X∗t −Xt)〉H. Notice that,

|〈X,wt〉H − 〈X − (X∗t −Xt), wt〉H| ≤ ‖wt‖H‖X∗t −Xt‖H ≤ G‖X∗t −Xt‖H. (29)

We are now ready to prove Theorem 16.

Proof [Proof of Theorem 16] We denote the filtration up to round t by Ft−1, that is, we condition on all past player and
adversary actions. Also let us denote the optimal action in hindsight by a∗. We begin by expanding the definition of regret
to get,

Rn = E

[
n∑
t=1

Eat∼Dt

[
〈wt,Φ(at)〉H − 〈wt,Φ(a∗)〉H

∣∣∣∣∣Ft−1

]]
(i)
= E

[
n∑
t=1

〈wt, Xt − Φ(a∗)〉H

]
= E

[
n∑
t=1

〈wt, Xt −X∗t 〉H

]
+ E

[
n∑
t=1

〈wt, X∗t − Φ(a∗)〉H

]
(ii)

≤ E

[
n∑
t=1

〈wt, Xt −X∗t 〉H

]
+ 2nηG2 +

2G2

η

(iii)

≤ E

[
n∑
t=1

‖wt‖H‖Xt −X∗t ‖H

]
︸ ︷︷ ︸

=:Ξ

+2nηG2 +
2G2

η
,
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where (i) follows by taking expectation with respect to Dt, (ii) follows by invoking Theorem 49 and (iii) by Cauchy-
Schwartz inequality. We finally need to control Ξ to establish a bound on the regret.

Ξ = E

[
n∑
t=1

‖wt‖H‖Xt −X∗t ‖H

]
(i)

≤ E

[
n∑
t=1

‖wt‖H
√
Ft(Xt)− Ft(X∗t )

]
(ii)

≤ 2

n∑
t=1

G2√γt,

here (i) follows by the strong convexity of Ft(·) and (ii) follows by the upper bound established in Lemma 50. Plugging
this into the bound for regret we have

Rn ≤ 2

n∑
t=1

G2√γt + 2nηG2 +
2G2

η

(i)

≤ 4G2n3/4 + 2nηG2 +
2G2

η
,

where (i) follows by summing the series 1/t1/4 (
√
γt). The choice η = 1/n3/4 satisfies the conditions of Lemma 50 and

we can plug in this choice to get,

Rn ≤ 4G2n3/4 + 2G2n1/4 + 2G2n3/4 ≤ 8G2n3/4.

This establishes the desired bound on the regret.

Finally we prove Lemma 50 used to establish the regret bound above. We introduce a new function,

ht(X) , Ft(X)− Ft(X∗t ).

Also the shorthand that ht = ht(Xt). These functions are defined conditioned on the filtration Ft−1 and ft.

Lemma 50 If the parameters η and γt are chosen as stated in Theorem 16, such that ηG
√
ht+1 ≤ G2γ2

t , the iterates Xt

satisfy, ht ≤ 4G2γt.

Proof The functions Ft is 1-smooth therefore we have,

ht(Xt+1) = Ft(Xt+1)− Ft(X∗t ) = Ft(Xt + γt(Φ(vt)−Xt))− Ft(X∗t )

(i)

≤ Ft(Xt)− Ft(X∗t ) + γt〈Φ(vt)−Xt,∇Ft(Xt)〉H +
γ2
t

2
‖Φ(vt)−Xt‖2H

(ii)

≤ (1− γt)
(
Ft(Xt)− Ft(X∗t )

)
+ γ2

t G2,

where (i) follows by the strong convexity of Ft and (ii) follows as Φ(vt) is the minimizer of Ft(·). By the definition of
Ft+1(·) and ht we also have,

ht+1(Xt+1) = Ft(Xt+1)− Ft(X∗t+1) + η〈wt+1, Xt+1 −X∗t+1〉H
(i)

≤ Ft(Xt+1)− Ft(X∗t ) + η〈wt+1, Xt+1 −X∗t+1〉H
(ii)

≤ ht(Xt+1) + ηG‖Xt+1 −X∗t+1‖H, (30)

where (i) follows as X∗t is the minimizer of Ft and (ii) is by Cauchy-Schwartz inequality. Again by leveraging the strong
convexity of Ft we have, ‖X −X∗t+1‖2H ≤ Ft+1(X)− Ft+1(X∗t+1) = ht+1 which leads to the string of inequalities,

ht+1(Xt+1) ≤ ht(Xt+1) + ηG‖Xt+1 −X∗t+1‖H ≤ ht(Xt+1) + ηG
√
ht+1(Xt+1).

Plugging in the bound on ht(Xt+1) from Equation (30) into the above inequality gives us the recursive relation,

ht+1 ≤ ht(1− γt) + γ2
t G2 + ηG

√
ht+1

(i)

≤ ht(1− γt) + 2γ2
t G2,

where, the last step follows by our choice of the schedule for the mixing rate γt such that ηG
√
ht+1 ≤ G2γ2

t . We now
complete the proof by an induction over t.
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For the base case t = 1, we have h1 = F1(X1)− F1(X∗1 ) = ‖X1 −X∗1‖2 ≤ 4γ1G2. Thus, by the induction hypothesis for
the step t+ 1 we have,

ht+1 ≤ ht(1− γt) + 2γ2
t G2

(i)

≤ 4G2(γt(1− γt)) + 2γ2
t G2 = 4G2γt

(
1− γt

2

) (ii)

≤ 4G2γt+1,

where (i) follows by the upper bound on ht, (ii) is by the definition γt = min
(
1, 2

t1/2

)
.

G. Application: Posynomial Losses
In this section we will define a posynomial game, by introducing posynomial losses and prove that these losses can also be
viewed as kernel inner products. We will use the connection between optimizing posynomials and Geometric Programs to
prove that conditional gradient descent can be run efficiently on this family of losses.

Definition 51 (Monomial) A function f : Rd+ 7→ R defined as

f(x) = cxα1
1 xα2

2 · · ·x
αd
d ,

where c > 0 and αi ∈ R, is called a monomial function.

A non-negative linear combination of monomials is a posynomial.

Definition 52 (Posynomial) A function f : Rd+ 7→ R defined as

f(x) =

m∑
k=1

ckx
α1k
1 xα2k

2 · · ·xαdkd ,

where ck > 0 and αik ∈ R, is called a posynomial function.

Note that posynomial functions are closed under addition, multiplication and non-negative scaling. Assume the adversary at
each round plays a vector of dimension m with all non-negative entries, wt = (c1, c2, · · · , cm), while the player chooses a
vector x ∈ Rd+. This vector is then partitioned into m parts,

x = (x1, x2︸ ︷︷ ︸
s1

, . . . , xd−2, xd−1, xd︸ ︷︷ ︸
sm

),

and the feature vector is defined as

Φ(x) =

 xα1
1 xα2

2
...

x
αd−2

d−2 x
αd−1

d−1 x
αd
d

 .
Where the ith component of Φ(·) is only a function of the ith partition of the coordinates si. Then the loss obtained on the
evaluation of the inner product between the adversary and player action is a posynomial loss function,

〈wt,Φ(x)〉H =

m∑
k=1

ckx
αk1
1 · · ·xαkdd .

A number of scenarios can be modeled as a minimization/maximization problem over posynomial functions (see 11, for a
detailed list of examples). We now show that conditional gradient descent can be run efficiently over posynomial losses.
If we again assume that the set of actions A = {a ∈ Rd : ‖a‖2 ≤ 1}. Additionally we choose the initial action to be the
solution to the optimization problem,

a1 = argmin
a∈A

d∑
k=1

Φ(a)i.



Online learning with kernel losses

The objective function is a posynomial subject to a posynomial inequality constraint. This is a geometric program that can
be solved efficiently by changing variables and converting into a convex program (Section 2.5 in 11). At each round of the
conditional gradient descent algorithm requires us to solve the optimization problem,

vt = argmin
a∈A

〈η
t−1∑
s=1

wt + 2(Xt − Φ(a1)),Φ(a)〉H. (31)

Given that posynomials are closed under addition, and given our choice of a1, the objective function in Equation (31) is
still a posynomial and the constraint is a posynomial inequality. This can again be cast as a geometric program that can be
solved efficiently at each round.

H. Technical Results
We present a version of Hoeffding’s inequality (29) that is used in the regret bound analysis of exponential weights.

Lemma 53 (Hoeffding’s Inequality) Let λ > 0 and X be a bounded random variable such that λX ≥ −1, then,

log
(
E
[
e−λX

])
≤ (e− 2)λ2E

[
X2
]
− λE [X] ,

and hence

E [X] ≤ − 1

λ
log
(
E
[
e−λX

])
+ (e− 2)λ2E

[
X2
]
. (32)

Proof We look at the log of the moment generating function to get,

log (E [exp(−λX)])
(i)

≤ E [exp(−λX)]− 1
(ii)

≤ −λE [X] + (e− 2)λE
[
X2
]
,

where (i) follows by the inequality log(y) ≤ y − 1 for all y > 0 and (ii) is by the bound e−x ≤ 1 − x + (e − 2)x2 for
x ≥ −1.

H.1. John’s Theorem

We present John’s theorem (see 9) that we use to construct an exploration distribution.

Theorem 54 (John’s Theorem) Let K ⊂ Rd be a convex set, denote the ellipsoid of minimal volume containing it as,

E :=
{
x ∈ Rd

∣∣∣(x− c)>H(x− c) ≤ 1
}
.

Then there is a set {u1, . . . , uq} ⊂ E ∩ K with q ≤ d(d+ 1)/2 + 1 contact points and a distribution p (John’s distribution)
on this set such that any x ∈ Rd can be written as

x = c+ d

q∑
i=1

pi〈x− c, ui − c〉J(ui − c),

where 〈·, ·〉J is the inner product for which the minimal ellipsoid is the unit ball about its center c : 〈x, y〉J = x>Hy for all
x, y ∈ Rd.

This shows that

x− c = d
∑
i

pi(ui − c)(ui − c)>H(x− c)

⇐⇒ x̃ = d
∑
i

piũiũ
>
i x̃

⇐⇒ 1

d
Id×d =

∑
i

piũiũi
>
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where ũi = H1/2(ui − c), and similarly for x̃. We see that for any a, b ∈ K,

ã>Eu∼p
[
uu>

]
b̃ =

1

d
ã>b̃. (33)

To use this theorem, we need to perform a preprocessing of the action set A following a similar procedure described in
Section 3 by (13):

• First we map A onto the RKHS generated by the kernel K̂m to produce Φm(A).

• We assume that Φm(A) is full rank in Rm. If not, we can redefine the feature map Φm as the projection onto a lower
dimensional subspace.

• Find John’s ellipsoid for Conv(Φm(A)) which we denote by E = {x ∈ Rm : (x− x0)>H−1(x− x0) ≤ 1}.

• Translate Φm(A) by x0. In other words, assume that Φm(A) is centered around x0 = 0 and define the inner product
〈x, y〉J = x>Hy.

• We now play on the set ΦJm(A) := H−1Φm(A) in Rm. Let the loss of playing an action H−1Φm(a) ∈ ΦJm(A) when
the adversary plays z be 〈H−1Φm(a), z〉J = Φm(a)>z.

• The contact points, u1, . . . , uq are in ΦJm(A) and are valid points to play. We now use p – John’s distribution – to be
the exploration distribution.

Mimicking (13) it can be shown that Algorithm 2.3 works with a generic dot product and that all the steps in the regret
bound in Appendix A go through.

I. Experiments
We perform an empirical study of our algorithms in both the full information and the bandit settings and demonstrate their
practicality. In the full information setting we conducted experiments with quadratic losses using exponential weights. We
also plot the performance of exponential weights algorithm on Gaussian losses. In the bandit feedback setting we again
study quadratic and Gaussian losses.

FULL INFORMATION

Figure 1. Quadratic with linear term Full Information. Figure 2. Gaussian Losses Full Information.

Exponential weights requires us to sample from a distribution of the form p(x) ∝ exp(µ
∑t
i=1K(x,wi)). In general

sampling from these distributions is possibly intractable, however they present good empirical performance. The following
plot shows a diffusion MCMC algorithm sampling from a distribution proportional to exp

(
−η
∑t
i=1K(x, zi)

)
where K is
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the Gaussian kernel, η = 10, and x is restricted to an `2 ball of radius 10. In practice using exponential weights in the full
information setting and sampling using a diffusion MCMC algorithm yields sublinear regret profiles and tractable sampling
even for Gaussian losses. We ran experiments generating random loss sequences and we plot the average regret over 60 runs
of the algorithm.

BANDITS EXPERIMENTS

Figure 3. Quadratics with linear term Bandit Feedback. Figure 4. Gaussian Losses Bandit Feedback.

The kernel exponential weights algorithm presents also a sub-linear regret profile. The Gaussian experiments involved the
construction of the finite dimensional kernel Km by kernel PCA.
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