
Generative Adversarial User Model for RL Based Recommendation System

A. Lemma
A.1. Proof of lemma 1

Lemma 1. Let the regularization term in Eq. (2) be R(φ) =
∑k
i=1 φi log φi. Then the optimal solution φ∗ for the problem

in Eq. (2) has a closed form

φ∗(st,At)i = exp(ηr(st, ai))/
∑
aj∈At exp(ηr(st, aj)).

Furthermore, in each session t, the user’s optimal policy φ∗ is equivalent to the following discrete choice model where εt

follows a Gumbel distribution.
at = arg maxa∈At η r(s

t, a) + εt. (3)

Proof. First, recall the problem defined in Eq. (2):

φ∗(st,At) = arg max
φ∈∆k−1

Eφ
[
r(st, at)

]
− 1

η
R(φ).

Denote φt = φ(st,At). Since φ can be an arbitrary mapping (i.e., φ is not limited in a specific parameter space), φt can
be an arbitrary vector in ∆k−1. Recall the notation At = {a1, · · · , ak}. Then the expectation taken over random variable
at ∈ At can be written as

Eφ
[
r(st, at)

]
− 1

η
R(φ) =

k∑
i=1

φtir(s
t, ai)−

1

η

k∑
i=1

φti log φti. (12)

By simple computation, the optimal vector φt∗ ∈ ∆k−1 which maximizes Eq. (12) is

φt∗i =
exp(ηr(st, ai))∑k
j=1 exp(ηr(st, aj))

, (13)

which is equivalent to Eq. (2). Next, we show the equivalence of Eq. (13) to the discrete choice model interpreted by Eq. (3).

The cumulative distribution function for the Gumbel distribution is F (ε;α) = P[ε 6 α] = e−e
−α

and the probability
density is f(ε) = e−e

−ε
e−ε. Using the definition of the Gumbel distribution, the probability of the event [at = ai] where at

is defined in Eq. (3) is

Pi := P
[
at = ai

]
= P

[
ηr(st, ai) + εi > ηr(st, aj) + εj , for all i 6= j

]
= P

[
εj 6 εi + ηr(st, ai)− ηr(st, aj), for all i 6= j

]
.

Suppose we know the random variable εi. Then we can compute the choice probability Pi conditioned on this information.
Let Bij = εi + ηr(st, ai)− ηr(st, aj) and Pi|E be the conditional probability; then we have

Pi|εi =
∏
i 6=j

P[εj 6 Bij] =
∏
i 6=j

e−e
−Bij

.

In fact, we only know the density of εi. Hence, using the Bayes theorem, we can express Pi as

Pi =

∫ ∞
−∞

Pi|εif(εi)dεi =

∫ ∞
−∞

∏
i6=j

e−e
−Bij

f(εi)dεi

=

∫ ∞
−∞

k∏
j=1

e−e
−Bij

ee
−εi
e−e

−εi
e−εidεi =

∫ ∞
−∞

(k∏
j=1

e−e
−Bij

)
e−εidεi

Now, let us look at the product itself.
k∏
j=1

e−e
−Bij

= exp
(
−

k∑
j=1

e−Bij
)

= exp
(
− e−εi

k∑
j=1

e−(ηr(st,ai)−ηr(st,aj))
)

Generative Adversarial User Model for RL Based Recommendation System

Hence

Pi =

∫ ∞
−∞

exp(−e−εiQ)e−εidεi

where Q =
∑k
j=1 e

−(ηr(st,ai)−ηr(st,aj)) = Z/ exp(ηr(st, ai)).

Next, we make a change of variable y = e−εi . The Jacobian of the inverse transform is J = dεi
dy = − 1

y . Since y > 0, the
absolute of Jacobian is |J | = 1

y . Therefore,

Pi =

∫ ∞
0

exp(−Qy)y|J |dy =

∫ ∞
0

exp(−Qy)dy

=
1

Q
=

1

exp(−ηr(st, ai))
∑
j exp(ηr(st, aj))

=
exp(ηr(st, ai)∑k
j=1 exp(ηr(st, aj))

.

A.2. Proof of lemma 2

Lemma 2. When R(φ) =
∑k
i=1 φi log φi, the optimization problem in Eq. (5) is equivalent to the following maximum

likelihood estimation

max
θ∈Θ

T∏
t=1

exp(ηrθ(s
t
true, a

t
true))∑

at∈At exp(ηrθ(sttrue, a
t))
.

Proof. This lemma is a straight forward result of lemma 1. First, recall the problem defined in Eq. (5):

min
θ∈Θ

(
max
φ∈Φ

Eφ

[
T∑
t=1

rθ(s
t
true, a

t)

]
− 1

η
R(φ)

)
−

T∑
t=1

rθ(s
t
true, a

t
true)

We make a assumption that there is no repeated pair (sttrue, a
t) in Eq. (5). This is a very soft assumption because sttrue is

updated overtime, and at is in fact representing its feature vector f tat , which is in space Rd. With this assumption, we can
let φ map each pair (sttrue, a

t) to the optimal vector φt∗ which maximize rθ(sttrue, a
t)− 1

ηR(φt) since there is no repeated
pair. Using Eq. (13), we have

max
φ∈Φ

Eφ

[
T∑
t=1

rθ(s
t
true, a

t)

]
− 1

η
R(φ) = max

φ∈Φ

T∑
t=1

Eφ
[
rθ(s

t
true, a

t)
]
− 1

η
R(φ)

=

T∑
t=1

(
k∑
i=1

φt∗i r(s
t, ai)−

1

η

k∑
i=1

φt∗i log φt∗i

)
=

T∑
t=1

1

η
log
(k∑
i=1

exp(ηrθ(s
t
true, ai))

)
.

Eq. (5) can then be written as

min
θ∈Θ

T∑
t=1

1

η
log
(k∑
i=1

exp(ηrθ(s
t
true, ai))

)
−

T∑
t=1

rθ(s
t
true, a

t
true),

which is the negative log-likelihood function and is equivalent to lemma 2.

B. Alogrithm box
The following is the algorithm of learning the cascading deep Q-networks. We employ the cascading Q functions to search
the optimal action efficiently (line 2). Besides, both the experience replay (Mnih et al., 2013) and ε-exploration techniques
are applied. The system’s experiences at each time-step are stored in a replay memory setM (line 2) and then a minibatch
of data will be sampled from the replay memory to update Q̂j (line 2 and 2). An exploration to the action space is executed
with probability ε (line 2).

Generative Adversarial User Model for RL Based Recommendation System

Algorithm 2 cascading deep Q-learning (CDQN) with Experience Replay
Initialize replay memoryM to capacity N
Initialize parameter Θj of Q̂j with random weights for each 1 ≤ j ≤ k For iteration i = 1 to L do

Sample a batch of users U from training set Initialize the states s0 to a zero vector for each u ∈ U For t = 1 to T do
For each user u ∈ U simultaneously do

With probability ε select a random subset At of size k
Otherwise, At = ARGMAX Q(stu, It,Θ1, · · · ,Θk)
Recommend At to user u, observe user action at ∼ φ(st,At) and update user state st+1

Add tuple
(
st,At, r(st, at), st+1

)
toM

Sample random minibatch B iid.∼ M
For each j, update Θj by SGD over the loss

(
y − Q̂j(st, At1:j ; Θj)

)2
for B

return Θ1, · · · ,Θk

C. Dataset description
(1) MovieLens public dataset1 contains large amounts of movie ratings collected from their website. We randomly sample
1,000 active users from this dataset. On average, each of these active users rated more than 500 movies (including short
films), so we assume they rated almost every movie that they watched and thus equate their rating behavior with watching
behavior. MovieLens dataset is the most suitable public dataset for our experiments, but it is still not perfect. In fact, none of
the public datasets provides the context in which a user’s choice is made. Thus, we simulate this missing information in a
reasonable way. For each movie watched(rated) on the date d, we collect a list of movies released within a month before that
day d. On average, movies run for about four weeks in theater. Even though we don’t know the actual context of user’s
choice, at least the user decided to watch the rated movie instead of other movies in theater. Besides, we control the maximal
size of each displayed set by 40. Features: In MovieLens dataset, only titles and IDs of the movies are given, so we collect
detailed movie information from Internet Movie Database(IMDB). Categorical features as encoded as sparse vectors and
descriptive features are encoded as dense vectors. The combination of such two types of vectors produces 722 dimensional
raw feature vectors. To further reduce dimensionality, we use logistic regression to fit a wide&deep networks (Cheng et al.,
2016) and use the learned input and hidden layers to reduce the feature to 10 dimension.

(2) An online news article recommendation dataset from Ant Financial is anonymously collected from Ant Financial
news article online platform. It consists of 50,000 users’ clicks and impression logs for one month, involving dozens of
thousands of news. It is a time-stamped dataset which contains user features, news article features and the context where
the user clicks the articles. The size of the display set is not fixed, since a user can browse the news article platform as she
likes. On average a display set contains 5 new articles, but it actually various from 2 to 10. Features: The news article raw
features are approximately of dimension 100 million because it summarizes the key words in the article. Apparently it is too
expensive to use these raw features in practice. The features we use in the experiments are 20 dimensional dense vector
embedding produced from the raw feature by wide&deep networks. The reduced 20 dimensional features are widely used in
this online platform and revealed to be effective in practice.

(3) Last.fm2 contains listening records from 359,347 users. Each display set is simulated by collecting 9 songs with nearest
time-stamp.

(4) Yelp3 contains users’ reviews to various businesses. Each display set is simulated by collecting 9 businesses with nearest
location.

(5) RecSys154 contains click-streams that sometimes end with purchase events.

(6) Taobao5 contains the clicking behavior and buying behavior of users in 22 days. We consider the buying behaviors as
positive events.

1https://grouplens.org/datasets/movielens/
2https://www.last.fm/api
3https://www.yelp.com/dataset/
4https://2015.recsyschallenge.com/
5https://tianchi.aliyun.com/datalab

Generative Adversarial User Model for RL Based Recommendation System

D. More figures for experimental results
D.1. Figures for section 6.1

An interesting comparison is shown in Figure 3 and more similar figures are provided here. The blue curve is the trajectory
of a user’s actual choices of movies over time. The orange curves are simulated trajectories predicted by GAN and CCF,
respectively. Similar to what we conclude in section 6.1, these figures reveal the good performances of GAN user model in
terms of capturing the evolution of users’ interest.

GAN	prediction

GAN	prediction

Figure 7. Two more examples: comparison of the true trajectory(blue) of user’s choices, the simulated trajectory predicted by GAN model
(orange curve in upper sub-figure) and the simulated trajectory predicted by CCF (orange curve in the lower sub-figure) for the same user.
Y -axis represents 80 categories of movies.

D.2. Figures for section 6.2

We demonstrate the policy performance in user level in figure 4 by comparing the cumulative reward. Here we attach the
figure which compares the click rate. In each sub-figure, red curve represents GAN-DQN policy and blue curve represents
the other. GAN-DQN policy contributes higher averaged click rate for most users.

Figure 8. Comparison of click rates among 1,000 users under the recommendation policies based on different user models. In each figure,
red curve represents GAN-DQN policy and blue curve represents the other. The experiments are repeated for 50 times and standard
deviation is plotted as the shaded area. This figure is similar to figure 4, except that it plots the value of click rates instead of user’s
cumulative rewards.

D.3. Figures for section 6.3

This figure shows three sets of results corresponding to different sizes of display set. It reveals how users’ cumulative
reward(averaged over 1,000 users) increases as each policy interacts with and adapts to 1,000 users over time. It can be

Generative Adversarial User Model for RL Based Recommendation System

easily that the CDQN policy pre-trained over a GAN user model can adapt to online users much faster then other model-free
policies and can reduce the risk of losing the user at the beginning. The experiment setting is similar to section 6.2. All
policies are evaluated on a separated set of 1,000 users associated with a test model. We need to emphasize that the GAN
model which assists the CDQN policy is learned from a training set of users without overlapping test users. It is different
from the test model which fits the 1,000 test users.

Figure 9. Comparison of the averaged cumulative reward among 1,000 users under different adaptive recommendation policies. X-axis
represents how many times the recommender interacts with online users. Here the recommender interact with 1,000 users each time, so in
fact each interaction represents 100 online data points. Y -axis is the click rate. Each point (x, y) in this figure means a click rate y is
achieved after x many times of interactions with the users.

