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A. Proof of Theorem 1
Here we prove Theorem 1 for information gain score.

Proof. H(y) and H(y|x(j) < η) are defined as
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For simplicity, we denote N0 := |I0|, N1 := |I1|, n0 :=
|IL ∩I0| and n1 := |IL ∩I1|. The information gain of this
split can be written as a function of n0 and n1:
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where C1 > 0 and C2 are constants with respect to n0.
Taking n0 as a continuous variable, we have
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When ∂IG
∂n0

< 0, perturbing one example in ∆IR with label
0 to IL will increase n0 and decrease the information gain.
It is easy to see that ∂IG∂n0

< 0 if and only if n0
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. This

indicates that when n0
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one example with label 0 to IL will always decrease the
information gain.
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example in ∆IR with label 1 to IL will decrease the infor-
mation gain. As mentioned in the main text, to decrease the
information gain score in Algorithm 1, the adversary needs
to perturb examples in ∆I such that n0

N0
and n1

N1
are close to

each other. Algorithm 3 gives an O(|∆I|) method to find
∆n∗0 and ∆n∗1, the optimal number of points in ∆I with
label 0 and 1 to be added to the left.

B. Gini Impurity Score
We also have a theorem for Gini impurity score similar to
Theorem 1.

Algorithm 3 Finding ∆n∗0 and ∆n∗1 to Minimize Informa-
tion Gain or Gini Impurity

Input: N0 and N1, number of instances with label 0 and
1. no0 and no1, number of instances with label 0 and 1 that
are certainly on the left.
Input: |∆I ∩ I0| and |∆I ∩ I1|, number of instances
with label 0 and 1 that can be perturbed.
Output: ∆n∗0, ∆n∗1, optimal number of points with label
0 and 1 in ∆I to be place on the left.
∆n∗0 ← 0, ∆n∗1 ← 0, min_diff← | n
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end if
end for

end for
Return ∆n∗0 and ∆n∗1;

Theorem B.1. If n0
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, perturbing

one example in ∆IR with label 0 to IL will decrease the
Gini impurity.

Proof. The Gini impurity score of a split with threshold η
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where we use the same notation as in (5). C3 > 0 and C4

are constants with respect to n0. Taking n0 as a continuous
variable, we have
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where m0 := N0−n0 and m1 := N1−n1. Then ∂ Gini
∂n0

<
0 holds if n0
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< n1

m1
, which is equivalent to n0

N0
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.

Since the conditions of Theorem 1 and Theorem B.1 are the
same, Algorithm 1 and Algorithm 3 also work for tree-based
models using Gini impurity score.
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C. Decision Boundaries of Robust and
Natural Models

Figure 4 shows the decision boundaries and test accuracy of
natural trees as well as robust trees with different ε values on
two dimensional synthetic datasets. All trees have depth 5
and we plot training examples in the figure. The results
show that the decision boundaries of our robust decision
trees are simpler than the decision boundaries in natural
decision trees, agreeing with the regularization argument in
the main text.
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Figure 4. (Best viewed in color) The decision boundaries and test
accuracy of natural decision trees and robust decision trees with
depth 5 on synthetic datasets with two features.

D. Omitted Results on `1 and `2 distortion
In Tables 4 and 5 we present the `1 and `2 distortions of
vanilla (information gain based) decision trees and GBDT
models obtained by Kantchelian’s `1 and `2 attacks. Again,
only small or medium sized binary classification models can
be evaluated by Kantchelian’s attack. From the results we
can see that although our robust decision tree training algo-
rithm is designed for `∞ perturbations, it can also improve
models `1 and `2 robustness significantly.

E. Omitted Results on Models with Different
Number of Trees

Figure 5 shows the `∞ distortion and accuracy of Fashion-
MNIST GBDT models with different number of trees. In
Table 7 we present the test accuracy and `∞ distortion of
models with different number of trees obtained by Cheng’s
`∞ attack. For each dataset, models are generated during
a single boosting run. We can see that the robustness of

robustly trained models consistently outperforms that of
natural models with the same number of trees. Another
interesting finding is that for MNIST and Fashion-MNIST
datasets in Figures 3 (in the main text) and 5, models with
more trees are generally more robust. This may not be true
in other datasets; for example, results from Table 7 in the
Appendix shows that on some other datasets, the natural
GBDT models lose robustness when more trees are added.
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Figure 5. (Best viewed in color) `∞ distortion vs. classification
accuracy of GBDT models on Fashion-MNIST datasets with dif-
ferent numbers of trees (circle size). The adversarial examples
are found by Cheng’s `∞ attack. The robust training parameter
ε = 0.1 for Fashion-MNIST. With robust training (purple) the
distortion needed to fool a model increases dramatically with less
than 1% accuracy loss.

F. Reducing Depth Does Not Improve
Robustness

One might hope that one can simply reduce the depth of trees
to improve robustness since shallower trees provide stronger
regularization effects. Unfortunately, this is not true. As
demonstrated in Figure 6, the robustness of naturally trained
GBDT models are much worse when compared to robust
models, no matter how shallow they are or how many trees
are in the ensemble. Also, when the number of trees in
the ensemble model is limited, reducing tree depth will
significantly lower the model accuracy.

G. Random Forest Model Results
We test our robust training framework on random forest (RF)
models and our results are in Table 6. In these experiments
we build random forest models with 0.5 data sampling rate
and 0.5 feature sampling rate. We test the robust and natural
random forest model on three datasets and in each dataset,
we tested 100 points using Cheng’s and Kantchelian’s `∞
attacks. From the results we can see that our robust deci-
sion tree training framework can also significantly improve
random forest model robustness.
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Figure 6. (Best viewed in color) Robustness vs. classification ac-
curacy plot of GBDT models on MNIST dataset with different
depth and different numbers of trees. The adversarial examples
are found by Cheng’s `∞ attack. The robust training parameter
ε = 0.3. Reducing the model depth cannot improve robustness
effectively compared to our proposed robust training procedure.

H. More MNIST and Fashion-MNIST
Adversarial Examples

In Figure 7 we present more adversarial examples for
MNIST and Fashion-MNIST datasets using GBDT models.
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Dataset training test # of # of robust ε depth test acc.
avg. `1 dist.

by Kantchelian’s `1 attack
avg. `2 dist.

by Kantchelian’s `2 attack
set size set size features classes robust natural robust natural robust natural robust natural

breast-cancer 546 137 10 2 0.3 5 5 .948 .942 .534 .270 .504 .209
diabetes 614 154 8 2 0.2 5 5 .688 .747 .204 .075 .204 .065

ionosphere 281 70 34 2 0.2 4 4 .986 .929 .358 .127 .358 .106

Table 4. The test accuracy and robustness of information gain based single decision tree models. The robustness is evaluated by the
average `1 and `2 distortions of adversarial examples found by Kantchelian’s `1 and `2 attacks. Average `∞ distortions of robust decision
tree models found by the two attack methods are consistently larger than those of the naturally trained ones.

Dataset training test # of # of # of robust depth test acc.
avg. `1 dist.

by Kantchelian’s `1 attack dist.
avg. `2 dist.

by Kantchelian’s `2 attack dist.

set size set size features classes trees ε robust natural robust natural robust natural improv. robust natural improv.
breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964 .488 .328 1.49X .431 .251 1.72X

cod-rna 59,535 271,617 8 2 80 0.2 5 4 .880 .965 .065 .059 1.10X .062 .047 1.32X
diabetes 614 154 8 2 20 0.2 5 5 .786 .773 .150 .081 1.85X .135 .059 2.29X
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980 .057 .051 1.12X .048 .042 1.14X

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998 1.843 .721 2.56X .781 .182 4.29X

Table 5. The test accuracy and robustness of GBDT models. Average `1 and `2 distortions of robust GBDT models are consistently larger
than those of the naturally trained models. The robustness is evaluated by the average `1 and `2 distortions of adversarial examples found
by Kantchelian’s `1 and `2 attacks.

Dataset training test # of # of # of robust depth test acc.
avg. `∞ dist.

by Cheng’s `∞ attack dist.
avg. `∞ dist.

by Kantchelian’s `∞ attack dist.

set size set size features classes trees ε robust natural robust natural robust natural improv. robust natural improv.
breast-cancer 546 137 10 2 60 0.3 8 6 .993 .993 .406 .297 1.37X .396 .244 1.62X

diabetes 614 154 8 2 60 0.2 5 5 .753 .760 .185 .093 1.99X .154 .072 2.14X
MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .986 .983 .445 .180 2.47X .341 .121 2.82X

Table 6. The test accuracy and robustness of random forest models. Average `∞ distortion of our robust GBDT models are consistently
larger than those of the naturally trained models. The robustness is evaluated by the average `∞ distortion of adversarial examples found
by Cheng’s and Kantchelian’s attacks.
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breast-cancer (2)
ε = 0.3

depthr = 8, depthn = 6

train test feat. # of trees 1 2 3 4 5 6 7 8 9 10
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

546 137 10 tst. acc. .985 .942 .971 .964 .978 .956 .978 .964 .985 .964 .985 .964 .985 .971 .993 .971 .993 .971 1.00 .971
`∞ dist. .383 .215 .396 .229 .411 .216 .411 .215 .406 .226 .407 .229 .406 .248 .439 .234 .439 .238 .437 .241

covtype (7)
ε = 0.2

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

400,000 181,000 54 tst. acc. .775 .828 .809 .850 .832 .865 .847 .877 .858 .891 .867 .902 .875 .912 .882 .921 .889 .926 .894 .930
`∞ dist. .125 .066 .103 .064 .087 .062 .081 .061 .079 .060 .077 .059 .077 .058 .075 .056 .075 .056 .073 .055

cod-rna (2)
ε = 0.2

depthr = 5, depthn = 4

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

59,535 271,617 8 tst. acc. .810 .947 .861 .959 .874 .963 .880 .965 .892 .966 .900 .967 .903 .967 .915 .967 .922 .967 .925 .968
`∞ dist. .077 .057 .066 .055 .063 .054 .062 .053 .059 .053 .057 .052 .056 .052 .056 .052 .056 .052 .058 .052

diabetes (2)
ε = 0.2

depthr = depthn = 5

train test feat. # of trees 2 4 6 8 10 12 14 16 18 20
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

614 154 8 tst. acc. .760 .753 .760 .753 .766 .753 .773 .753 .773 .734 .779 .727 .779 .747 .779 .760 .779 .773 .786 .773
`∞ dist. .163 .066 .163 .065 .154 .071 .151 .071 .152 .073 .148 .072 .146 .067 .144 .062 .138 .062 .139 .060

Fashion-MNIST (10)
ε = 0.1

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60,000 10,000 784 tst. acc. .877 .876 .889 .889 .894 .892 .898 .896 .899 .899 .900 .901 .902 .902 .902 .901 .902 .903 .903 .903
`∞ dist. .131 .029 .135 .035 .139 .041 .144 .043 .147 .045 .149 .047 .151 .048 .153 .048 .154 .049 .156 .049

HIGGS (2)
ε = 0.05

depthr = depthn = 8

train test feat. # of trees 50 100 150 200 250 300 350 400 450 500
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

10,500,000 500,000 28 tst. acc. .676 .747 .688 .753 .700 .755 .702 .758 .705 .759 .709 .760 .711 .762 .712 .764 .716 .763 .718 .764
`∞ dist. .023 .013 .023 .014 .022 .014 .022 .014 .022 .014 .022 .014 .021 .015 .021 .015 .021 .015 .021 .015

ijcnn1 (2)
ε = 0.1

depthr = depthn = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

49,990 91,701 22 tst. acc. .933 .973 .942 .977 .947 .977 .952 .979 .958 .980 .959 .980 .962 .980 .964 .980 .967 .980 .968 .980
`∞ dist. .065 .048 .061 .047 .058 .048 .057 .047 .054 .048 .054 .047 .054 .047 .053 .047 .052 .047 .052 .047

MNIST (10)
ε = 0.3

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60, 000 10, 000 784 tst. acc. .964 .966 .973 .975 .977 .977 .978 .978 .978 .978 .979 .979 .979 .979 .980 .979 .980 .979 .980 .980
`∞ dist. .330 .033 .343 .049 .352 .057 .359 .062 .363 .065 .367 .067 .369 .069 .370 .071 .371 .072 .373 .072

Sensorless (11)
ε = 0.05

depthr = depthn = 6

train test feat. # of trees 3 6 9 12 15 18 21 24 27 30
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

48,509 10,000 48 tst. acc. .834 .977 .867 .983 .902 .987 .923 .991 .945 .992 .958 .994 .966 .996 .971 .996 .974 .997 .978 .997
`∞ dist. .037 .022 .036 .022 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023

webspam (2)
ε = 0.05

depthr = depthn = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

300, 000 50, 000 254 tst. acc. .950 .976 .964 .983 .970 .986 .973 .989 .976 .990 .978 .990 .980 .991 .981 .991 .982 .992 .983 .992
`∞ dist. .049 .010 .048 .015 .049 .019 .049 .021 .049 .023 .049 .024 .049 .024 .049 .024 .048 .024 .049 .024

Table 7. The test accuracy and robustness of GBDT models. Here depthn is the depth of natural trees and depthr is the depth of robust
trees. Robustness is evaluated by the average `∞ distortion of adversarial examples found by Cheng’s attack (Cheng et al., 2019). The
number in the parentheses after each dataset name is the number of classes. Models are generated during a single boosting run. We can
see that the robustness of our robust models consistently outperforms that of natural models with the same number of trees.
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pred.=0
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pred.=8

(f)
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pred.=5

(g)
pred.=9

(h)
`∞ dist.= 0.025
pred.=4

(i)
`∞ dist.= 0.402
pred.=4

(j)
pred.=6

(k)
`∞ dist.= 0.014
pred.=8

(l)
`∞ dist.= 0.329
pred.=8

(m)
pred.=“Sneaker”

(n)
`∞ dist.= 0.025
pred.=“Bag”

(o)
`∞ dist.= 0.482
pred.=“Sandal”

(p)
pred.=“Dress”

(q)
`∞ dist.= 0.024
pred.=“T-shirt/top”

(r)
`∞ dist.= 0.340
pred.=“Trouser”

(s)
pred.=“Pullover”

(t)
`∞ dist.= 0.017
pred.=“Bag”

(u)
`∞ dist.= 0.347
pred.=“Coat”

(v)
pred.=“Bag”

(w)
`∞ dist.= 0.033
pred.=“Shirt”

(x)
`∞ dist.= 0.441
pred.=“Coat”

Figure 7. MNIST and Fashion-MNIST examples and their adversarial examples found using the untargeted Cheng’s `∞ attack (Cheng
et al., 2019) on 200-tree gradient boosted decision tree (GBDT) models trained using XGBoost with depth=8. For both MNIST and
Fashion-MNIST robust models, we use ε = 0.3.


