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A. Proof of Theorem 3
We need the following lemma for proving Theorem 3.

Lemma 2. (Allen-Zhu, 2017) Regarding the modified-
Katyusha algorithm (Algorithm 2), suppose that τ1 ≤ 1

3ηL̂
,

τ2 = 1/2. Defining Dt := f(yt)− f(x), D̃k := f(x̃k)−
f(x) for any x, conditioned on iterations {0, . . . , t− 1} in
k-th epoch and all iterations before k-th epoch, we have
that

0 ≤ (1− τ1 − τ2)

τ1
Dt −

1

τ1
E[Dt+1] +

τ2
τ1
D̃k

+
1

2η
‖ζt − x‖2 − 1 + ησ

2η
E[‖ζt+1 − x‖2] (1)

Proof. [of Theorem 3] Define θ = 1 + ησ and multiply (1)
by θt on both side. By summing up the inequalities in (1) in
the k-th epoch, we have that

0 ≤Ek

[
1− τ1 − τ2

τ1

m−1∑
t=0

Dkm+tθ
t − 1

τ1

m−1∑
t=0

Dkm+t+1θ
t

]

+
τ2
τ1
D̃k

m−1∑
t=1

θt +
1

2η
‖ζkm − x‖2

− θm

2η
Ek+1[‖ζ(k+1)m − x‖2]

where Ek[·] denotes expectation in k-th epoch conditional
on 0, . . . , k − 1 epochs. Using the convexity of f(·), we
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have that

τ1 + τ2 − 1 + 1/θ
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1

2η
‖ζkm − x‖2

(2)

Substituting τ2 = 1/2 and m ≤ d log(2τ1+2/θ−1)
log θ e+ 1, we

have that
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1

2θτ1
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Telescoping above inequality over all epochs k =
0, . . . ,K − 1 we have that

E[D̃K ] ≤ 2θτ1θ
−mK

(
1

2τ1
D̃0 +

1/2− τ1
τ1
∑m−1
t=0 θt

D0

+
1

2η
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)

Since
∑m−1
t=0 θt ≥ 1, τ1 ≤ 1

2 and θ ≤ 2, we have

E[D̃K ] ≤ 4τ1θ
−mK(

1− τ1
τ1

D̃0 +
1

2η
‖ζ0 − x‖2)

We can use the same analysis by plugging x = ζ0 in (1)
to prove that E[f(x̃K) − f(x̃0)] ≤ 0 - an objective value
decreasing property that will be used later.
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B. Proof of Lemma 1
Proof. First we have hat

E[fs(xs)] =E

[
φ(xs)) +

1

2γ
‖xs − xs−1‖2

]
≤ fs(zs) + Es

≤fs(xs−1) + Es = φ(xs−1) + Es

Besides, we also have that

‖xs − xs−1‖2

=‖xs − zs + zs − xs−1‖2

=‖xs − zs‖2 + ‖zs − xs−1‖2 + 2〈xs − zs, zs − xs−1〉
≥(1− α−1s )‖xs − zs‖2 + (1− αs)‖xs−1 − zs‖2

where the inequality follows from the Young’s inequality
with 0 < αs < 1. Combining above inequalities, then we
have

(1− αs)
2γ

Es‖xs−1 − zs‖2

≤Es

[
∆s +

(α−1s − 1)

2γ
‖xs − zs‖2 + Es

]
≤Es[∆s] +

(α−1s − 1)

2γ
Es[‖xs − zs‖2] + Es

≤Es[∆s] +
(α−1s − 1) + γσ

γσ
Es

≤Es[∆s] +
(α−1s − 1) + γσ

γσ

[
4θ−mK(φ(xs−1)− φ(x∗))

+2θ−mKL̂‖xs−1 − zs‖2
]

where the first inequality follows from the definition ∆s :=
φ(xs−1) − φ(xs), and the third inequality uses the strong
convexity of fs(x), whose strong convexity parameter is
σ = γ−1 − µ. Substituting αs = 1/2, γ = 1/(2µ), and
σ = µ, L̂ ≤ 2L and θ−mK ≤ µ/(24L̂), we have that

1

8γ
‖xs−1 − zs‖2 ≤ Es[∆s] + 12θ−mK(φ(xs−1)− φ(x∗))

C. A Technical Lemma
Lemma 3. For a non-decreasing sequence ws, s =
0, . . . , S + 1, we have

E

[
S+1∑
s=1

ws∆s

]
≤ ∆φwS+1

Proof.

S+1∑
s=1

ws∆s =

S+1∑
s=1

ws(φ(xs−1)− φ(xs))

=

S+1∑
s=1

(ws−1φ(xs−1)− wsφ(xs))

+

S+1∑
s=1

(ws − ws−1)φ(xs−1)

=w0φ(x0)− wS+1φ(xS+1) +

S+1∑
s=1

(ws − ws−1)φ(xs−1)

=

S+1∑
s=1

(ws − ws−1)(φ(xs−1)− φ(xS+1))

where the third equality follows from the extension that
w0 = 0. Taking expectation on both sides, we have

E

[
S+1∑
s=1

ws∆s

]

=

S+1∑
s=1

(ws − ws−1)E[(φ(xs−1)− φ(xS+1))]

≤
S+1∑
s=1

(ws − ws−1)[φ(x0)− φ(x∗)]

≤∆φwS+1

where we use the fact that E[fs(xs)−fs(xs−1)] ≤ 0 (this is
the objective value decreasing property of Katyusha) imply-
ing E[φ(xs)− φ(xs−1)] ≤ 0 and hence E[φ(xs)] ≤ φ(x0)
for s ≥ 0.

D. Decomposition of LSP and TL1
It is easy to verify that for LSP, r1(x) = λ

β ‖x‖1 and

r2(x) = λ
∑d
i=1(|x|/β− log(β+ |x|)). For TL1, r1(x) =

λβ+1
β ‖x‖1 and r2(x) = λ

∑d
i=1

(β+1)|xi|2
β(β+|xi|) . For smooth-

ness of r2 for both regularizers, we refer readers to (Wen
et al., 2018).

E. Comparisons with RapGrad
In this section, we conduct some experiments for solving
least square (LS) regression problem with the smoothly
clipped absolute deviation (Smoothed SCAD) penalty by
RapGrad (Lan & Yang, 2018) and Katalyst. To handle
the non-smoothness of SCAD (Fan & Li, 2001) at x =
0, we add a small positive number ε to obtain a smooth
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Figure 2. Theoretical performances of RapGrad and Katalyst.
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Figure 3. Empirical performances of RapGrad and Katalyst with early termination.
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approximation Rλ,γ,ε (Lan & Yang, 2018):

Rλ,γ,ε(x) =



λ(x2 + ε)
1
2 , if(x2 + ε)

1
2 ≤ λ,

2γλ(x2 + ε)
1
2 − (x2 + ε)− λ2

2(γ − 1)
,

if λ < (x2 + ε)
1
2 < γλ,

λ2(γ + 1)

2
, otherwise,

where γ > 2, λ > 0, and ε > 0. Then the problem becomes

min
x∈Rd

φ(x) :=
1

2n

n∑
i=1

(a>i x− bi)2 +
ρ

2

d∑
i=1

Rλ,γ,ε(xi)

It is easy to show that the weakly convexity parameter and
smoothness parameter are given by µ = ρ

2(γ−1) and L =

ρλε−1/2

2 + max1≤i≤n ‖ai‖2.

We test RapGrad and Katalyst on a randomly generated
data set of size n = 1000 and d = 100. The parameters of
Rλ,γ,ε are setting as follows, ε = 10−3, λ = 2, γ = 4 and
ρ = 0.01.

We first set all parameters in RapGrad and Katalyst to their
theoretical values. The results are reported in Figure 2. We
can see that two algorithms perform similarly in the view of
gradient norm ‖∇φ‖, while Katalyst reduces the objective
value faster than RapGrad even when ρ is small.

We can observe from Figure 2 that both RapGrad and Kat-
alyst are conservative on estimating the required iterations
for solving subproblems, which waste a large number of
gradient computations. Next, we try early termination strat-
egy for solving subproblems to see whether it could help
to get better performance following (Lan & Yang, 2018).
The number of the inner loops of RapGrad and Katalyst
are tested from s to s/50 and from K to K/50 respectively,
and the best results are reported in Figure 3. We can see
that both algorithms have little improvements in reducing
objective values. Meanwhile, the plateaus of gradient norm
are disappeared and two algorithms obtain about 10 times
faster convergence speed in ‖∇φ‖.
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